Knot Theory and Khovanov Homology

Similar documents
Hyperbolic Knots and the Volume Conjecture II: Khov. II: Khovanov Homology

arxiv: v3 [math.gt] 23 Dec 2014

arxiv: v1 [math.gt] 22 Oct 2017

= A + A 1. = ( A 2 A 2 ) 2 n 2. n = ( A 2 A 2 ) n 1. = ( A 2 A 2 ) n 1. We start with the skein relation for one crossing of the trefoil, which gives:

Temperley Lieb Algebra I

Do Super Cats Make Odd Knots?

MORE ON KHOVANOV HOMOLOGY

Twist Numbers of Links from the Jones Polynomial

Virtual Tribrackets. Sam Nelson Shane Pico

arxiv:math/ v1 [math.gt] 15 Dec 2005

arxiv: v3 [math.gt] 29 Mar 2014

KHOVANOV HOMOLOGY, ITS DEFINITIONS AND RAMIFICATIONS OLEG VIRO. Uppsala University, Uppsala, Sweden POMI, St. Petersburg, Russia

Polynomials in knot theory. Rama Mishra. January 10, 2012

A brief Incursion into Knot Theory. Trinity University

arxiv: v1 [math.gt] 7 Nov 2017

Knots, computers, conjectures. Slavik Jablan

arxiv: v2 [math.gt] 27 Mar 2009

arxiv: v2 [math.gt] 10 Sep 2014

Vassiliev Invariants, Chord Diagrams, and Jacobi Diagrams

M ath. Res. Lett. 17 (2010), no. 1, 1 10 c International Press 2010 ODD KHOVANOV HOMOLOGY IS MUTATION INVARIANT. Jonathan M. Bloom

Seungwon Kim and Ilya Kofman. Turaev Surfaces

THE CATEGORIFICATION OF THE KAUFFMAN BRACKET SKEIN MODULE OF RP 3

Categorification and (virtual) knots

Algebraic and topological perspectives on the Khovanov homology

NATHAN M. DUNFIELD, STAVROS GAROUFALIDIS, ALEXANDER SHUMAKOVITCH, AND MORWEN THISTLETHWAITE

Generell Topologi. Richard Williamson. May 28, 2013

A SKEIN APPROACH TO BENNEQUIN TYPE INEQUALITIES

Generell Topologi. Richard Williamson. May 29, 2013


A sheaf-theoretic description of Khovanov s knot homology

CHERN-SIMONS THEORY AND LINK INVARIANTS! Dung Nguyen! U of Chicago!

A LEGENDRIAN THURSTON BENNEQUIN BOUND FROM KHOVANOV HOMOLOGY

A Survey of Quantum Enhancements

arxiv:math/ v1 [math.gt] 13 Jun 2005

Invariants of Turaev genus one links

arxiv: v1 [math.gt] 11 Oct 2018

Knots and Physics. Louis H. Kauffman

ADEQUACY OF LINK FAMILIES. Slavik Jablan, Ljiljana Radović, and Radmila Sazdanović

A REMARK ON RASMUSSEN S INVARIANT OF KNOTS

TORSION IN KHOVANOV LINK HOMOLOGY

Patterns and Stability in the Coefficients of the Colored Jones Polynomial. Katie Walsh Advisor: Justin Roberts

The Three-Variable Bracket Polynomial for Reduced, Alternating Links

UC San Diego UC San Diego Electronic Theses and Dissertations

Surface invariants of finite type

Gauge theory and Rasmussen's invariant

Link homology and categorification

Knots and surfaces. Michael Eisermann. Universität Stuttgart 3. Juni 2014

Advancement to Candidacy. Patterns in the Coefficients of the Colored Jones Polynomial. Katie Walsh Advisor: Justin Roberts

Surface invariants of finite type

QUASI-ALTERNATING LINKS AND POLYNOMIAL INVARIANTS

arxiv:math/ v1 [math.gt] 23 May 2006

arxiv: v1 [math.gt] 2 Jun 2016

DENSITY SPECTRA FOR KNOTS. In celebration of Józef Przytycki s 60th birthday

Knight move in chromatic cohomology

ON ARC INDEX AND MAXIMAL THURSTON BENNEQUIN NUMBER

On a relation between the self-linking number and the braid index of closed braids in open books

Knots, polynomials and triangulations. Liam Hernon Supervised by Dr Norm Do and Dr Josh Howie Monash university

arxiv: v2 [math.gt] 15 Mar 2017

The total rank question in knot Floer homology and some related observations

arxiv: v1 [math.gt] 10 Jul 2018

The universal sl 3 link homology

Categorification of the Colored Jones Polynomial and Rasmussen Invariant of Links

Combinatorial Spanning Tree Models for Knot Homologies

arxiv: v1 [math.at] 2 Jan 2018

arxiv: v1 [math.gt] 13 Mar 2019

An Introduction to Mathematical Knots

Research Statement Michael Abel October 2017

The Satellite crossing number conjecture for cables of knots

Some distance functions in knot theory

Knot Theory And Categorification

Volume Conjecture: Refined and Categorified

GENUS TWO MUTANT KNOTS WITH THE SAME DIMENSION IN KNOT FLOER AND KHOVANOV HOMOLOGIES. 1. Introduction

The A-B slice problem

NONCOMMUTATIVE LOCALIZATION IN ALGEBRA AND TOPOLOGY Andrew Ranicki (Edinburgh) aar. Heidelberg, 17th December, 2008

AN OVERVIEW OF KNOT INVARIANTS

Virtual Crossing Number and the Arrow Polynomial

arxiv: v1 [math.gt] 4 Feb 2010

Quasi-Trees and Khovanov homology

Tutte Polynomials with Applications

A picture of some torus knots and links. The first several (n,2) links have dots in their center. [1]

Knot Homology from Refined Chern-Simons Theory

The Knot Quandle. Steven Read

Knots and Physics. Lifang Xia. Dec 12, 2012

ON CALCULATION OF THE WITTEN INVARIANTS OF 3-MANIFOLDS

A (computer friendly) alternative to Morse Novikov theory for real and angle valued maps

Evaluation of sl N -foams. Workshop on Quantum Topology Lille

Notes on Link Homology

Knots and links of disclination lines in chiral nematic colloids

Evgeniy V. Martyushev RESEARCH STATEMENT

GRAPHS, LINKS, AND DUALITY ON SURFACES

Infinitely many corks with special shadow complexity one

Skein invariants of links and their state sum models

A Categorification for the Chromatic Polynomial

arxiv: v2 [math.gt] 24 Jul 2012

Skein Invariants of Links and Their State Sum Models. Received: 19 September 2017; Accepted: 9 October 2017; Published: 13 October 2017

Knot invariants, A-polynomials, BPS states

Categorifying quantum knot invariants

An introduction to calculus of functors

A NOTE ON QUANTUM 3-MANIFOLD INVARIANTS AND HYPERBOLIC VOLUME

On links with cyclotomic Jones polynomials

Transcription:

Knot Theory and Khovanov Homology Juan Ariel Ortiz Navarro juorna@gmail.com Departamento de Ciencias Matemáticas Universidad de Puerto Rico - Mayagüez JAON-SACNAS, Dallas, TX p.1/15

Knot Theory Motivated in 1880 by chemists JAON-SACNAS, Dallas, TX p.2/15

Knot Theory Motivated in 1880 by chemists Embedding of a collection of S 1 into R 3 JAON-SACNAS, Dallas, TX p.2/15

Knot Theory Motivated in 1880 by chemists Embedding of a collection of S 1 into R 3 JAON-SACNAS, Dallas, TX p.2/15

Knot Theory Motivated in 1880 by chemists Embedding of a collection of S 1 into R 3 JAON-SACNAS, Dallas, TX p.2/15

Knot Theory Motivated in 1880 by chemists Embedding of a collection of S 1 into R 3 JAON-SACNAS, Dallas, TX p.2/15

Knot Theory Motivated in 1880 by chemists Embedding of a collection of S 1 into R 3 A knot or link has many different diagrams JAON-SACNAS, Dallas, TX p.2/15

Knot Theory Motivated in 1880 by chemists Embedding of a collection of S 1 into R 3 A knot or link has many different diagrams JAON-SACNAS, Dallas, TX p.2/15

Knot Theory Motivated in 1880 by chemists Embedding of a collection of S 1 into R 3 A knot or link has many different diagrams JAON-SACNAS, Dallas, TX p.2/15

Knot Theory Reidemeister (20 s): Two diagrams represent the same link if and only if there is a series of Reidemeister moves from one to the other JAON-SACNAS, Dallas, TX p.3/15

Knot Theory Reidemeister (20 s): Two diagrams represent the same link if and only if there is a series of Reidemeister moves from one to the other Type I Type II Type III JAON-SACNAS, Dallas, TX p.3/15

Knot Theory Reidemeister (20 s): Two diagrams represent the same link if and only if there is a series of Reidemeister moves from one to the other Link Invariant: Property unchanged by these moves Type I Type II Type III JAON-SACNAS, Dallas, TX p.3/15

Link Invariants JAON-SACNAS, Dallas, TX p.4/15

Link Invariants Algebraic topology: JAON-SACNAS, Dallas, TX p.4/15

Link Invariants Algebraic topology: invariants are algebraic objects JAON-SACNAS, Dallas, TX p.4/15

Link Invariants Algebraic topology: invariants are algebraic objects Numbers JAON-SACNAS, Dallas, TX p.4/15

Link Invariants Algebraic topology: invariants are algebraic objects Numbers unknotting number JAON-SACNAS, Dallas, TX p.4/15

Link Invariants Algebraic topology: invariants are algebraic objects Numbers unknotting number stick number JAON-SACNAS, Dallas, TX p.4/15

Link Invariants Algebraic topology: invariants are algebraic objects Numbers unknotting number stick number Groups JAON-SACNAS, Dallas, TX p.4/15

Link Invariants Algebraic topology: invariants are algebraic objects Numbers unknotting number stick number Groups Polynomials JAON-SACNAS, Dallas, TX p.4/15

Link Invariants Algebraic topology: invariants are algebraic objects Numbers unknotting number stick number Groups Polynomials Alexander JAON-SACNAS, Dallas, TX p.4/15

Link Invariants Algebraic topology: invariants are algebraic objects Numbers unknotting number stick number Groups Polynomials Alexander Jones JAON-SACNAS, Dallas, TX p.4/15

Link Invariants Algebraic topology: invariants are algebraic objects Numbers unknotting number stick number Groups Polynomials Alexander Jones Kauffman s Bracket JAON-SACNAS, Dallas, TX p.4/15

Kauffman s bracket The Kauffman s bracket is defined by: JAON-SACNAS, Dallas, TX p.5/15

Kauffman s bracket The Kauffman s bracket is defined by: < >= 1 < unknot L >= (q + q 1 ) < L > < D >= < D + > q < D > JAON-SACNAS, Dallas, TX p.5/15

Kauffman s bracket The Kauffman s bracket is defined by: < >= 1 < unknot L >= (q + q 1 ) < L > < D >= < D + > q < D > D D+ D JAON-SACNAS, Dallas, TX p.5/15

Kauffman s Bracket for the Hopf Link JAON-SACNAS, Dallas, TX p.6/15

Kauffman s Bracket for the Hopf Link q JAON-SACNAS, Dallas, TX p.6/15

Kauffman s Bracket for the Hopf Link q q q q JAON-SACNAS, Dallas, TX p.6/15

Kauffman s Bracket for the Hopf Link q q q q 1 q q q q 1 q q q 1 JAON-SACNAS, Dallas, TX p.6/15

Kauffman s Bracket for the Hopf Link q q q q 1 q q q q 1 q q q 1 3 q q 1 JAON-SACNAS, Dallas, TX p.6/15

Kauffman s Bracket for the Hopf Link q q q q 1 q q q q 1 q q q 1 3 q q 1 1 3 q q q q 1 JAON-SACNAS, Dallas, TX p.6/15

Kauffman s Bracket for the Hopf Link q q q q 1 q q q q 1 q q q 1 3 q q 1 q 1 3 q q 1 q 2 4 q 2 q q 1 JAON-SACNAS, Dallas, TX p.6/15

Jones Polynomial Oriented knots or links have two types of crossings: JAON-SACNAS, Dallas, TX p.7/15

Jones Polynomial Oriented knots or links have two types of crossings: positive JAON-SACNAS, Dallas, TX p.7/15

Jones Polynomial Oriented knots or links have two types of crossings: positive negative JAON-SACNAS, Dallas, TX p.7/15

Jones Polynomial Oriented knots or links have two types of crossings: positive negative Let n + be the number of positive crossings and n be the number of negative crossings. JAON-SACNAS, Dallas, TX p.7/15

Jones Polynomial Oriented knots or links have two types of crossings: positive negative Let n + be the number of positive crossings and n be the number of negative crossings. Then the Jones Polynomial J L (q) of the link L is: J L (q) = 1 n q n + 2n < L > JAON-SACNAS, Dallas, TX p.7/15

Jones Polynomial for the Hopf Link JAON-SACNAS, Dallas, TX p.8/15

Jones Polynomial for the Hopf Link In this diagram n + = 2 and n = 0. Then the Jones Polynomial for the Hopf Link is: JAON-SACNAS, Dallas, TX p.8/15

Jones Polynomial for the Hopf Link In this diagram n + = 2 and n = 0. Then the Jones Polynomial for the Hopf Link is: J hopf (q) = ( 1) 0 q 2 (q 2 + 1 + q 2 + q 4 ) = 1 + q 2 + q 4 + q 6 JAON-SACNAS, Dallas, TX p.8/15

Khovanov Homology M. Khovanov (1999) JAON-SACNAS, Dallas, TX p.9/15

Khovanov Homology M. Khovanov (1999) Assigns homology groups to a diagram of a knot (or link) JAON-SACNAS, Dallas, TX p.9/15

Khovanov Homology M. Khovanov (1999) Assigns homology groups to a diagram of a knot (or link) Knots (and links) invariant JAON-SACNAS, Dallas, TX p.9/15

Khovanov Homology M. Khovanov (1999) Assigns homology groups to a diagram of a knot (or link) Knots (and links) invariant Categorification of the Jones polynomial JAON-SACNAS, Dallas, TX p.9/15

Khovanov Homology M. Khovanov (1999) Assigns homology groups to a diagram of a knot (or link) Knots (and links) invariant Categorification of the Jones polynomial Uses the algebra A =< 1,x > over a field F with the following operations: A A m A, m(1 b) = m(b 1) = b, m(x x) = 0 A A A, (1) = 1 x + x 1, (x) = x x JAON-SACNAS, Dallas, TX p.9/15

Khovanov Complex Order the vertices: JAON-SACNAS, Dallas, TX p.10/15

Khovanov Complex Order the vertices: A B JAON-SACNAS, Dallas, TX p.10/15

Khovanov Complex Order the vertices: A Two ways of smoothing a crossing: B JAON-SACNAS, Dallas, TX p.10/15

Khovanov Complex Order the vertices: A Two ways of smoothing a crossing: B 0-smoothing 1-smoothing JAON-SACNAS, Dallas, TX p.10/15

Khovanov Complex Order the vertices: A Two ways of smoothing a crossing: B 0-smoothing 1-smoothing For each vertex α of the n-dimensional cube it assigns a particular way of smoothing the knot: α state α JAON-SACNAS, Dallas, TX p.10/15

Khovanov Complex A B JAON-SACNAS, Dallas, TX p.11/15

Khovanov Complex A B vertex (0, 0) JAON-SACNAS, Dallas, TX p.11/15

Khovanov Complex A (0,0) B vertex (0, 0) JAON-SACNAS, Dallas, TX p.11/15

Khovanov Complex A (0,0) B vertex (0, 0) To each state α it assigns the vector space [L] α = #circles i=1 A JAON-SACNAS, Dallas, TX p.11/15

Khovanov Complex A (0,0) B vertex (0, 0) To each state α it assigns the vector space [L] α = #circles i=1 A The (0, 0)-state is assigned the vector space: A A JAON-SACNAS, Dallas, TX p.11/15

Khovanov Complex A (0,0) B vertex (0, 0) To each state α it assigns the vector space [L] α = #circles i=1 A The (0, 0)-state is assigned the vector space: A A Let C i = α =i [L] α to get the complex with -operator defined by the operations on the algebra A JAON-SACNAS, Dallas, TX p.11/15

Complex for the Hopf link (1,0) (0,0) m A (1,1) A x A m (0,1) A x A C 0 (L){0}{2} 0 A 1 1 C (L){1}{2} C 2 (L){2}{2} JAON-SACNAS, Dallas, TX p.12/15

Khovanov Homology JAON-SACNAS, Dallas, TX p.13/15

Khovanov Homology C(L) is a complex, i.e., i i 1 = 0 for every i. JAON-SACNAS, Dallas, TX p.13/15

Khovanov Homology C(L) is a complex, i.e., i i 1 = 0 for every i. Let Z i = ker i and B i = Im i, JAON-SACNAS, Dallas, TX p.13/15

Khovanov Homology C(L) is a complex, i.e., i i 1 = 0 for every i. Let Z i = ker i and B i = Im i, then H i = Z i /B i 1 JAON-SACNAS, Dallas, TX p.13/15

Khovanov Homology C(L) is a complex, i.e., i i 1 = 0 for every i. Let Z i = ker i and B i = Im i, then H i = Z i /B i 1 The homology H i (L) of the complex C(L) is an invariant for the link L and it is called the Khovanov homology of L. JAON-SACNAS, Dallas, TX p.13/15

Khovanov Homology C(L) is a complex, i.e., i i 1 = 0 for every i. Let Z i = ker i and B i = Im i, then H i = Z i /B i 1 The homology H i (L) of the complex C(L) is an invariant for the link L and it is called the Khovanov homology of L. From this groups one can obtain the Jones polynomial. JAON-SACNAS, Dallas, TX p.13/15

Khovanov Homology C(L) is a complex, i.e., i i 1 = 0 for every i. Let Z i = ker i and B i = Im i, then H i = Z i /B i 1 The homology H i (L) of the complex C(L) is an invariant for the link L and it is called the Khovanov homology of L. From this groups one can obtain the Jones polynomial. In general, the Khovanov homology is stronger (invariant) than the Jones polynomial. JAON-SACNAS, Dallas, TX p.13/15

KH for the Hopf Link The complex: 0 C 0 0 C 1 1 C 2 0 JAON-SACNAS, Dallas, TX p.14/15

KH for the Hopf Link The complex: 0 C 0 0 C 1 1 C 2 0 1 1 0 (1, 1) x 1 0 (x,x) 1 x 0 (x,x) x x 0 (0, 0) JAON-SACNAS, Dallas, TX p.14/15

KH for the Hopf Link The complex: 0 C 0 0 C 1 1 C 2 0 1 1 0 (1, 1) x 1 0 (x,x) 1 x 0 (x,x) x x 0 (0, 0) (1, 0) 1 1 x x 1 (x, 0) 1 x x (0, 1) 1 1 x + x 1 (0,x) 1 x x JAON-SACNAS, Dallas, TX p.14/15

KH for the Hopf Link The complex: 0 C 0 0 C 1 1 C 2 0 1 1 0 (1, 1) x 1 0 (x,x) 1 x 0 (x,x) x x 0 (0, 0) Z 0 =< 1 x x 1,x x > (1, 0) 1 1 x x 1 (x, 0) 1 x x (0, 1) 1 1 x + x 1 (0,x) 1 x x JAON-SACNAS, Dallas, TX p.14/15

KH for the Hopf Link The complex: 0 C 0 0 C 1 1 C 2 0 1 1 0 (1, 1) (1, 0) 1 1 x x 1 x 1 0 (x,x) 1 x 0 (x,x) x x 0 (0, 0) Z 0 =< 1 x x 1,x x > B 0 =< (1, 1), (x,x) > (x, 0) 1 x x (0, 1) 1 1 x + x 1 (0,x) 1 x x JAON-SACNAS, Dallas, TX p.14/15

KH for the Hopf Link The complex: 0 C 0 0 C 1 1 C 2 0 1 1 0 (1, 1) (1, 0) 1 1 x x 1 x 1 0 (x,x) 1 x 0 (x,x) x x 0 (0, 0) Z 0 =< 1 x x 1,x x > B 0 =< (1, 1), (x,x) > (x, 0) 1 x x (0, 1) 1 1 x + x 1 (0,x) 1 x x Z 1 =< (1, 1), (x,x) > JAON-SACNAS, Dallas, TX p.14/15

KH for the Hopf Link The complex: 0 C 0 0 C 1 1 C 2 0 1 1 0 (1, 1) (1, 0) 1 1 x x 1 x 1 0 (x,x) 1 x 0 (x,x) x x 0 (0, 0) Z 0 =< 1 x x 1,x x > B 0 =< (1, 1), (x,x) > (x, 0) 1 x x (0, 1) 1 1 x + x 1 (0,x) 1 x x Z 1 =< (1, 1), (x,x) > B 1 =< 1 x + x 1,x x JAON-SACNAS, Dallas, TX p.14/15

KH for the Hopf Link The complex: 0 C 0 0 C 1 1 C 2 0 1 1 0 (1, 1) (1, 0) 1 1 x x 1 x 1 0 (x,x) 1 x 0 (x,x) x x 0 (0, 0) Z 0 =< 1 x x 1,x x > B 0 =< (1, 1), (x,x) > H 0 =< x 1 1 x,x x > (x, 0) 1 x x (0, 1) 1 1 x + x 1 (0,x) 1 x x Z 1 =< (1, 1), (x,x) > B 1 =< 1 x + x 1,x x JAON-SACNAS, Dallas, TX p.14/15

KH for the Hopf Link The complex: 0 C 0 0 C 1 1 C 2 0 1 1 0 (1, 1) (1, 0) 1 1 x x 1 x 1 0 (x,x) 1 x 0 (x,x) (x, 0) 1 x x (0, 1) 1 1 x + x 1 x x 0 (0, 0) Z 0 =< 1 x x 1,x x > (0,x) 1 x x Z 1 =< (1, 1), (x,x) > B 0 =< (1, 1), (x,x) > B 1 =< 1 x + x 1,x x H 0 =< x 1 1 x,x x >, H 1 = 0 JAON-SACNAS, Dallas, TX p.14/15

KH for the Hopf Link The complex: 0 C 0 0 C 1 1 C 2 0 1 1 0 (1, 1) (1, 0) 1 1 x x 1 x 1 0 (x,x) 1 x 0 (x,x) (x, 0) 1 x x (0, 1) 1 1 x + x 1 x x 0 (0, 0) Z 0 =< 1 x x 1,x x > (0,x) 1 x x Z 1 =< (1, 1), (x,x) > B 0 =< (1, 1), (x,x) > B 1 =< 1 x + x 1,x x H 0 =< x 1 1 x,x x >, H 1 = 0, and H 2 =< 1 1, 1 x x 1 > JAON-SACNAS, Dallas, TX p.14/15

REFERENCES C. Adams, The Knot Book D. Bar-Natan, On Khovanov s categorification of the Jones Polynomial, Algebr. and Geom. Topology, 2002 M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (3), 1999 A. Shumakovitch, KhoHo version 0.9.3.5, http://www.geometrie.ch/khoho JAON-SACNAS, Dallas, TX p.15/15