Department of Chemistry University of Texas at Austin

Similar documents
Department of Chemistry University of Texas at Austin

Bromine liquid vapor equilibrium vapor pressure temperature intermolecular forces Presentation

Thinking Like a Chemist UNIT 5 DAY 1

Thinking Like a Chemist UNIT 5 DAY 1

Intermolecular and Ionic Forces

Chapter 14. Liquids and Solids

Chapter 10. Dipole Moments. Intermolecular Forces (IMF) Polar Bonds and Polar Molecules. Polar or Nonpolar Molecules?

Sparks CH301. WHY IS EVERYTHING SO DIFFERENT? Gas, Liquid or Solid? UNIT 3 Day 7

Upon successful completion of this unit, the students should be able to:

Ch 9 Liquids & Solids (IMF) Masterson & Hurley

Lecture Notes 1: Physical Equilibria Vapor Pressure

Chapter 14. Liquids and Solids

Chapter 12 Intermolecular Forces and Liquids

ENTROPY

Ch. 9 Liquids and Solids

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO

CHEMISTRY 202 Hour Exam III. Dr. D. DeCoste T.A (60 pts.) 31 (20 pts.) 32 (20 pts.) 33 (20 pts.) Total (120 pts)

Learning Check. Determine the VSEPRT geometry, bond angle, and hybridization of each indicated atom in the following molecule.

Chap 10 Part 4Ta.notebook December 08, 2017

Chapter 10. Liquids and Solids

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

The reactions we have dealt with so far in chemistry are considered irreversible.

CHEMISTRY 202 Practice Hour Exam III. Dr. D. DeCoste T.A (60 pts.) 21 (15 pts.) 22 (20 pts.) 23 (25 pts.) Total (120 pts)

Professor K. Intermolecular forces

Intermolecular Forces I

Name: Score: /100. Part I. Multiple choice. Write the letter of the correct answer for each problem. 3 points each

AP* Chapter 10. Liquids and Solids. Friday, November 22, 13

Chapter 10. Liquids and Solids

Bonding Free Response Examples:

Why? a. Define enthalpy of vaporization ΔvapH :

Liquids and Solids The Condensed States of Matter

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 9a BONDING AND SOLUTIONS

Physical States of Matter

POGIL 7 KEY Intermolecular Forces

PHASE CHANGES. * melting * boiling * sublimation. * freezing * condensation * deposition. vs.

Intermolecular Forces OR WHY IS WATER SPECIAL?

NGSS DCI: Unit Lesson Plan Intermolecular (IM) Forces. Teacher: <Teacher> Time Frame: 9 days. Grade: 10 School: <School>

TITLE Intermolecular forces and molecules. AUTHORS Ted Clark (The Ohio State University) Julia Chamberlain (University of Colorado Boulder)

CHEMISTRY 101 Hour Exam III. Dr. D. DeCoste T.A (30 pts.) 16 (12 pts.) 17 (18 pts.) Total (60 pts)

CHEMISTRY 102B Hour Exam III. Dr. D. DeCoste T.A. Show all of your work and provide complete answers to questions 16 and (45 pts.

Chem 11 Unit 4 POLARITY, MOLECULE SHAPE, and BEHAVIOUR

Solid to liquid. Liquid to gas. Gas to solid. Liquid to solid. Gas to liquid. +energy. -energy

a. Define vapor pressure: b. The boiling point of the substance with the highest enthalpy of vaporization is: (Circle your answer) T b2 T b1 T b

liquids_solids_15dec2017_1st.notebook Liquids and solids Chapters 11 and 12

Liquids, Solids and Phase Changes

As we ended the lectures on gases, we were introduced to an idea that serves as foundation for the material in this lecture:

[8.5] Melting Points and Boiling Points of Solutions

CHEMISTRY. Chapter 11 Intermolecular Forces Liquids and Solids

CHEMISTRY 101 Hour Exam III. Dr. D. DeCoste T.A (30 pts.) 16 (12 pts.) 17 (18 pts.) Total (60 pts)

This activity has been used in an introductory chemistry course (prep chemistry or GOB course) Learning Goals: Prerequisite knowledge

Chapter #16 Liquids and Solids

Chapter 8 Part 1 - Gases

Chemical thermodynamics the area of chemistry that deals with energy relationships

Thinking Like a Chemist About Dissolution. Unit 5 Day 4

Molecular shapes. Balls and sticks

Assessment Schedule 2017 Chemistry: Demonstrate understanding of thermochemical principles and the properties of particles and substances (91390)

READING. Review of Intermolecular Forces & Liquids (Chapter 12) Ion-Ion Forces. Ion-Dipole Energies

Honors Unit 9: Liquids and Solids

Intermolecular forces Liquids and Solids

CHEMISTRY 20 Formative Assessment Intermolecular Forces

CP Covalent Bonds Ch. 8 &

Intermolecular Forces of Attraction

Sample Exercise 11.1 Identifying Substances That Can Form Hydrogen Bonds

CHEM 1211K Test IV. 3) The phase diagram of a substance is given above. This substance is a at 25 o C and 1.0 atm.

For the following intermolecular forces:

Why does more NaCl dissolve in 100 g of water than in 100 g of gasoline? Chapter 10

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

A. liquid water. B. gaseous water. C. they are exactly the same. D. it depends on the temperature. Which has a higher Enthalpy?

Evaporation and Intermolecular Attractions

Chapter 11. Kinetic Molecular Theory. Attractive Forces

Intermolecular Forces in Solids, Liquids, and Gases What Do You See?

Chapter 14: Liquids and Solids

Chapter 17. Free Energy and Thermodynamics. Chapter 17 Lecture Lecture Presentation. Sherril Soman Grand Valley State University

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

WKS Name Intermolecular Forces Period Date

Copyright 2017 Dan Dill 1

UNIT 15: THERMODYNAMICS

What are covalent bonds?

Chem 112 Dr. Kevin Moore

Thinking Like a Chemist About Phase Changes UNIT 5 DAY 3

Ch. 11: Liquids and Intermolecular Forces

solid IMF>liquid IMF>gas IMF Draw a diagram to represent the 3 common states of matter of a given substance: solid liquid gas

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

- As for the liquids, the properties of different solids often differ considerably. Compare a sample of candle wax to a sample of quartz.

a) ion-ion attractions b) London dispersion forces c) hydrogen bonding forces d) dipole-dipole attractions

Intermolecular Forces

UNIT TEST PRACTICE. South Pasadena AP Chemistry 10 States of Matter Period Date 3 R T MM. v A v B

Intermolecular Forces and States of Matter AP Chemistry Lecture Outline

Intermolecular forces: Background

Name: Carbon has 6 total electrons Oxygen has 8 total electrons. BO = ½ (Bonding Antibonding) BO = ½ (10 4) = 3. Diamagnetic

Chapter 11. Intermolecular forces. Chapter 11 1

Chapter Intermolecular attractions

Name: Date: Period: #: BONDING & INTERMOLECULAR FORCES

Big Idea #5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter.

States of Matter. The Solid State. Particles are tightly packed, very close together (strong cohesive forces) Low kinetic energy (energy of motion)

CHAPTER 3 HW SOLUTIONS: INTERMOLECULAR FORCES

Properties of Liquids and Solids

= = 10.1 mol. Molar Enthalpies of Vaporization (at Boiling Point) Molar Enthalpy of Vaporization (kj/mol)

Chemistry 20 Course Outline

Vapor Pressure & Raoult s Law. This is the pressure above a solid or liquid due to evaporation.

Transcription:

Physical Equilibria Unit Activity Thinking Like a Chemist KEY A major goal for this class is for you to learn the concept of macro/micro thinking or Thinking Like a Chemist. Thinking like a chemist is the ability to look at the macroscopic properties of a static substance or a substance undergoing a change and be able to simultaneously account for those properties on a microscopic (molecular) level. This activity will walk you through some of these concepts you likely mastered in CH301. You should work with a couple of neighbors. You will be stopped periodically and we will check in to make sure the entire class is making progress. Since this is student centered learning environment, the check in may take one of many forms: a group of students might be asked to approach the board and write their answers to selected questions on the board, an individual might be asked to give an explanation while still seated speaking into a microphone, we might ask a clicker question to poll the entire class or one of the instructors might provide a mini lecture. The experience will be most beneficial if you fully engage your brain and participate in this process. One or more platinum stars will be on the line. 1. Please state to the best of your ability a macroscopic description of the substances below the chemical names. Iso-Propanol Acetone Both are colorless liquids that are not very viscous. Iso-Propanol evaporates SLOWER than Acetone upon observation. Given the condensed structural formulae, consider the microscopic properties. CH3CHOHCH3 CH3COCH3 2. Please draw the Lewis structure for each substance. Iso-Propanol Acetone 3. State the molecular geometry around each carbon. All carbons are tetrahedral across the two substances except the central (second) carbon of acetone which is trigonal planar. 4. State if each molecule is polar or nonpolar. Both molecules are polar. 5. Explain your answers for the polarity question (4).

The central carbon of iso-propanol has a tetrahedral geometry with dissimilar groups attached (CH3, CH3, H and OH). This lack of symmetry means that the individual dipole moments of the molecular do not cancel completely, leaving an overall NET dipole moment (aka polar). The central carbon of acetone has a trigonal planar geometry with dissimilar groups attached (CH3, CH3, O). This lack of symmetry means that the individual dipole moments of the molecular do not cancel completely, leaving an overall NET dipole moment (aka polar). 6. What types of intermolecular forces (IMF) exist for each substance? Iso-Propanol: London dispersion forces, dipole-dipole and hydrogen-bonding Acetone: London dispersion forces, dipole-dipole 7. Which substance do you think would have the higher boiling point? We predict that iso-propanol would have the higher boiling point because its intermolecular forces are stronger than those of acetone (hydrogen-bonding is stronger than dipole-dipole and London dispersion forces). Now we are ready to look at the energy changes associated with a phase change. We will assume that both liquids are at room temperature (298K) and room pressure (1 atm). Consider the process of the phase transition of going from a liquid to a gas (vaporization). Written generically as: X(l) ¾ ¾ X(g) 8. In general, which do you think would have the higher enthalpy, a substance in its liquid phase or the gas phase? A substance in the gas phase generally has a higher enthalpy. The gas particles feel fewer IMFs than liquid particles. The attractive IMFs lower the energy of a substance and therefore the liquid phase has a lower enthalpy than the gas phase. 9. In general, what do you think the sign of the enthalpy of vaporization, H vaporization, is for the process? H vaporization = H gas - H liquid The enthalpy of the gas phase is generally greater than the enthalpy of the liquid. Therefore, we must add energy to break the IMFs between the liquid particles and move them into the gas phase. This is a positive H process, or endothermic.

10. Now comparing the two liquids in question, isopropanol and acetone, do you think that the enthalpy of vaporization, H vaporization, for isopropanol will be greater, less than or about the same as acetone? Why? H vaporization for iso-propanol should be greater than that of acetone because the isopropanol liquid molecules have greater attractive forces (IMF), which lower the enthalpy of the liquid. We must add more energy to break up these attractive forces between the isopropanol molecules to move them from liquid into the gas phase than to break up the weaker attractive forces between acetone molecules. The H vaporization would therefore be greater for iso-propanol. 11. In general, which do you think would have the higher entropy a substance in its liquid phase or the gas phase? The gas phase of a substance generally has the higher absolute entropy. Particles in the gas phase have more possible microstates (arrangements) than substances in the liquid phase, which are given more structure due to IMFs. 12. In general, what do you think the sign of the entropy of vaporization,, is for the process? = S gas - S liquid The entropy of the gas phase is greater than the entropy of the liquid. So the change in entropy from liquid to gas is a positive change (+). 13. Now comparing the two liquids in question, isopronanol and acetone do you think that the entropy of vaporization,, for isopropanol will be greater, less than or about the same as acetone? Why? relates more to the nature of liquids and gasses in general rather than the specific IMFs that govern each substance. So the values for for most substances are actually around the same value because the entropy of any gas is overwhelmingly larger than the entropy of any liquid. The of iso-propanol and acetone are therefore close in value. Deviations from this may occur with substances containing very high IMFs that lower the entropy of the liquid significantly (the resulting would be larger than usual).

14. What is the equation that relates the change in Gibb s free energy to changes in enthalpy and entropy? G = H - T S 15. What does the sign of change in free energy, G, tell you about a physical change? The sign of G indicates the spontaneity of a process (whether it will occur under given conditions). + G = non-spontaneous (will not occur under the given conditions without added energy) - G = spontaneous (will occur under the given conditions) 16. How could one affect the sign of change in free energy, G? By changing the temperature (this sometimes works, but some processes are nonspontaneous at all temperatures). The -T S term can be varied with temperature. 17. What does it mean when G = 0? When G = 0 the products and reactants have the same free energy. Therefore, neither the products nor the reactants side is a more stable state and the process is in equilibrium. During phase changes, the two phases are in equilibrium and G = 0. 18. Thinking back to isopropanol and acetone, is there a temperature at which G vaporization = 0? If so, is it the same temperature for both substances or is one higher than the other? If G vaporization = H vaporization - T = 0, then H vaporization = T. This condition would occur at a particular temperature at which: H vaporization = T H and S are both positive for the vaporization process and therefore the calculated temperature will also be positive. This result is reasonable because temperature is measured in the Kelvin scale (always positive). So, there is a temperature at which G vaporization = 0 and this is the boiling temperature of the substance (temperature of phase change between liquid to gas). Since is about the same for both substances, but H vaporization is higher for isopropanol. We can predict that the boiling temperature (Tboiling) for iso-propanol will be higher. H vaporization (iso-propanol) > H vaporization (acetone)

Tboiling (iso-propanol) > Tboiling (acetone) Such a conclusion can be predicted through the analysis of IMFs from questions #6 and #7 as well.