Cyclic Voltammetric and Electrochemical Simulation Studies on the Electro-Oxidation of Catechol in the Presence of 4, 4-bipyridine

Similar documents
CYCLIC VOLTAMMETRIC STUDY OF Pb (II) IN DIFFERENT SODIUM SALTS AS SUPPORTING ELECTROLYTES

STUDY OF Zn (II) IN DIFFERENT SODIUM SALTS AS SUPPORTING ELECTROLYTES USING CYCLIC VOLTAMMETRIC TECHNIQUE

Electrochemical Oxidation of Catechol in the Presence of Dimethyl Chloromalonate and its Digital Simulation

Cyclic Voltammetry. Objective: To learn the basics of cyclic voltammetry with a well-behaved echem system

Electro Analytical Studies on Ethoxylation of O- Nitro Phenol

Specific Determination of Hydrogen Peroxide With A Catalase Biosensor Based on Mercury Thin Film Electrodes

CHAPTER-5 CYCLIC VOLTAMETRIC STUDIES OF NOVEL INDOLE ANALOGUES PREPARED IN THE PRESENT STUDY

Electrochemical Characterization of Catechol-Dimethylamine Adduct at Different ph Values

Fundamental molecular electrochemistry - potential sweep voltammetry

Supporting Information. Electropolymerization of aniline on nickel-based electrocatalysts substantially

Analysis of Hydroquinone/Quinone Redox Couple Through the Use of Cyclic Voltammetry

Study of Electrode Mechanism by Cyclic Voltammetry

Cyclic Voltammetric Determinations of Dart (Drug) and Cd(II) Ion in Pharmaceutical Preparations

NTEGRA for EC PRESENTATION

Oxidation numbers are charges on each atom. Oxidation-Reduction. Oxidation Numbers. Electrochemical Reactions. Oxidation and Reduction

Sulaf Samir Ibrahem Master s Department of Physical Chemistry, Faculty of Science, Al-Baath University Homs, Syria

Goals. The laboratory instructor has already purged the solutions of dissolved. Purging the from these solutions prevents spurious

Electro Chemical Comparative Studies Of Ortho, Meta and Para Nitro Phenols

Electrochemical Determination of Uric Acid in Human Urine Using Nickel Hexa-Cyano Ferrate Modified Carbon Paste Electrode

Electron Transfer Rates in DNA Films as a Function of Tether Length. T. Gregory Drummond, Michael G. Hill, and Jacqueline K.

Chapter 2. Materials and Methods

Oxidation & Reduction (Redox) Notes

Advanced Analytical Chemistry Lecture 19. Chem 4631

Electrochemical behaviour of alkaline copper complexes

Supporting Information: Reaction Layer Imaging Using Fluorescence Electrochemical Microscopy

Electrochemical detection of phenol in aqueous solutions

Electrogenerated Upconverted Emission from Doped Organic Nanowires

Cyclic Voltametric Studies on the Interaction of Adrenaline With Formic Acid and Acetic Acid

Chemistry PhD Qualifying Exam Paper 1 Syllabus

Electronic Supplementary Information

Solution Purging. Goals. 1. Purge both solutions with an inert gas (preferably N 2

Amplified electrochemiluminescent immunosensing using apoferritin-templated poly(ethylenimine) nanoparticles as co-reactant

Electronic Supplementary Information. for. Discrimination of dopamine from ascorbic acid and uric acid on thioglycolic. acid modified gold electrode

Electrochemical Cells

Cyclic Voltammetry. Fundamentals of cyclic voltammetry

This material is based upon work supported by the National Science Foundation under Grant Number DUE

A Comparative Electrochemical Behaviour Study of p-nitrophenol Using GC and Pt Electrode

Green Synthesis of Nanoparticles -A Learning Experience

Redox and Electrochemistry

Molecules 2001, 6, molecules

Voltammetry Detection of Ascorbic Acid at Glassy Carbon Electrode Modified by Single-Walled Carbon Nanotube/Zinc Oxide

What is the importance of redox reactions? Their importance lies in the fact that we can use the transfer of electrons between species to do useful

By: C. W. Anderson, K. R. Lung, and Terence A. Nile

Strikingly different miscibility of n-octanol in highly-confined and quasi-confined water

Introduction to Cyclic Voltammetry Measurements *

Part A: Multiple Choice (23 marks total)

The Study of Multiple Electron Transfer Reactions by Cyclic Voltammetry

General Chemistry 1412 Spring 2008 Instructor: Dr. Shawn Amorde Website:

Cambridge IGCSE Chemistry. Topic 5: Electricity and chemistry. Notes.

Supplementary Information. Carolyn Richmonds, Megan Witzke, Brandon Bartling, Seung Whan Lee, Jesse Wainright,

Supporting Information

Find the oxidation numbers of each element in a reaction and see which ones have changed.

Materials. The three sulfonated calixarene host molecules, p- molecules, 5,6-dihydropyrazion[1,2,3,4-lmn][1,10]phenanthroline-4,7-diium (DP 2+ ) 4

ELECTROCHEMICAL DEGRADATION OF REACTIVE BLUE 19 DYE IN TEXTILE WASTEWATER

9.1 Introduction to Oxidation and Reduction

IGCSE Double Award Extended Coordinated Science

Nitroxide polymer networks formed by Michael addition: on site-cured electrode-active organic coating

An image depicting a 48-well plate comprising 48 individual electrochemical cells

sensors ISSN by MDPI

Chapter 3 Engineering Science for Microsystems Design and Fabrication

The Study on 1,10-Phenanthroline-copper Complex By CV-Thin Layer Spectroelectrochemistry

ELECTROCHEMICAL DETERMINATION OF DOPAMINE WITH GRAPHENE-MODIFIED GLASSY CARBON ELECTRODES

Electronic Supplementary Information

CET Q UESTIONS QUESTIONS

Supporting information. Proton-Coupled Electron Transport in Anthraquinone-based Zirconium Metal-Organic Frameworks

Proton-Coupled Electron Transfer Kinetics for the Hydrogen Evolution Reaction of Hangman Porphyrins

Voltammetric Comparison of the Electrochemical Oxidation of Toluene on Monolithic and Reticulated Glassy Carbon Electrodes in Aqueous Medium

Johary Rivera (Chemistry - University of Puerto Rico, Río Piedras Campus)

Highly efficient hydrogen evolution of platinum via tuning the interfacial dissolved-gas concentration

Buffers, Electrochemistry. Jan Pláteník & Tomáš Navrátil 2010/2011

Zn + Cr 3+ Zn 2+ + Cr. 9. neutrons remain the same: C. remains the same. Redox/Electrochemistry Regents Unit Review. ANSWERS

OXIDATION OF GLYCEROL ON DIAMOND COATED ELECTRODES. Introduction. Target

Cyclic Voltammetric Study of the Interaction of Biologically Important Metal Ion with Proton Pump Inhibitors

Title: Discrimination of Inner- and Outer-sphere Electrode Reactions by Cyclic Voltammetry Experiments

Electroanalytical and Electrosynthetic Studies Carbonyl Derivatives

Electrochemistry and Detection of Organic and Biological Molecules Such as Catechol and Ascorbic Acid at Conducting Poly (2,2-bithiophene) Electrode

Chapter 18 Electrochemistry. Electrochemical Cells

Scientific report Regarding the implementation of the project184/2011 during the period 1 January- 12 December 2016

Hydrogen Evolution on InSb Semiconductor in Liquid Ammonia (223 K)

Electrochemistry Worksheets

SUPORTING INFORMATION The Cathodic Voltammetric Behavior of Pillar[5]quinone in Nonaqueous Media. Symmetry Effects on the Electron Uptake Sequence.

Experiment 28 DIRECT METHANOL FUEL CELL

Cyclic Voltammetric Simulation for Electrochemically Mediated Enzyme Reaction and Determination of Enzyme Kinetic Constants

Electro Analytical Methods

Standard Operating Procedure. edaq Potentionstat. Miramar College Potentiostat. -Report by Marianne Samonte, Dec 2009

Supporting Information. Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies

Subject: A Review of Techniques for Electrochemical Analysis

Name: Regents Chemistry Date:

International Conference on: Pollution Control & Sustainable Environment

Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid

Electrocrystallization of monolayer protected gold clusters: opening the door to quality, quantity and new structures

Cyclic Voltammetry - A Versatile Electrochemical Method Investigating Electron Transfer Processes

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

Chemistry: The Central Science. Chapter 20: Electrochemistry

Introductory Lecture: Principle and Applications of Fuel Cells (Methanol/Air as Example)

Unit 2 B Voltammetry and Polarography

Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous alkaline solutions

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1

Single Catalyst Electrocatalytic Reduction of CO 2 in Water to H 2 :CO Syngas Mixtures with Water Oxidation to O 2

Analysis of cations and anions by Ion- Selective Electrodes (ISEs)

Transcription:

American Journal of Physical Chemistry 2016; 5(3): 45-55 http://www.sciencepublishinggroup.com/j/ajpc doi: 10.11648/j.ajpc.20160503.11 ISSN: 2327-2430 (Print); ISSN: 2327-2449 (Online) Cyclic Voltammetric and Electrochemical Simulation Studies on the Electro-Oxidation of Catechol in the Presence of 4, 4-bipyridine Tekalign Kasa 1, Theodros Solomon 2 1 Department of Chemistry, School of Natural Science, Madda Walabu University, Bale-Robe, Ethiopia 2 Department of Chemistry, School of Natural Science, Addis Ababa University, Addis Ababa, Ethiopia Email address: tekekasa@yahoo.com (T. Kasa) To cite this article: Tekalign Kasa, Theodros Solomon. Cyclic Voltammetric and Electrochemical Simulation Studies on the Electro-Oxidation of Catechol in the Presence of 4, 4-bipyridine. American Journal of Physical Chemistry. Vol. 5, No. 3, 2016, pp. 45-55. doi: 10.11648/j.ajpc.20160503.11 Received: February 21, 2016; Accepted: March 9, 2016; Published: April 16, 2016 Abstract: The studies were made using cyclic voltammetry on a glassy carbon electrode in aqueous solution containing phosphate buffer solution as supporting electrolyte. The purpose of the investigation was to carry out a quantitative detailed study of the electrochemical oxidation of catechol in the presence of 4, 4-bipyridine in aqueous solution. The electrooxidation of catechol produces a very reactive intermediate, o-benzoquinone, which subsequently reacts with 4, 4-bipyridine in 1, 4- Michael addition reaction to form the corresponding catechol derivative product. The kinetic data were extracted from cyclic voltammograms with the help of digital simulation. The results of the study show that catechol is oxidized in aqueous phosphate buffer solution to a very reactive intermediate o-benzoquinone. Keywords: Cyclic Voltammetry, EC Mechanism, Catechol, Benzoquinone, 4, 4-bipyridine 1. Introduction Electrochemistry provides very interesting and versatile means for the study of chemical reactions. The majority of organic electrode reactions are characterized by the generation of a reactive intermediate at the electrode by electron transfer and subsequent reactions typical for that species. The main goal of the electrochemical studies is the elucidation of the sequence of electron transfer and chemical reactions that occur near the electrode surface and its applications to electro-synthesis of organic compounds. Among the organic compounds, catechol can be easily oxidized to the corresponding reactive o-benzoquinone mainly due to its low oxidation potential [1]. Catechol has the molecular formula of C 6 H 6 O 2 and structure which is shown in the scheme 1 below. Catechol is well known in biological systems often as a reactive center of electron transfer in the structure of many natural compounds and biologically reactive molecules capable of exhibiting both anti- and pro-oxidant behavior [2]. Catechol has a great importance in both biological and environmental analysis because of its excellent electrochemical activity and it can be used for the characterization of different analytical methods. It is used in a variety of applications including photography, dying, agrochemicals, rubber, plastic production antiseptic, dyestuffs, electroplating, specialty inks, antioxidants and light stabilizers, in organic synthesis, pharmaceutical industry, antibiotics, and flavor compounds such as vanillin, precursors are essential; they are the starting material for the production of the desired compound [1, 3-6]. Scheme 1. Structure of catechol.

46 Tekalign Kasa and Theodros Solomon: Cyclic Voltammetric and Electrochemical Simulation Studies on the Electro-Oxidation of Catechol in the Presence of 4, 4-bipyridine The electrochemical oxidation of catechol in aqueous solutions and in the presence of nuchleophiles shows that catechol undergoes 1, 4-Michael addition reactions according to the so-called EC mechanism with the consumption of 2 electrons per molecule of catechol, and a conversion to catechol derivatives [7]. The purpose of the investigation was to carry out a quantitative detailed study of the electrochemical oxidation of catechol in the presence of 4, 4- bipyridine in aqueous solution. 2. Experimental Parts 2.1. Chemicals The chemicals used were catechol (BDH Poole, England), 4, 4-bipyridine (Aldrich-chemie, Germany), HCl (RiedeldeHaen, Germany), NaOH (BDH Poole, England), sodium dihydrogen phosphate (NaH 2 PO 4.2H 2 O, Riedel-deHaen, Germany) and disodium hydrogen phosphate (Na 2 HPO 4.2H 2 O, Techno Pharmchem, India). 2.2. Instrumentation The cyclic voltammetry apparatus used was BAS 100A electrochemical analyzer [Bio-analytical systems (BAS), USA], coupled to a Dell computer (Pentium 4). A JENWAY 3510 ph Meter (Barloworld Scientific Ltd, Dunmow, Essex, U.K.) and Electronic Balance (Model: LA 204) were used. The three electrodes used in the voltammetry experiments were the glassy carbon electrode (3mm diameter) as working electrode, platinum wire as an auxiliary electrode and Ag/AgCl (3MKCl) as reference electrode, all from BAS. The working electrode (glassy carbon electrode) (GCE) was polished in each set of experiments with aluminum oxide powder (0.3µm) on a polishing cloth and followed by distilled water and were carried out at room temperature. the simulation [11].The best simulation fits were obtained for the E r C i mechanism. 3. Result and Discussion 3.1. Cyclic Voltammetry of Catechol The number of electrons and protons involved in the oxidation of catechol can be determined from the separation peak potentials and from plots of E o vs ph and E pa vs ph respectively. The formal potential (E o ), which is approximated by the midpoint potential (E mid ) between the anodic and cathodic peaks is given by; 2.303 Where E o ph0 is the formal potential at ph 0, and R, T, and F have their usual meanings and n and m are number of electron and proton respectively. The values of E o evaluated from the midpoint potential between the anodic and cathodic peaks, (E mid ). Both E o and E pa were shifted to negative potentials with the slope of 62 mv/ph with the correlation function R (R = - 0.999601) and 63.3 mv/ph with the correlation function R (R = -0.999004) respectively. In all cases, the slopes are in good agreement with the theoretical slope (2.303mRT/nF) of 59 mv/ph with m 2 and n = 2, where n and m are number of electron and proton respectively [12]. 3.2. Effect of PH 2.3. Electrochemical Digital Simulation Digital simulation is a useful method in evaluation of complicated electrode reactions and used to visualize and verify electrochemical mechanisms and also used to determine the normalized current-over voltage curves for reversible as well as for quasi reversible reactions [8, 9]. By the development of simulation software cyclic voltammetry has become a very powerful technique [10]. The experimental parameters entered for digital simulation consisted of the following; E start = 0.2 V, E switch = 0.8 V and T = 298 K. The concentration of catechol and 4, 4-bipyridine were 1mM. The transfer coefficient (α) was assumed to be 0.5. The homogeneous rate constant (k f ) of the chemical reaction of o-benzoquinone with 4, 4-bipyridine was estimated based on an EC mechanism by fitting the simulation data with experimental cyclic voltammogram data at various scan rates and phs, while the heterogeneous rate constant (k o ) for the electrochemical oxidation of catechol to o-benzoquinone was estimated based on an E- mechanism of Figure 1. Typical cyclic voltammograms for 1 mm catechol at various phs a) 4, b) 5, c) 6, d) 7 and e) 8 at a scan rate of 50 mv/s. On increasing the ph of supporting electrolyte both the anodic and cathodic peak potentials shifted towards more negative potential [13] as shown in the Figure 1. This is expected because of the participation of proton in the oxidation reactions and these shifts of potential indicate that the electron transfer process from catechol to o-benzoquinone occurs at glassy carbon electrode easily at higher ph than at lower ph. The electrooxidation of catechol was found to be ph dependent. In acidic and neutral media catechol showed a well developed quasi-reversible wave as indicated in Figure 1

American Journal of Physical Chemistry 2016; 5(3): 45-55 47 below. Under these conditions, a peak current ratio i pc /i pa of nearly unity can be considered as a criterion for the stability of o-benzoquinone produced at the surface of the electrode under the experimental conditions. In basic solutions, the peak current ratio is less than unity and decreases with increasing ph. These shifts can be associated to the coupling of the anionic or dianionic forms of catechol with o- benzoquinones (dimerization reactions) [2]. Figure 2 below shows that the anodic peak current increases as the ph increases and reaches the highest peak at (ph = 7) and then decreases. The highest anodic peak current (at ph = 7) was taken as the optimum ph for the electrooxidation of catechol. towards more positive potentials. Overall, the current ratios are almost unity and the peak separation between the anodic and cathodic peak potential at scan rate of 50 mv/s is 69 mv/n which is greater than 59 mv/n and it is one of the indications that the system is a quasi-reversible process. A peak current ratio i pc /i pa of nearly unity, particularly during the repetitive recycling of potential, can be considered as criteria for the stability of o-benzoquinone produced at the surface of electrode under the experimental conditions. It means that any hydroxylation or dimerization reactions are very slow which was observed in the time-scale of cyclic voltammetry [2, 14, 15]. Figure 2. i pa as a function of ph for 1 mm catechol at a scan rate of 50 mv/s. 3.3. Effect of Scan Rate As shown in Figure 3, when the scan rate increases, both the anodic and cathodic peaks increase; the anodic peak shifts towards less positive potentials while the cathodic peak shifts Figure 3. Cyclic voltammograms of 1mM catechol at scan rates of; 30, 50,100,150, 200,250, 300 and 400mV/s at phosphate buffer solution of ph=7. DETERMINATION OF HETEROGENEOUS RATE CONSTANT (k o ) AT VARIOUS SCAN RATES

48 Tekalign Kasa and Theodros Solomon: Cyclic Voltammetric and Electrochemical Simulation Studies on the Electro-Oxidation of Catechol in the Presence of 4, 4-bipyridine Figure 4. Typical cyclic voltammograms of 1mM catechol at various scan rates at phs 7. (a) Experimental; (b) simulated. DETERMINATION OF HETEROGENEOUS RATE CONSTANT (k o ) AT VARIOUS phs

American Journal of Physical Chemistry 2016; 5(3): 45-55 49 Figure 5. Typical cyclic voltammograms of 1mM catechol at various phs at a scan rate of 50mV/s. (a) experimental; (b) simulated. Figure 6. Variation of experimental (a) and simulated (b) heterogeneous rate constant (k o ) as the function scan rate at ph 7.

50 Tekalign Kasa and Theodros Solomon: Cyclic Voltammetric and Electrochemical Simulation Studies on the Electro-Oxidation of Catechol in the Presence of 4, 4-bipyridine Figure 7. Variation of experimental (a) and simulated (b) heterogeneous rate constant (k o ) as the function ph at 50 mv/s. As can be seen from the data in Figure 6 and 7, there is a good correlation between the heterogeneous rate constant (k o ) calculated using the Nicholson and Shain method and the heterogeneous rate constant (k o ) obtained using digital simulation at various scan rates and phs. 3.4. Cyclic Voltammetry of Catechol in the Presence of 4, 4-Bipyridine The cyclic voltammogram of catechol in aqueous solution of 0.2 M phosphate buffer at ph = 7 shows one anodic and the corresponding cathodic peak. As 1mM 4, 4-bipyridine is added to 1mM catechol, the height of the cathodic and anodic peak currents decreased, while the potential of anodic peak to some extent shifted towards a less positive potential as shown in Figure 8 below. The shift of the anodic peak potential in the presence of 4, 4-bipyridine may due to the coupled homogeneous chemical reaction product formed at the surface of the electrode. 3.5. Effect of ph According to figure 9 the cyclic voltammogram of 1mM catechol in the presence of 4, 4-bipyridine shows that the anodic and cathodic peak potentials shifted towards less positive values as the ph increased. As shown in Figure 10 below also the peak current ratio i pc /i pa of catechol in the presence of 4, 4-bipyridine increasedwith increasing ph until it reached a maximum at ph 6 and then decreased after this ph.this can be related to protonation of the nucleophile 4, 4- bipyridine at lower phs and its deprotonation at higher phs. In other words, in acidic and neutral medium, the peak current ratio i pc /i pa of nearly unity can be considered as criteria for the stability of o-benzoquinone produced at the surface of the electrode. However, in basic solutions, the peak current ratio is less than unity and decreases with increasing ph. These changes can be related to the coupling of the anionic or dianionic forms of catechols with o-quinones (dimerization reactions) [16, 17]. Figure 8. Cyclic voltammograms of 1mM catechol in the absence (a) and in the presence of 1mM 4, 4-bipyridine (b), and that of a 1 mm 4, 4-bipyridine alone (c) at the glassy carbon electrode in 0.2 M phosphate buffer at different ph at a scan rate of 50 mv/s. Figure 9. Cyclic voltammograms of catechol in the presence of 4, 4- bipyridine at glassy carbon electrode at a scan rate of 50mV/s and various phs: a) 4, b) 5, c) 6, d) 7 and e) 8.

American Journal of Physical Chemistry 2016; 5(3): 45-55 51 The effect of the scan rates (10-400 mv/s) on the electrooxidation of catechol in the presence of 4, 4-bipyridine was studied. Figure 12 show that both the magnitude of anodic and cathodic peak potentials increased with increasing scan rate. The peak current ratio i pc /i pa increased as the scan rate increased and this indicates that a chemical reaction occurred between 4, 4-bipyridine and o-benzoquinone [18]. Figure 10. Current ratio i pc/i pa versus ph for1mm catechol in the presence of 1mM 4, 4-bipyridine. Figure 11 below shows that the anodic peak current decreases as ph increases and attain its highest value at (ph = 6) and then slightly decreases with ph. The highest anodic peak current occurred at ph = 6 and this is the optimum ph for electrooxidation of catechol in the presence of 4, 4-bipyridine. Figure 13. Current ratio i pc/i pa as function of scan rate for1mm catechol in the presence of 1mM 4, 4-bipyridine. Figure 11. Anodic peak current i pa as a function of ph for catechol in the presence of 4, 4-bipyridine at a scan rate of 50 mv/s. 3.6. Effect of Scan Rate Figure 14. Current ratio i pa/i pc versus scan rate for catechol in the presence of 4, 4-bipyridine. Figure 12. Cyclic voltammograms of 1mM catechol in the presence of 4, 4- bipyridine at scan rates of(10-300) mv/s at phosphate buffer solution of ph=6. Figure 15. Current function i pa/v 1/2 at different scan rate (v) for catechol in the presence of 4, 4-bipyridine at ph = 6.

52 Tekalign Kasa and Theodros Solomon: Cyclic Voltammetric and Electrochemical Simulation Studies on the Electro-Oxidation of Catechol in the Presence of 4, 4-bipyridine The cyclic voltammogram of catechol in the presence of the nucleophile at different scan rates shows an increasing of peak current ratio i pc /i pa, decreasing of i pa /i pc and the decreasing of current function i pa /v 1/2 with increasing scan rate. As shown in Figures 13, 14 and 15; it is a clear indication of coupled chemical reaction following an E r C i mechanism [19] and also the reactivity of deprotonated 4, 4-bipyridine towards o-benzoquinone. Determination of homogeneous rate constant (k f ) by using electrochemical simulation method at various scan rates. Figure 16. Separation of peak potentials ( E p) as a function of scan rate (v) for 1 mm catechol in the presence of 1 mm 4, 4-bipyridine at (ph = 6).

American Journal of Physical Chemistry 2016; 5(3): 45-55 53 Figure 17. Cyclic voltammograms for 1 mm catechol in the presence of 4, 4- bipyridine at ph= 6 at different scan rates. (a) Experimental; (b) simulated. As shown in Figure 18 below the k f values from Nicholson s working curve were in good agreement with the k f values of the electrochemical simulation results. Figure 18. Variation of experimental (a) and simulated (b) homogeneous rate constant (k f) as a function scan rate at ph of 6. Determination of homogeneous rate constant (k f ) by using electrochemical simulation method at various PHs

54 Tekalign Kasa and Theodros Solomon: Cyclic Voltammetric and Electrochemical Simulation Studies on the Electro-Oxidation of Catechol in the Presence of 4, 4-bipyridine Figure 19. Typical cyclic voltammograms of 1mM catechol in the presence of 1mM 4, 4 bipyridine at various phs at a scan rate of 50mV/s. (a) experimental; (b) simulated. Figure 20. Calculated (a) and simulated (b) homogeneous rate constant (k f) as a function ph at 50 mv/s. As shown in the Figure 20 above the experimental values of k f at various phs at the scan rate of 50 mv/s were in good agreement with the k f values of simulation values. Scheme 2. Proposed mechanism for electrooxidation of catechol in the presence of 4, 4-bipyridine.

American Journal of Physical Chemistry 2016; 5(3): 45-55 55 4. Conclusion The results of the study show that catechol is oxidized in aqueous phosphate buffer solution to a very reactive intermediate o-benzoquinone. The oxidation of catechol in the absence of 4, 4-bipyridine showed properties ofa quasireversible two-electron two-proton process, whereas, the oxidation of catechol in the presence of 4, 4-bipyridine follows an E r C i mechanism with an irreversible chemical reaction. The o-benzoquinone is attacked in 1, 4-Michael addition reaction by 4, 4-bipyridine to form catechol derivative. The kinetic parameters for the electrooxidation of catechol in the absence and presence of 4, 4-bipyridine at different scan rates and phs were studied using cyclic voltammetry and electrochemical digital simulation. References [1] Nematollahi, D., Rafiee, M., Fotouhi, L. 2009: Journal of Iranian Chemical Society, pp 448-476. [2] Fotouhi, L., Khakpour, M., Nematollahi, D., Heravi, M., 2008: ARKIVOC; 2, pp 43-52. [3] IARC, 1987: Monographs on the evaluation of carcinogenic risks to human, supplement, 7, 71, pp 433-451. [4] Krab-Hüsken, L., 2002: Production of catechol; Microbiology and technology. [5] Tao, Y., Fishman, A., William, E., Bentley, Thomas, 2004: Applied Environmental Microbiology, 70, pp 3814-3820. [6] Malisova, B., 2010: Polymer Immobilization to Metal Oxide Substrate through Catechol Derivatives as Surface Anchors. [7] Nematollahi, D., Alimoradi, M., Husain, W., 2004: Electroanalysis, 16, pp 1359-1365. [8] Bolinger, W., 2000: The Deployment of Digital Simulation Tools to Verify Cyclic Voltammetry Experiments. [9] Demortier, A., Jehoulet, C., 1990: Journal of Electro analytical Chemistry and Interface Electro-chemistry, 283, pp 15-33. [10] Nematollahi, D., Mohammad, L., 2009: International Journal of Electro-chemical Science, 4, pp1583-1592. [11] Petrovic, S., 2000: Chemical Educator, 5, pp 231-235. [12] Afkhami, A., Nematollahi, D., Khalafi, L., Rafiee, M.., 2005: International Journal of Chemical Kinetics, 37, pp 17-24. [13] Fotouhi, L., Tammari, E., Asadi, S., Heravi, M., 2009: International Journal of Chemical Kinetics, 41, 426-431. [14] Nematollahi, D., Afkhami, A., Mosaed, F., Rafiee, M., 2004: Research of Chemical Intermediate, 30, pp 299-309. [15] Fakhari, A.., Hosseiny, S., Davarani., Ahmar, H., Makarem, S., 2008: Journal of Applied Electro-chemistry, 38, pp 1743-1747. [16] Fotouhi, L., Asadi, S., Tammari, E., Heravi, M.; Nematollahi, D., 2008: Journal of Iranian Chemical Society, 5, pp 712-717. [17] Fotouhi, L., Behrozi, L.; Heravi, M.; Nematollahi, D., 2009: Phosphorus, Sulfur, and Silicon and Related Elements, 184, pp 2749-2757. [18] Dowlati, B., Nematollahi, D., Othman, M., 2011: International Journal of Electro-chemical Science, 6, pp 5767-5778. [19] Nematollahi, D., Ardakani, M.., Shekarlab, N., 2007: International Journal of Chemical Kinetics, 39, pp 605-613.