Higher Physics. Electricity. Summary Notes. Monitoring and measuring a.c. Current, potential difference, power and resistance

Similar documents
REVISED HIGHER PHYSICS REVISION BOOKLET ELECTRONS AND ENERGY

Cathkin High School Physics Department. CfE Higher Unit 3 Electricity. Summary Notes

Unit 3 - Electricity

Higher Physics Electricity Notes

Physics Department. CfE Higher Unit 3: Electricity. Problem Booklet

CLASS 12th. Semiconductors

HIGHER PHYSICS ELECTRICITY

Contents CONTENTS. Page 2 of 47

Farr High School HIGHER PHYSICS. Unit 3 Electricity. Question Booklet

ITT Technical Institute ET215 Devices I Unit 1

Lecture (02) PN Junctions and Diodes

NATIONAL QUALIFICATIONS CURRICULUM SUPPORT. Physics. Electricity. Questions and Solutions. James Page Arthur Baillie [HIGHER]

Electro - Principles I

Electric Fields. Basic Concepts of Electricity. Ohm s Law. n An electric field applies a force to a charge. n Charges move if they are mobile

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Electronics The basics of semiconductor physics

Lecture (02) Introduction to Electronics II, PN Junction and Diodes I

fehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok

CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING

SEMICONDUCTORS. Conductivity lies between conductors and insulators. The flow of charge in a metal results from the

COPYRIGHTED MATERIAL. DC Review and Pre-Test. Current Flow CHAPTER

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Objective of Lecture Discuss resistivity and the three categories of materials Chapter 2.1 Show the mathematical relationships between charge,

First-Hand Investigation: Modeling of Semiconductors

ECE 335: Electronic Engineering Lecture 2: Semiconductors

CLASS 1 & 2 REVISION ON SEMICONDUCTOR PHYSICS. Reference: Electronic Devices by Floyd

On the axes of Fig. 4.1, carefully sketch a graph to show how the potential difference V across the capacitor varies with time t. Label this graph L.

Preview from Notesale.co.uk Page 4 of 35

ELECTRONIC I Lecture 1 Introduction to semiconductor. By Asst. Prof Dr. Jassim K. Hmood

Introduction to Engineering Materials ENGR2000. Dr.Coates

smal band gap Saturday, April 9, 2011

BASIC ELECTRONICS CONDUCTION IN SEMICONDUCTORS

Conventional Paper I-2010

Unit IV Semiconductors Engineering Physics

EE 446/646 Photovoltaic Devices I. Y. Baghzouz

Prelim Revision. Questions and Answers. Electricity

Summary Notes ALTERNATING CURRENT AND VOLTAGE

ISSUES TO ADDRESS...

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1)

Atoms? All matters on earth made of atoms (made up of elements or combination of elements).

Misan University College of Engineering Electrical Engineering Department. Exam: Final semester Date: 17/6/2017

Junction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006

Electrical Properties

Electric Currents. Resistors (Chapters 27-28)

EXPERIMENT 5A RC Circuits

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

electronics fundamentals

(Refer Slide Time: 03:41)

Lecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

SOLID STATE ELECTRONICS DIGITAL ELECTRONICS SOFT CONDENSED MATTER PHYSICS

in series Devices connected in series will have the same amount of charge deposited on each capacitor. But different potential difference. That means

SECOND ENGINEER REG III/2 MARINE ELECTRO-TECHNOLOGY. 1. Understands the physical construction and characteristics of basic components.

Monday July 14. Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example

A SEMICONDUCTOR DIODE. P-N Junction

Chapter 21 Electric Current and Direct- Current Circuits

ELECTRONIC DEVICES AND CIRCUITS SUMMARY

CLASS X- ELECTRICITY

ECE 250 Electronic Devices 1. Electronic Device Modeling

Chapter 28. Direct Current Circuits

5. ELECTRIC CURRENTS

Elements of Circuit Analysis

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced.

Basic Electricity. Unit 2 Basic Instrumentation

Conductivity and Semi-Conductors

ECE 142: Electronic Circuits Lecture 3: Semiconductors

Introduction to Semiconductor Devices

Chapter 1 Overview of Semiconductor Materials and Physics

KATIHAL FİZİĞİ MNT-510

Concept of Core IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Page 1

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states:

Revision Guide for Chapter 2

DO PHYSICS ONLINE ELECTRIC CURRENT FROM IDEAS TO IMPLEMENTATION ATOMS TO TRANSISTORS ELECTRICAL PROPERTIES OF SOLIDS

Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. Intrinsic semiconductors:

6. In a dry cell electrical energy is obtained due to the conversion of:

Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move.

Stepwise Solution Important Instructions to examiners:

EE301 Electronics I , Fall

UNIT II CURRENT ELECTRICITY

Microscopic Ohm s Law

Chapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final

Introduction to Semiconductor Devices

Chapter 2: Capacitor And Dielectrics

Look over Chapter 26 sections 1-7 Examples 3, 7. Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9,

Free Electron Model for Metals

Chapter 20 Electric Circuits

LESSON 5: ELECTRICITY II

CHAPTER 1 ELECTRICITY

Free Electron Model for Metals

Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers**

Electronic PRINCIPLES

Chapter 18. Direct Current Circuits

By Mir Mohammed Abbas II PCMB 'A' CHAPTER FORMULAS & NOTES. 1. Current through a given area of a conductor is the net charge passing

Experiment Aim: Students will describe the magnitude of resistance and define the EMF (electromotive force) of a cell.

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan Electricity

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1

XII PHYSICS [CURRENT ELECTRICITY] CHAPTER NO. 13 LECTURER PHYSICS, AKHSS, K.

What happens when things change. Transient current and voltage relationships in a simple resistive circuit.

Transcription:

Higher Physics Electricity Summary Notes Monitoring and measuring a.c. Current, potential difference, power and resistance Electrical sources and internal resistance Capacitors Conductors, semiconductors and insulators p-n junctions

Monitoring and measuring a.c. When electric charges move there is said to be an electric. Current is the rate of at which charge passes a point. charge Q I t Current is measured in amperes (A). Direct (d.c.) is when the is always in one direction. Batteries supply d.c. Alternating (a.c.) is when the changes direction every fraction of a section. The mains supply in the UK is a.c. The difference between a.c. and d.c. can be observed by connecting the supplies to an oscilloscope. a.c. d.c. In an a.c. supply the maximum voltage is called the peak voltage. The frequency and peak voltage of an a.c. supply can be determined from an oscilloscope pattern. e.g. Timebase setting = 5 ms div -1 Y-gain setting = 2 div -1 frequency: period base setting number of divisions -1 5 ms div 4 div 2 ms 1 frequency period 1 21 5 Hz -3 peak voltage: peak voltage Y - gain setting number of divisions -1 2 div 3 div 6 In an a.c. supply the values of and voltage are continuously varying so the values usually quoted are the equivalent values of a d.c. supply that have the same effect. These are known as the root mean square (r.m.s.) values. (Note: the r.m.s. value is a kind of average value). The peak value of the or voltage an a.c. supply is greater than the r.m.s. value. I peak 2 I and 2 rms peak rms 2 Electricity Summary Notes

voltage/ Current, potential difference, power and resistance Series circuits Parallel circuits s I s s I s I 1 I 2 2 1 There is only one path for in a series circuit, so the is the same at all points. I 1 1 2 In a parallel circuit the sum of the s in each branch of the circuit is equal to the in the supply. I 2 The sum of the voltages across components in series is equal to the supply voltage. The voltages across parallel branches in the circuit are the same. esistance is the opposition to the movement of charge through a material. Increasing the resistance in an electrical circuit decreases the. esistance is measured in ohms (Ω). /A For a given resistor the ratio /I remains approximately constant, provided there is no change in temperature (i.e. the graph of voltage against is a best fit straight line through the origin). This ratio is defined as the resistance of the resistor. The relationship between resistance, and voltage is known as Ohm s Law. I The total resistance of resistors connected in series is equal to the sum of the individual resistances. 1 2 3 T 1 2... The total resistance of resistors connected in parallel is less than the smallest value of the individual resistors. 1 2 1 1 1... T 1 2 3 Electricity Summary Notes 3

Any combination of resistances can be reduced to a single equivalent resistance. e.g. 22 Ω 1 36 Ω 18 Ω 38 Ω and 18 Ω in parallel: 12 Ω and 22 Ω in series: 1 1 1 T 1 2 1 1 36 18 12 T T 1 2 22 12 34 The power developed in a component can be determined by using the relationship: P I Alternatively, by combining this relationship with Ohm s Law we can also use P 2 I A potential divider (voltage divider) circuit is made up of two (or more) resistors connected in series. s 1 2 voltage divider circuit 1 2 and P 2 In a potential divider circuit the supply voltage is shared (or divided) between the resistors. The ratio of the voltages across the resistors in a potential divider is the same as the ratio of their resistances: 1 1 2 2 The voltage across a resistor in a potential divider can be calculated using: Additional information: 1 1 1 2 s Two potential dividers connected in parallel is known as Wheatstone Bridge circuit. The voltage across a Wheatstone Bridge can be determined by calculating the voltage across each of the bottom resistors in the potential dividers and then calculating the difference between these two voltages. s 1 3 2 4 hen 4 Electricity Summary Notes

Electrical sources and internal resistance Electrical sources are devices that supply electrical energy (e.g. chemical cells, solar cells, thermocouples, dynamos and power supplies) The electromotive force (e.m.f.) of a source is the electrical potential energy supplied per unit charge which passes through an electrical source. The SI unit of electromotive force is the volt (). The e.m.f. is the voltage measured across the source when it is open circuit (i.e. there is no being drawn from the source). When is drawn from an electrical source some energy is wasted inside the source due to the resistance of the source itself, its internal resistance. An ideal source is a source with no internal resistance. A real electrical source can be considered as an ideal source with an e.m.f., E, in series with a small resistance, r. E r The energy per unit charge that is wasted inside the electrical source is called the lost volts, lost. lost The energy per unit charge available at the terminals of the electrical source is called the terminal potential difference, tpd. tpd Ir E When an electrical source is connected to a load Combining these relationships gives: tpd I tpd lost load E Ir The e.m.f. and internal resistance of a source can be determined using the following circuit. E r A 5 Electricity Summary Notes

terminal potential difference () The resistance of the variable resistor is altered to provide a variety of readings of terminal potential difference and. A graph is then drawn of terminal potential difference against. Comparing the equation of the graph y = mx + c to the relationship tpd = E Ir gives: The e.m.f. is equal to the y-axis intercept E = c (A) The internal resistance is equal to the negative of the gradient. r = m When a cell is short circuited (i.e. the both the load resistance and terminal potential difference are zero) the entire e.m.f. is across the internal resistance and so the short circuit is given by: I short E r 6 Electricity Summary Notes

charge Capacitors A capacitor is an electrical component that stores electrical charge. The capacitance C of a capacitor is the charge stored per volt of potential difference across it. Q C The SI unit of capacitance is the farad (F). A one farad capacitor stores one coulomb of charge per volt of potential difference across it. The capacitance of a capacitor can be determined experimentally by measuring the charge stored in the capacitor with a coulombmeter when the capacitor is charged to a variety of different potential differences. A graph of charge against potential difference is then plotted and the capacitance is equal to the gradient of the graph. gradient = capacitance area under graph = energy stored potential difference Since capacitors can store charge they can also store energy. Energy is the product of charge and potential difference, therefore the energy stored in a capacitor can be determined from the area under the graph of charge against potential difference. E ½Q (Note: This relationship is only true for capacitors where the potential difference across the capacitor changes as it charges, so the average potential difference is half of the maximum. In situations where there is a constant potential difference (e.g. from a cell or in an electric field) the energy transferred is given by the relationship W=Q.) Combining this relationship with the relationship for capacitance also gives the alternatives: E ½C 2 and 2 E ½ Q C Capacitors can be used to store charge and therefore energy, e.g. in camera flashes and defibrillators. Capacitors can also be used to smooth d.c. supplies in power supplies and adapters. 7 Electricity Summary Notes

When a capacitor is connected in series with a resistor it takes to charge and discharge. During charging, the potential difference across the capacitor increases up to a maximum value equal to the supply voltage, S, and the decreases from an initial value of S. s S potential difference S C Note: These curves are exponential in shape they start at a particular value and tend towards another value. During discharging the potential difference across the capacitor decreases from the value it was charged to (i.e. S for a fully charged capacitor) and the decreases from an initial value given by S (the value is negative because the is in the opposite direction to that when it was charging) S s potential difference C S Increasing the capacitance C of the capacitor increases the taken for the capacitor to charge/discharge. small C charging: potential difference large C small C large C discharging: potential difference small C large C large C small C Note: The area under the - graph is equal to the charge stored by the capacitor and is therefore larger when C is larger. 8 Electricity Summary Notes

Increasing the resistance of the resistor also increases the taken for the capacitor to charge/discharge. small charging: potential difference large small large discharging: potential difference small large large small Note: The area under the - graph is equal to the charge stored by the capacitor and is therefore the same when the capacitance is unchanged. 9 Electricity Summary Notes

Conductors, semiconductors and insulators According to their electrical properties, materials can be divided into three groups: conductors: insulators: materials with many free electrons, which can easily move through the materials e.g. metals and semi-metals such as graphite, antimony and arsenic materials that have very few free electrons. e.g. plastics, wood and glass semiconductors: materials that are insulators when pure, but will conduct when an impurity is added or when they exposed to heat, light etc. e.g. silicon, germanium, selenium and gallium arsenide In order to explain the electrical properties of materials we can use band theory. In isolated atoms, electrons occupy discrete energy levels (for further details see the Spectra topic in the Particles & Waves Unit). However, when atoms are brought together these energy levels interact with each other and become grouped into bands. These bands represent a continuous range of energies, but there are some groups of energy that are not allowed (band gaps). Generally, electrons will fill up the lower bands first. In conductors, the highest occupied band is not completely full and this allows the electrons to move and therefore conduct. This band is known as the. The band below this (the ) is full and so does not allow the movements of electrons in it. However, at room temperature, the actually overlaps with the and so this also assists with conduction. In an insulator, the highest occupied band (the ) is full. The first empty band above the is the. For an insulator, the gap between the and the is large and, at room temperature, there is not enough energy available to move electrons from the into the where they would be able to contribute to conduction, so there is no electrical conduction in an insulator. In a semiconductor, the gap between the and is small and, at room temperature, there is sufficient energy available to move some electrons from the into the, allowing some conduction to take place. his also leaves behind holes in the, which allows further conduction to take place. These holes can be thought of as positive charges that can move. An increase in temperature increases the conductivity of a semiconductor. electron energy overlap large gap small gap conductor insulator semiconductor 1 Electricity Summary Notes

p-n junctions The electrical properties of semiconductors can be altered by a process known as doping. Doping is the deliberate introduction of an impurity into a semiconductor. This can result one of two types of semiconductor; n-type or p-type. undoped (intrinsic) electrons Fermi level holes In an undoped (intrinsic) semiconductor there are equal numbers of electrons in the and holes in the, both of which contribute to conduction. This is represented by an energy level, known as the Fermi level that is positioned halfway between the and. The Fermi level is the point where it is equally probable that an electron is or is not present. n-type p-type Fermi level Fermi level In an n-type semiconductor an impurity is added (e.g. arsenic) which provides extra electrons to the semiconductor structure. These extra electrons are able to occupy energy levels close to the (donor levels) and are therefore easily excited into the. This is represented on an energy diagram as a movement of the Fermi level towards the. At room temperature there are therefore more electrons in the than holes in the. This is known as n-type because the majority of charge carriers are negative (electrons). In a p-type semiconductor an impurity is added (e.g. indium) which has less electrons than the rest of the semiconductor. The missing electrons can be thought of as gaps at energy levels just above the (acceptor levels) that electrons can move into. Electrons from the are therefore easily excited into these levels, leaving behind additional holes in the. This is represented on an energy diagram as a movement of the Fermi level towards the. At room temperature there are therefore more holes in the than electrons in the. This is known as p-type because the majority of charge carriers are positive (holes). 11 Electricity Summary Notes

When the two different types of semiconductor are placed in contact with each other a layer, known as a p-n junction, is formed. The electrical properties of p-n junctions are used in a range of devices, such as solar cells, diodes and light emitting diodes. In the absence of any external voltage (unbiased) the Fermi level is flat across the junction. The consequence of this is that in order for electrons to cross the junction from n-type to p-type they must have sufficient energy to move against the potential difference that is set up by the difference in the energy level of the (and ) between the two sides of the junction. This called the potential barrier. Fermi level potential barrier p-type n-type In a solar cell, when photons of light with sufficient energy are incident on the junction they are able to give electrons enough energy to move from the to the. This produces additional charge carriers in the junction, which are then able to cross the junction. The creation of these charge carriers means that a potential difference is maintained across the junction, even when a is drawn. This is known as the photovoltaic effect. When the p-type side of the junction is at a positive potential compared to the n-type the p-n junction is said to be forward biased. In this situation, if the potential difference is sufficiently large, electrons (and holes) can gain enough energy to cross the potential barrier and therefore the junction conducts. When the n-type side of the junction is at a positive potential compared to the p-type the p-n junction is said to be reverse biased. In this situation, applying a potential difference to the junction increases the potential barrier so electrons (and holes) are unable to cross the potential barrier and therefore the junction will not conduct A diode is a p-n junction that conducts when it is forward biased and does not conduct when it is reverse biased. An LED is also a p-n junction that conducts when it is forward biased. In an LED, some electrons fall from the into the of the p-type semiconductor releasing their energy in the form of a photon of light. 12 Electricity Summary Notes