CHAPTER 4: DETERMINANTS

Similar documents
Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets.

Prepared by: M. S. KumarSwamy, TGT(Maths) Page

Worksheet : Class XII Matrices & Determinants

DETERMINANTS. All Mathematical truths are relative and conditional. C.P. STEINMETZ

Matrix- System of rows and columns each position in a matrix has a purpose. 5 Ex: 5. Ex:

DETERMINANTS. All Mathematical truths are relative and conditional. C.P. STEINMETZ

Algebra Of Matrices & Determinants

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

Matrices and Determinants

Section 2.3. Matrix Inverses

are coplanar. ˆ ˆ ˆ and iˆ

y z A left-handed system can be rotated to look like the following. z

HOMEWORK FOR CLASS XII ( )

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

MATHEMATICS FOR MANAGEMENT BBMP1103

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

TOPIC: LINEAR ALGEBRA MATRICES

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics

Chapter 5 Determinants

than 1. It means in particular that the function is decreasing and approaching the x-

THE DISCRIMINANT & ITS APPLICATIONS

Matrices. Elementary Matrix Theory. Definition of a Matrix. Matrix Elements:

INTRODUCTION TO LINEAR ALGEBRA

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

+ = () i =, find the values of x & y. 4. Write the function in the simplifies from. ()tan i. x x. 5. Find the derivative of. 6.

are coplanar. ˆ ˆ ˆ and iˆ

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS CLASS - XII MATHEMATICS (Relations and Functions & Binary Operations)

m A 1 1 A ! and AC 6

CSCI 5525 Machine Learning

CET MATHEMATICS 2013

Linear Algebra Introduction

Unit-VII: Linear Algebra-I. To show what are the matrices, why they are useful, how they are classified as various types and how they are solved.

QUESTION PAPER CODE 65/2/1 EXPECTED ANSWERS/VALUE POINTS SECTION - A SECTION - B. f (x) f (y) = w = codomain. sin sin 5

Operations with Matrices

5. Every rational number have either terminating or repeating (recurring) decimal representation.

50 AMC Lectures Problem Book 2 (36) Substitution Method

The Algebra (al-jabr) of Matrices

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

Worksheet #2 Math 285 Name: 1. Solve the following systems of linear equations. The prove that the solutions forms a subspace of

DE51/DC51 ENGINEERING MATHEMATICS I DEC 2013

12.4 Similarity in Right Triangles

Individual Group. Individual Events I1 If 4 a = 25 b 1 1. = 10, find the value of.

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

QUADRATIC EQUATION. Contents

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

September 13 Homework Solutions

Quotient Rule: am a n = am n (a 0) Negative Exponents: a n = 1 (a 0) an Power Rules: (a m ) n = a m n (ab) m = a m b m

Applications of Definite Integral

Partial Differential Equations

m m m m m m m m P m P m ( ) m m P( ) ( ). The o-ordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r

EXPECTED ANSWERS/VALUE POINTS SECTION - A

MATHEMATICS PAPER IA. Note: This question paper consists of three sections A,B and C. SECTION A VERY SHORT ANSWER TYPE QUESTIONS.

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 2

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Calculus 2: Integration. Differentiation. Integration

KENDRIYA VIDYALAY SANGATHAN: CHENNAI REGION CLASS XII PRE-BOARD EXAMINATION Q.No. Value points Marks 1 0 ={0,2,4} 1.

Applications of Definite Integral

( ) 1. 1) Let f( x ) = 10 5x. Find and simplify f( 2) and then state the domain of f(x).

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

Lesson 55 - Inverse of Matrices & Determinants

Matrix Eigenvalues and Eigenvectors September 13, 2017

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

MATHEMATICS AND STATISTICS 1.2

Trigonometric Functions

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums

IDENTITIES FORMULA AND FACTORISATION

ECON 331 Lecture Notes: Ch 4 and Ch 5

Numerical Methods for Chemical Engineers

F / x everywhere in some domain containing R. Then, + ). (10.4.1)

1. Extend QR downwards to meet the x-axis at U(6, 0). y

15 - TRIGONOMETRY Page 1 ( Answers at the end of all questions )

Chapter 2. Determinants

Elements of Matrix Algebra

Lesson 2: The Pythagorean Theorem and Similar Triangles. A Brief Review of the Pythagorean Theorem.

UNIT 5 QUADRATIC FUNCTIONS Lesson 3: Creating Quadratic Equations in Two or More Variables Instruction

MULTIPLE CHOICE QUESTIONS

INVERSE TRIGONOMETRIC FUNCTIONS

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 2 solutions

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

2. VECTORS AND MATRICES IN 3 DIMENSIONS

QUESTION PAPER CODE 65/1/2 EXPECTED ANSWERS/VALUE POINTS SECTION - A. 1 x = 8. x = π 6 SECTION - B

Logarithms LOGARITHMS.

A Primer on Continuous-time Economic Dynamics

Classification of Spherical Quadrilaterals

MCH T 111 Handout Triangle Review Page 1 of 3

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS

REVIEW Chapter 1 The Real Number System

A LEVEL TOPIC REVIEW. factor and remainder theorems

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions

13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS

Operations with Polynomials

Green s function. Green s function. Green s function. Green s function. Green s function. Green s functions. Classical case (recall)

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

16z z q. q( B) Max{2 z z z z B} r z r z r z r z B. John Riley 19 October Econ 401A: Microeconomic Theory. Homework 2 Answers

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e

A Study on the Properties of Rational Triangles

Transcription:

CHAPTER 4: DETERMINANTS MARKS WEIGHTAGE 0 mrks NCERT Importnt Questions & Answers 6. If, then find the vlue of. 8 8 6 6 Given tht 8 8 6 On epnding both determinnts, we get 8 = 6 6 8 36 = 36 36 36 = 0 = 36 = ± 6. Prove tht b b 3 b 4 3b 3 6 3b 0 6b 3 Prepred b: M. S. KumrSwm, TGT(Mths) Pge - - 3 Appling opertions R R R nd R 3 R 3 3R to the given determinnt Δ, we hve b b 0 b 0 3 7 3b Now ppling R 3 R 3 3R, we get b b 0 b 0 0 Epnding long C, we obtin b 0 0 ( 0) ( ) 0 b 3 3. Prove tht b b 4b b b Let b b b Appling R R R R 3 to Δ, we get 0 b b b b Epnding long R, we obtin 0 b ( ) b b ( b) b b b

= ( b + b b) b (b ) = b + b b b + b + b = 4 b 4. If,, z re different nd We hve 3 3 z z z 3 3 3 z z z 0 then show tht + z = 0 3 Now, we know tht If some or ll elements of row or olumn of determinnt re epressed s sum of two (or more) terms, then the determinnt n be epressed s sum of two (or more) determinnts. 3 3 z z z z z 3 ( ) z (Using C 3 C nd then C C ) z z z z ( z) z ( z) 0 0 z z z (Using R R R nd R 3 R 3 R ) Tking out ommon ftor ( ) from R nd (z ) from R 3, we get ( z)( )( z ) 0 0 z = ( + z) ( ) (z ) (z ) (on epnding long C ) Sine Δ = 0 nd,, z re ll different, i.e., 0, z 0, z 0, we get + z = 0 5. Show tht b b b b b b LHS b Tking out ftors,b, ommon from R, R nd R 3, we get Prepred b: M. S. KumrSwm, TGT(Mths) Pge - -

b b b b Appling R R + R + R 3, we hve b b b b b b b Now ppling C C C, C 3 C 3 C, we get 0 0 b b b 0 0 b ( 0) b b b b b = RHS b 6. Using the propert of determinnts nd without epnding, prove tht b q r z p r p z b q b p q r z b q r z LHS r p z b p q b b q r r p p q (interhnge row nd olumn) z z b q r r p r [usingc 3 C 3 (C + C )] z z z b ( ) q r r p r (tking ommon from C 3 ) z z z Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 3 -

b ( ) q p r (using C C C 3 nd C C C 3 ) z b p q r (using z C C ) p b q RHS (interhnge row nd olumn) r z 7. Using the propert of determinnts nd without epnding, prove tht b b b b 4 b b b b LHS b b b b b R 3 ] b b ( b)( b) b 0 0 0 Epnding orresponding to first row R, we get 0 b [tking out ftors from R, b from R nd from (tking out ftors from C, b from C nd from C 3 ) (using R R + R nd R R R 3 ) b (0 ) 4 b RHS 8. Using the propert of determinnts nd without epnding, prove tht b b ( b)( b )( ) LHS b b Appling R R R3 nd R R R3, we get 0 0 ( )( ) 0 b b 0 b ( b )( b ) Tking ommon ftors ( ) nd (b ) from R nd R respetivel, we get Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 4 -

0 ( ) ( )( b ) 0 ( b ) Now, epnding orresponding to C, we get = ( ) (b ) (b + ) = ( b) (b ) ( ) = RHS 9. Using the propert of determinnts nd without epnding, prove tht b ( b)( b )( )( b ) b 3 3 3 LHS b b 3 3 3 Appling C C C nd C C C3, we get 0 0 b b b b 3 3 3 3 3 0 0 b b ( b)( b b ) ( b )( b b ) 3 Tking ommon ( b) from C nd (b ) from C, we get 0 0 ( b)( b ) b b ( b b ) ( b b ) 3 Now, epnding long R, we get = ( b) (b ) [ (b + b + ) ( + b + b )] = ( b) (b ) [b + b + b b ] = ( b) (b ) (b b + ) = ( b) (b ) [b( ) + ( ) ( + )] = ( b) (b ) ( ) ( + b + )= RHS. 0. Using the propert of determinnts nd without epnding, prove tht z z z z z z z z z LHS z z z ( )( )( )( ) Appling R R, R R nd R3 zr3, we hve 3 z 3 z z z z 3 z Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 5 -

z z z 3 3 (tke out z ommon from C 3 ) z 3 3 3 3 z z 3 3 Epnding orresponding to C 3, we get 3 3 3 3 z z 0 0 (using R R R nd R3 R3 R ) 3 3 3 3 ( )( z ) ( z )( ) = ( + ) ( ) (z ) (z + + z) (z + ) (z ) ( ) ( + + ) = ( ) (z ) [( + ) (z + + z) (z + ) ( + + )] = ( )(z )[z + + z + z + 3 + z z z z 3 ] = ( )(z )[z z + z ] = ( )(z )[z(z ) + (z )] = ( )(z )[z(z ) + (z )(z + )] = ( ) (z ) [(z ) ( + z + z)] = ( ) ( z) (z ) ( + z + z) = RHS.. Using the propert of determinnts nd without epnding, prove tht 4 4 (5 4)(4 ) 4 4 LHS 4 4 5 4 5 4 4 5 4 4 (5 4) 4 4 (5 4) 0 4 0 0 0 4 Epnding long C, we get = (5 + 4) {(4 ) (4 )} (5 4)(4 ) = RHS. (using C C + C + C 3 ) [tke out (5 + 4) ommon from C ]. (Using R R R nd R 3 R 3 R ). Using the propert of determinnts nd without epnding, prove tht k k k (3 k) k Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 6 -

k LHS k k 3 k 3 k k 3 k k (3 k) k k (using C C + C + C 3 ) [tke out (5 + 4) ommon from C ]. (3 k) 0 k 0 (Using R R R nd R 3 R 3 R ) 0 0 Epnding long C 3, we get (3 k) ( k 0) k (3 k) = RHS k 3. Using the propert of determinnts nd without epnding, prove tht b b b b ( b ) b b LHS b b b b b b b b b b (Using R R R R ) b Tke out ( + b + ) ommon from R, we get ( b ) b b b b 0 0 ( b ) b b 0 0 b Epnding long R, we get = ( + b + ) {( b ) ( b)} = ( + b + ) [ (b + + ) ( ) ( + + b)] 3 ( b )( b )( b ) ( b ) = RHS 3 3 (Using C C C nd C 3 C 3 C ) Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 7 -

4. Using the propert of determinnts nd without epnding, prove tht z z z ( z) z z z LHS z z z z ( z) ( z) z (using C C + C + C 3 ) ( z) z ( z) z [tke out ( + + z) ommon from C ]. z ( z) 0 z 0 (Using R R R nd R 3 R 3 R ) 0 0 z ( z)( z)( z) 0 0 0 0 Epnding long R 3, we get ( z)( z)( z) ( 0) 3 ( z)( z)( z) ( z) =RHS 3 5. Using the propert of determinnts nd without epnding, prove tht LHS (using C C + C + C 3 ) ( ) [tke out ( ) 0 0 3 ( ) ommon from C ]. (Using R R R nd R 3 R 3 R ) Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 8 -

( ) 0 ( ) 0 ( ) Tke out ( ) ommon from R nd sme from R 3, we get ( )( )( ) 0 Epnding long C, we get ( )( )( ) 0 ( )( )( )( ) 3 3 3 = RHS 6. Using the propert of determinnts nd without epnding, prove tht b b b b b ( b ) 3 b b b b b LHS b b b b 0 b b 0 b b( b ) ( b ) b 0 b ( b ) 0 b b 0 b ( b ) 0 0 0 b Epnding long R, we get ( b ) ( b ) 3 ( b ) RHS ( R R br R ) 3 3 (Using C C bc3 nd C C C3 ) 7. Using the propert of determinnts nd without epnding, prove tht b b b b b b b LHS b b b b Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 9 -

Tking out ommon ftors, b nd from R, R nd R 3 respetivel, we get b b b b b b 0 (Using R R R nd R 3 R 3 R ) 0 Multipl nd divide C b, C b b nd C 3 b nd then tke ommon out from C, C nd C 3 respetivel, we get b b b 0 0 b 0 Epnding long R 3, we get ( ) ( ) ( b ) b RHS 0 8. Find vlues of k if re of tringle is 4 sq. units nd verties re (i) (k, 0), (4, 0), (0, ) (ii) (, 0), (0, 4), (0, k) k 0 (i) We hve Are of tringle = 4 0 4 0 k(0 ) + (8 0) = 8 k(0 ) + (8 0) = ± 8 On tking positive sign k + 8 = 8 k = 0 k = 0 On tking negtive sign k + 8 = 8 k = 6 k = 8 k =0, 8 0 (ii) We hve Are of tringle = 0 4 4 0 k (4 k) + (0 0) = 8 (4 k) + (0 0) = ± 8 [ 8 + k] = ± 8 On tking positive sign, k 8 = 8 k = 6 k = 8 On tking negtive sign, k 8 = 8 k = 0 k = 0 k =0, 8 Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 0 -

9. If re of tringle is 35 sq units with verties (, 6), (5, 4) nd (k, 4). Then find the vlue of k. 6 We hve Are of tringle = 5 4 35 k 4 (4 4) + 6(5 k) + (0 4k) = 70 (4 4) + 6 (5 k) + (0 4k) = ± 70 30 6k + 0 4k = ± 70 On tking positive sign, 0k + 50 = 70 0k = 0 k = On tking negtive sign, 0k + 50 = 70 0k = 0 k = k =, 0. Using Coftors of elements of seond row, evlute Given tht 5 3 8 0 3 Coftors of the elements of seond row 3 8 A ( ) (9 6) 7 3 A 5 8 3 ( ) (5 8) 7 5 3 8 0 3 3 5 3 nd A3 ( ) (0 3) 7 Now, epnsion of Δ using oftors of elements of seond row is given b A A 3 A3 = 7 + 0 7 + ( 7) = 4 7 = 7 Prepred b: M. S. KumrSwm, TGT(Mths) Pge - - 3. If A =, show tht A 5A + 7I = O. Hene find A. 3 Given tht A = Now, A 5A + 7I = O 3 3 9 3 8 5 A A. A 3 4 5 3 8 5 3 0 5 7 5 3 0 8 5 5 5 7 0 5 3 5 0 0 7 8 5 7 5 5 0 0 0 O 5 5 0 30 3 0 0

A 5A + 7I = O 3 A 6 7 0 A eists. Now, A.A 5A = 7I Multipling b A on both sides, we get A.A (A ) 5A(A ) = 7I(A ) AI 5I = 7A (using AA = I nd IA = A ) A ( A 5 I) 5I A 5 0 3 7 7 7 0 5 7 3 A 7 3 3. For the mtri A =, find the numbers nd b suh tht A + A + bi = O. 3 Given tht A = 3 3 9 6 8 A A. A 3 4 3 Now, A A bi O 8 3 0 b O 4 3 0 8 3 b 0 O 4 3 0 b 3 b 8 0 0 4 3 b 0 0 If two mtries re equl, then their orresponding elements re equl. + 3 + b = 0 (i) 8 + = 0 (ii) 4 + = 0 (iii) nd 3 + + b = 0 (iv) Solving Eqs. (iii) nd (iv), we get 4 + = 0 = 4 nd 3 + + b = 0 3 4 + b = 0 b = Thus, = 4 nd b = 3. For the mtri A = 3, Show tht A 3 6A + 5A + I = O. Hene, find A. 3 Prepred b: M. S. KumrSwm, TGT(Mths) Pge - -

Given tht A = 3 3 3 3 4 A A. A 3 3 6 4 3 6 9 3 8 4 3 3 6 3 3 9 7 3 4 4 4 4 4 4 6 3 3 nd A A. A 3 8 4 3 3 8 8 3 6 4 3 4 4 7 3 4 3 7 3 8 7 6 4 7 9 4 8 7 3 7 69 3 3 58 3 A 6A 5A I 8 7 4 0 0 3 7 69 6 3 8 4 5 3 0 0 3 3 58 7 3 4 3 0 0 8 7 4 6 5 5 5 0 0 3 7 69 8 48 84 5 0 5 0 0 3 3 58 4 8 84 0 5 5 0 0 8 4 5 7 5 0 6 5 0 3 8 5 0 7 48 0 69 84 5 0 3 4 0 0 38 5 0 58 84 5 0 0 0 0 0 0 O 0 0 0 A 3 (6 3) (3 6) ( 4) 3 9 5 0 3 A eist 3 Now, A 6A 5A I O AA( AA ) 6 A( AA ) 5( AA ) ( IA ) O AAI 6AI 5I A O A 6A 5I A ( A A 6 A 5 I ) ( A A 6 A 5 I ) 4 0 0 A 3 8 4 6 3 5 0 0 7 3 4 3 0 0 Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 3 -

4 6 6 6 5 0 0 A 3 8 4 6 8 0 5 0 7 3 4 6 8 0 0 5 4 6 5 6 0 6 0 A 3 6 0 8 5 4 8 0 7 0 3 6 0 4 8 5 3 4 5 A 9 4 5 3 4. Solve sstem of liner equtions, using mtri method, + + z = z = 3 3 5z = 9 The given sstem n be written s AX = B, where A 4, X nd B 3 0 3 5 z 9 A 4 (0 6) ( 0 0) (6 0) 0 3 5 = 5 + 0 + 6 = 68 0 Thus, A is non-singulr, Therefore, its inverse eists. Therefore, the given sstem is onsistent nd hs unique solution given b X = A B. Coftors of A re A = 0 + 6 = 6, A = ( 0 + 0) = 0, A 3 = 6 + 0 = 6 A = ( 5 3) = 8, A = 0 0 = 0, A 3 = (6 0) = 6 A 3 = ( + 4) =, A 3 = ( 4 ) = 6, A 33 = 8 = 0 6 0 6 6 8 dj( A) 8 0 6 0 0 6 6 0 6 6 0 6 8 A ( dja) 0 0 6 A 68 6 6 0 6 8 Now, X A B 0 0 6 3 68 z 6 6 0 9 T Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 4 -

6 4 8 68 0 30 54 34 68 68 z 6 8 90 0 3 3 Hene,, nd z 5. Solve sstem of liner equtions, using mtri method, + z = 4 + 3z = 0 + + z = The given sstem n be written s AX = B, where 4 A 3, X nd B 0 z Here, A 3 = ( + 3) ( ) ( + 3) + ( ) = 4 + 5 + = 0 0 Thus, A is non-singulr, Therefore, its inverse eists. Therefore, the given sstem is onsistent nd hs unique solution given b X = A B. Coftors of A re A = + 3 = 4, A = ( + 3) = 5, A 3 = =, A = ( ) =, A = = 0, A 3 = ( + ) =, A 3 = 3 =, A 3 = ( 3 ) = 5, A 33 = + = 3 T 4 5 4 dj( A) 0 5 0 5 5 3 3 4 A ( dja) 5 0 5 A 0 3 4 4 Now, X A B 5 0 5 0 0 z 3 6 0 4 0 0 0 0 0 0 0 z 4 0 6 0 Hene, =, = nd z =. Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 5 -

6. Solve sstem of liner equtions, using mtri method, + 3 +3 z = 5 + z = 4 3 z = 3 The given sstem n be written s AX = B, where 3 3 5 A, X nd B 4 3 z 3 3 3 Here, A 3 = (4 + ) 3 ( 3) + 3 ( + 6) = 0 + 5 + 5 = 40 0 Thus, A is non-singulr. Therefore, its inverse eists. Therefore, the given sstem is onsistent nd hs unique solution given b X = A B Coftors of A re A = 4 + = 5, A = ( 3) = 5, A 3 = ( + 6) = 5, A = ( 6 + 3) = 3, A = ( 4 9) = 3, A 3 = ( 9) =, A 3 = 3 + 6 = 9, A 3 = ( 3) =, A 33 = 4 3 = 7 T 5 5 5 5 3 9 dj( A) 3 3 5 3 9 7 5 7 5 3 9 A ( dja) 5 3 A 40 5 7 5 3 9 5 Now, X A B 5 3 4 40 z 5 7 3 5 7 40 5 5 3 80 40 40 z 5 44 40 Hene, =, = nd z =. 7. Solve sstem of liner equtions, using mtri method, + z = 7 3 + 4 5z = 5 + 3z = The given sstem n be written s AX = B, where Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 6 -

7 A 3 4 5, X nd B 5 3 z Here, A 3 4 5 = ( 5) ( ) (9 + 0) + ( 3 8) 3 = 7 + 9 = 4 0 Thus, A is non-singulr. Therefore, its inverse eists. Therefore, the given sstem is onsistent nd hs unique solution given b X = A B Coftors of A re A = 5 = 7, A = (9 + 0) = 9, A 3 = 3 8 =, A = ( 3 + ) =, A = 3 4 =, A 3 = ( + ) =, A 3 = 5 8 = 3, A 3 = ( 5 6) =, A 33 = 4 + 3 = 7 T 7 9 7 3 dj( A) 9 3 7 7 7 3 A ( dja) 9 A 4 7 7 3 5 Now, X A B 9 4 4 z 7 3 49 5 36 8 33 5 3 4 4 4 z 77 5 84 3 Hene, =, = nd z = 3. 3 5 8. If A = 3 4 find A. Using A,Solve sstem of liner equtions: 3 + 5z = 3 + 4z = 5 + z = 3 The given sstem n be written s AX = B, where 3 5 A 3 4, X nd B 5 z 3 Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 7 -

3 5 Here, A 3 4 = ( 4 + 4) ( 3) ( 6 + 4) + 5 (3 ) = 0 6 + 5 = 0 Thus, A is non-singulr. Therefore, its inverse eists. Therefore, the given sstem is onsistent nd hs unique solution given b X = A B Coftors of A re A = 4 + 4 = 0, A = ( 6 + 4) =, A 3 = 3 =, A = (6 5) =, A = 4 5 = 9, A 3 = ( + 3) = 5, A 3 = ( 0) =, A 3 = ( 8 5) = 3, A 33 = 4 + 9 = 3 T 0 0 dj( A) 9 5 9 3 3 3 5 3 0 0 A ( dja) 9 3 9 3 A 5 3 5 3 0 Now, X A B 9 3 5 z 5 3 3 0 5 6 45 69 z 5 39 3 Hene, =, = nd z = 3. 9. The ost of 4 kg onion, 3 kg whet nd kg rie is Rs 60. The ost of kg onion, 4 kg whet nd 6 kg rie is Rs 90. The ost of 6 kg onion kg whet nd 3 kg rie is Rs 70. Find ost of eh item per kg b mtri method. Let the pries (per kg) of onion, whet nd rie be Rs., Rs. nd Rs. z, respetivel then 4 + 3 + z = 60, + 4 + 6z = 90, 6 + + 3z = 70 This sstem of equtions n be written s AX = B, where 4 3 60 A 4 6, X nd B 90 6 3 z 70 4 3 Here, A 4 6 = 4( ) 3(6 36) + (4 4) 6 3 = 0 + 90 40 = 50 0 Thus, A is non-singulr. Therefore, its inverse eists. Therefore, the given sstem is onsistent nd hs unique solution given b X = A B Coftors of A re, Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 8 -

A = = 0, A = (6 36) = 30, A 3 = 4 4 = 0, A = (9 4) = 5, A = = 0, A 3 = (8 8) = 0, A 3 = (8 8) = 0, A 3 = (4 4) = 0, A 33 = 6 6 = 0 T 0 30 0 0 5 0 dj( A) 5 0 0 30 0 0 0 0 0 0 0 0 0 5 0 A ( dja) 30 0 0 A 50 0 0 0 0 5 0 60 Now, X A B 30 0 0 90 50 z 0 0 0 70 0 450 700 50 5 800 0 400 400 8 50 50 z 00 900 700 400 8 = 5, = 8 nd z = 8. Hene, prie of onion per kg is Rs. 5, prie of whet per kg is Rs. 8 nd tht of rie per kg is Rs. 8. 30. Without epnding the determinnt, prove tht b LHS b b b Appling R R, R br nd R3 R3, we get 3 b 3 b b b b 3 b b b b 3 3 b [Tking out ftor b from C 3 ] 3 3 b 3 b b b b 3 b 3 ( ) b b (using C C 3 nd C C 3 ) 3 3 Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 9 -

3 3 b b RHS 3 b b 3. If, b nd re rel numbers, nd b b 0. Show tht either + b + = 0 or = b =. b b b b b b ( b ) b ( b ) b b ( b ) b ( b ) b b b b ( b ) 0 b 0 b b b Epnding long C, we get ( ) b b b b ( b ) ( b )( b) ( )( b ) b b ( b ) b b b ( b b ) ( b ) b b b b b ( b ) b b b It is given tht Δ= 0, ( b ) b b b 0 Either b 0 or b b b 0 b b b 0 b b b 0 b b b 0 b b b b 0 ( b) ( b ) ( ) 0 (using C C + C + C 3 ) [tke out ( b ) ommon from C ]. (Using R R R nd R 3 R 3 R ) ( b) ( b ) ( ) 0 [sine squre of n rel number is never negtive] ( b) ( b ) ( ) 0 b, b, b Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 0 -

3. Prove tht b b b 4 b b b b b LHS b b b b b Tking out from C, b from C nd from C 3, we get b b b b 0 b b b b b b b 0 b 0 b b Epnding long C,we get = (b) [ ( b) { ( ) + ( + ) } ] = (b ) () = 4 b = RHS. [Using C C + C C 3] [Using R R R 3] 33. Using properties of determinnts, prove tht LHS (using C 3 C 3 + C ) ( ) (Tking out (α + β + γ) ommon from C ) ( ) 0 0 (Using R R R nd R 3 R 3 R ) ( )( )( )( ) Epnding long C 3, we get = (α + β + γ) [(β α)(γ α ) (γ α)(β α )] = (α + β + γ) [(β α)(γ α)(γ + α) (γ α)(β α)(β + α)] = (α + β + γ) (β α)(γ α)[γ + α β α] = (α + β + γ) (β α)(γ α)(γ β) = (α + β + γ) (α β)(β γ)(γ α) = RHS Prepred b: M. S. KumrSwm, TGT(Mths) Pge - -

34. Using properties of determinnts, prove tht 3 b LHS b 3b b b 3 b b b 3b b b b 3 b ( b ) 3b b b 3 Now ppling R R R, R 3 R 3 R, we get b ( b ) 0 b b 0 3 b b 3b b 3( b )( b b ) b 3 (using C C + C + C 3 ) (Tking out ( + b + ) ommon from C ) Epnding long C, we get = ( + b + )[(b + ) ( + ) ( b) ( )] = ( + b + )[4b + b + + + + b b] = ( + b + ) (3b + 3b + 3) = 3( + b + )(b + b + ) = RHS 35. Solve the sstem of equtions: 3 0 4 z 4 6 5 z 6 9 0 z Let p, q nd r, then the given equtions beome z p + 3q + 0r = 4, 4p 6q + 5r =, 6p + 9q 0r = This sstem n be written s AX = B, where 3 0 p 4 A 4 6 5, X q nd B 6 9 0 r 3 0 Here, A 4 6 5 (0 45) 3( 80 30) 0(36 36) 6 9 0 = 50 + 330 + 70 = 00 0 Thus, A is non-singulr. Therefore, its inverse eists. Therefore, the bove sstem is onsistent nd hs unique solution given b X = A B Coftors of A re A = 0 45 = 75, Prepred b: M. S. KumrSwm, TGT(Mths) Pge - -

A = ( 80 30) = 0, A 3 = (36 + 36) = 7, A = ( 60 90) = 50, A = ( 40 60) = 00, A 3 = (8 8) = 0, A 3 = 5 + 60 = 75, A 3 = (0 40) = 30, A 33 = = 4 75 0 7 75 50 75 dj( A) 50 00 0 0 00 30 75 30 4 7 0 4 75 50 75 A ( dja) 0 00 30 A 00 7 0 4 75 50 75 4 X A B 0 00 30 00 z 7 0 4 300 50 50 600 440 00 60 400 00 00 3 z 88 0 48 40 5 p, q, r 3 5,, 3 z 5 =, = 3 nd z = 5. 36. If, b,, re in A.P, then find the determinnt of 3 Let A 3 4 b 4 5 3 0 0 ( b ) 4 5 T 3 3 4 b 4 5 (using R R R R 3 ) But,b, re in AP. Using b = +, we get 3 A 0 0 0 0 [Sine, ll elements of R re zero] 4 5 Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 3 -

3 37. Show tht the mtri A stisfies the eqution A 4A + I = O, where I is identit mtri nd O is zero mtri. Using this eqution, find A. 3 Given tht A A 3 3 7 AA 4 7 7 3 0 Hene, A 4A I 4 4 7 0 7 8 0 7 8 0 0 0 4 7 4 8 0 4 4 0 7 8 O 0 0 Now, A 4A I O AA 4A I AA( A ) 4AA IA (Post multipling b A beuse A 0) A( AA ) 4I A AI 4I A 0 3 4 0 3 3 A 4I A 4 0 0 4 3 A 38. Solve the following sstem of equtions b mtri method. 3 + 3z = 8 + z = 4 3 + z = 4 The sstem of eqution n be written s AX = B, where 3 3 8 A, X nd B 4 3 z 4 3 3 Here, A 4 3 = 3 ( 3) + (4 + 4) + 3 ( 6 4) = 7 0 Hene, A is nonsingulr nd so its inverse eists. Now A =, A = 8, A 3 = 0 A = 5, A = 6, A 3 = A 3 =, A 3 = 9, A 33 = 7 8 0 5 dj( A) 5 6 8 6 9 9 7 0 7 5 A ( dja) 8 6 9 A 7 0 7 T Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 4 -

5 8 X A B 8 6 9 7 z 0 7 4 7 34 7 z 5 3 Hene =, = nd z = 3. Given tht ( ) z z 39. Show tht ( z) z 3 z( z) z z ( ) ( z) z ( z) z z z ( ) Appling R R, R R,R 3 zr 3 to Δ nd dividing b z, we get ( z) z ( z) z z z z z( ) Tking ommon ftors,, z from C, C nd C 3 respetivel, we get ( z) z ( z) z z z ( ) Appling C C C, C 3 C 3 C, we hve ( z) ( z) ( z) ( z) 0 z 0 ( ) z Tking ommon ftor ( + + z) from C nd C 3, we hve ( z) ( z) ( z) ( z) ( z) 0 z 0 ( ) z Appling R R (R + R 3 ), we hve z z ( z) z 0 z 0 z Appling C (C + C ) nd C 3 C 3 + z C, we get Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 5 -

z 0 0 ( ) z z z z z Finll epnding long R, we hve Δ = ( + + z) (z) [( + z) ( + ) z] = ( + + z) (z) ( + + z) = ( + + z) 3 (z) 0 40. Use produt 0 3 9 3 to solve the sstem of equtions 3 4 6 + z = 3z = 3 + 4z = 0 Consider the produt 0 3 9 3 3 4 6 9 0 3 4 0 0 0 8 8 0 4 3 0 6 6 0 0 6 8 4 0 4 4 3 6 8 0 0 0 Hene, 0 3 9 3 3 4 6 Now, given sstem of equtions n be written, in mtri form, s follows 0 3 3 4 z 0 0 3 9 3 z 3 4 6 0 0 9 6 5 6 4 3 Hene = 0, = 5 nd z = 3 Prepred b: M. S. KumrSwm, TGT(Mths) Pge - 6 -