Common Gate Amplifier

Similar documents
Microelectronics Circuit Analysis and Design. NMOS Common-Source Circuit. NMOS Common-Source Circuit 10/15/2013. In this chapter, we will:

Design of Analog Integrated Circuits

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi

Is current gain generally significant in FET amplifiers? Why or why not? Substitute each capacitor with a

55:041 Electronic Circuits

Transfer Characteristic

Introduction to Electronic circuits.

Prof. Paolo Colantonio a.a

The two main types of FETs are the junction field effect transistor (JFET) and the metal oxide field effect transistor (MOSFET).

Wp/Lmin. Wn/Lmin 2.5V

Week 9: Multivibrators, MOSFET Amplifiers

EE 221 Practice Problems for the Final Exam

T-model: - + v o. v i. i o. v e. R i

6. Cascode Amplifiers and Cascode Current Mirrors

The three major operations done on biological signals using Op-Amp:

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

DC & Transient Responses

Lesson 5. Thermomechanical Measurements for Energy Systems (MENR) Measurements for Mechanical Systems and Production (MMER)

LEAP FROG TECHNIQUE. Operational Simulation of LC Ladder Filters ECEN 622 (ESS) TAMU-AMSC

Exercises for Frequency Response. ECE 102, Fall 2012, F. Najmabadi

Novel current mode AC/AC converters with high frequency ac link *

CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004

, where. This is a highpass filter. The frequency response is the same as that for P.P.14.1 RC. Thus, the sketches of H and φ are shown below.

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

CURRENT FEEDBACK AMPLIFIERs

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

Lecture 20a. Circuit Topologies and Techniques: Opamps

Technote 6. Op Amp Definitions. April 1990 Revised 11/22/02. Tim J. Sobering SDE Consulting

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES

Relationships Between Frequency, Capacitance, Inductance and Reactance.

element k Using FEM to Solve Truss Problems

OP AMP CHARACTERISTICS

Feedback Principle :-

CMOS Analog Circuits

DC and Transient Responses (i.e. delay) (some comments on power too!)

Bipolar-Junction (BJT) transistors

EE5780 Advanced VLSI CAD

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

Lecture 14: More MOS Circuits and the Differential Amplifier

The Operational Amplifier and Application

Lecture 12 Circuits numériques (II)

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Lecture 5: Operational Amplifiers and Op Amp Circuits

Lecture 5: DC & Transient Response

Lecture 6: DC & Transient Response

Chapter 3, Solution 1C.

Transient Conduction: Spatial Effects and the Role of Analytical Solutions

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol:

EEE 421 VLSI Circuits

VI. Transistor Amplifiers

Chapter IIIa The operational Amplifier and applications.

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

III. Operational Amplifiers

EE 330 Lecture 24. Small Signal Analysis Small Signal Analysis of BJT Amplifier

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

Why working at higher frequencies?

Conduction Heat Transfer

Lecture 5: DC & Transient Response

BME 5742 Biosystems Modeling and Control

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

University of Southern California School Of Engineering Department Of Electrical Engineering

MOS Transistor Theory

ECE 2C, notes set 7: Basic Transistor Circuits; High-Frequency Response

VLSI Design and Simulation

ES 330 Electronics II Homework 04 (Fall 2017 Due Wednesday, September 27, 2017)

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

Diodes Waveform shaping Circuits. Sedra & Smith (6 th Ed): Sec. 4.5 & 4.6 Sedra & Smith (5 th Ed): Sec. 3.5 & 3.6

ANALOG ELECTRONICS DR NORLAILI MOHD NOH

Lecture 02 CSE 40547/60547 Computing at the Nanoscale

State-Space Model Based Generalized Predictive Control for Networked Control Systems

P a g e 3 6 of R e p o r t P B 4 / 0 9

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2

EECE 301 Signals & Systems Prof. Mark Fowler

WYSE Academic Challenge 2004 Sectional Physics Solution Set

Diodes Waveform shaping Circuits

Let s start from a first-order low pass filter we already discussed.

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

Lecture 4: DC & Transient Response

Digital Integrated Circuits

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

Introduction of Two Port Network Negative Feedback (Uni lateral Case) Feedback Topology Analysis of feedback applications

Part III Lectures Field-Effect Transistors (FETs) and Circuits

T h e C S E T I P r o j e c t

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Analog Electronic Circuits. Prof. Mor M. Peretz

Section 10 Regression with Stochastic Regressors

The Physical Structure (NMOS)

ECE321 Electronics I

DISCRETE SEMICONDUCTORS DATA SHEET. BF996S N-channel dual-gate MOS-FET. Product specification File under Discrete Semiconductors, SC07

Regression with Stochastic Regressors

Transcription:

mmn Gate Ampler Fure (a) shs a cmmn ate ampler th deal current surce lad. Fure (b) shs the deal current surce mplemented by PMOS th cnstant ate t surce vltae. DD DD G M G M G M (a) (b) Fure. mmn ate ampler.

. L Frequency Small Snal Equvalent rcut D G D - v s S m v s mb v bs ds S - (a) D G D - v s S m mb S ds - (b) Y YL Z (c) Z Fure. mmn ate ampler l requency small snal equvalent crcut.

Fure (a) and (b) sh the l requency small snal equvalent crcut. Fure ( c) shs the t-prt, ts prt varables assnment are as lls: Y L ds (r Z v L s, r ds ); Y S (r Z S 0) Frm Fure (b), the current equatns are derved t btan thr Y parameters: m mb ( - ) ( m mb ) - ( m mb) ( - ) ( m mb ) The crrespndn Y-parameter matrx s, ( Y - ( dety 0 m m mb mb ) ) The nput mpedance cmmn ate ampler s, y YL ds ds Z dety yyl 0 ( m mb ) ds m ds m Ths nput mpedance s l, snce m s lare. The utput mpedance cmmn ate ampler s, y Y S Z dety y YS y Ths utput mpedance s hh, snce s very small. A cmmn ate ampler s prmary used as mpedance transrmer rm l t hh mpedance. The vltae an cmmn ate ampler s, A 0 y y Y L m mb ds ( m here : R ut ZO//ZL ds Ths vltae an s practcally the same as the cmmn surce ampler, except r n snal nversn. The current an cmmn ate ampler s, A y YL dety y Y ( m 0 ( ) mb mb ds L m mb ) ds )R ut m R ut 3

. Hh Frequency Small Snal Equvalent rcut DD G M d db d G M db L s bs Fure 3. mmn ate ampler parastc capactances. Fure 3 shs all the parastc capacatnces needed r hh requency mdel. Fure 4(a) shs the hh requency small snal equvalent crcut cmmn ate ampler. The t-prt assnment s shn n Fure 4(b). The netrk current equatn s: ( m ( m mb The crrespndn Y-parameter matrx s: m mb s Y - ( m mb ) s dety ( s )( s m s[ ) s mb ) mb ( m ( mb ( - ) ( - ) s ) ] s m ( ) ( m m mb mb mb s ) - ) ( ) s ) 4

G D D S v s m mb ds S S - s bs d db d db L (a) Y G L S Z (b) Fure 4. mmn ate ampler hh requency small snal equvalent crcut. The nput mpedance s ven by: y YL Z dety y Y s[ ( ( m mb ds The utput mpedance s ven by: L ) s[( m ( mb ds ds ) ( ) s ( ) ] s m s ) mb ds ( m mb ) ] s s ) ds 5

Z O y YS dety y Y S y s The vltae an s ven by: A ( m y - y mb s Y R L ut ( )R m ut mb s A 0 s p ) ds ( m mb ds ) s The banddth s dened by the dmnant ple p. That s, p -3db R ut p π The an banddth s ven by: A 0 ( m mb )R ut R ut ( m mb ) π The phase marn PM r the nn-nvertn ampler, hch the case here, s the dstance the phase anle at the unty an (r 0db) requency () t 80. That s, 6

A(j A 0 A( s) s p 0 - tan PM 80 - tan ) 80 PM A( s) A - - p p j p 80 0 80 PM 80 - tan 80 - tan - PM 80 - tan The transer snal s a snle ple th n zer. The PM s alays reater 90. Hence t s stable. - (A 0 ) - (A 0 ) mmn Gate Ampler Experments 3. mmn Gate Ampler Basn and L Frequency Small Snal Parameters Determnatn. The D r lare snal transer characterstc s dcult t btan analytcally. The reasns are the ate t surce vltae and the threshld vltae chanes th the nput vltae. Frm Fure, these vltaes are ven by: GS BS G SS - - nstead btann the cmplete D transer characterstc, nly the bas pnt r peratn pnt s nterest. The peratn pnt shuld le n the ren hen bth transstrs are n saturatn. The al s t btan the upper and ler bund the saturatn ren. M, the PMOS transstr n Fure s n saturatn hen the cndtn s satsed. GSP - TP < DSP G - DD - TP < O - DD 0- DD - - < O - DD DD -< DD - O O < M, the NMOS transstr n Fure s n saturatn hen: 7

GSN - TN < DSN G - TN < O - G < O TN GSN - TN >0.3 G - TN >0.3 G >0.3 TN 0.30.3 ; at bas pnt 0 That s,.3 < G < ths dene the rane G hen G0 t uarantee that bth transstr are n saturatn, select say G.5. Wth ths value selected PSpce smulatn s cnducted t determne the actual peratn pnt, the bas vltae the nput snal. ntally the PSpce le smply enter a uess value the bas vltae. Ths bas ll aect the A respnse but nt the D respnse. The bas vltae s btaned by selectn a pnt at the mddle the steepest slpe. The smulatn shs that ths bas vltae s.4903. Ths nrmatn s entered n the PSpce le and re-run t btan the prper A respnse. The peratn pnt and small snal parameters are determned as lls: The threshld vltae s cmputed at the peratn pnt as lls: BS TN B T0 - S γ ( SS - φ BS.5 (.4903).0097 φ ) ( 0.6 (.0097) 0.6).4909 The peratn pnt current s W 9.6E - 6 β 87.7E - 6 N K N 40E - 6 L N (5.4 -)E - 6 DSQ N P βn βn (GSN - TN ) (G - - 87.7E - 6) (.5 (.4903).4909) 98.uA The transcnductances and resstances are cmputed: TN ) 8

r R Z A A m mb ds ut R (R ( db r r ds m ( mn ON m φ //R 0l β.964e - 6.964E - 6 ON γ mb 0 N BS OP mb N λ (A DSQ ).545E6.545M ds DSQ m (.0)((98.E - 6) ) ds )R ut ) 0l (87.7E - 6)(98.E - 6) 0.6 (.0097) (.964.964)E - 6 (30.95 5.765.964)E - (30.95 5.765.964)E - 6(.545E6) 47 0 (47) 33.44 db (30.95E - 6).509E6.509M rds R OP.509E6 λ (.0)((98.E - 6) P DSQ The PSpce smulatn shs that Z.03x0 4 Z.543x0 5 A v 33.756db. 30.95E - 6 30.95umh.509M 5.765E - 6 6(.964E - 6) 5.765umhA.08E4 *PSpce le r NMOS mmn Gate Ampler th *PMOS urrent Lad *Flename"Lab3.cr" N 0 D -.4903OLT A DD 3 0 D.5OLT SS 4 0 D -.5OLT G 5 0 D.5OLT G 6 0 D 0OLT M 5 4 MN W9.6U L5.4U M 6 3 3 MP W5.8U L5.4U.MODEL MN NMOS TO KP40U GAMMA. 0 LAMBDA0.0 PH0.6 TOX0.05U LD0.5U J5E-4 JSW0E-0 U0550 MJ0.5 MJSW0.5 GSO0.4E-9 GDO0.4E-9. MODEL MP PMOS TO- KP5U GAMMA0.6 LAMBDA0.0 PH0.6 TOX0.05U LD0.5U J5E-4 JSW0E-0 U000 MJ0.5 MJSW0.5 GSO0.4E-9 GDO0.4E-9 9

*Analyss.D N -.5.5 0.05.TF () N.A DE 00 HZ 0GHZ.PROBE.END ()/N 4.894E0 NPUT RESSTANE AT N.03E04 OUTPUT RESSTANE AT ().543E05 0

4. mmn Gate Ampler Hh Frequency Mdel Experments The parastc capactances ll be determned t check the thery aanst Pspce smulatn results. The capactances are determned at the peratn pnt. The reverse bas are rst calculated. Fr PMOS, BD B - D DD - O.5-0.56.94 (entered as neatve PMOS plarty are reversed) BS 0 Fr NMOS BDB-DSS-O-.5-0.56-3.06 * BSB-SSS--.5-(-.4903)-.0097 * O0.56 s the utput vltae at peratn pnt. The MATLAB prram s nvked t btan the parastc capactances. Fr NMOS, [GS,GD,BD,BS]cap(9.6,5.4,-3.06,-.0097) GS3.704F GD3.84F BD9.3375F BS43.44F Fr PMOS, [GS, GD,BD,BS]cap(5.8,5.4,-.94,0) GS6.539F GD0.3F BD55.4944F BS5.0F n the rst Pspce smulatn, nly the s and d are ncluded. That s, the utput capactance s calculated as ll: d d 3.84F 0.3F4.6F

The theretcal bandth s calculated as lls: R π ( (.545E6)(4.6E -5) ut O 77.49E6 77.49E6 44E9 44M π mb ) (30.95 5.765.964)E - 6 3.04E9 4.6E -5 m O 3.04E9.077E9.077G π π - - 3.04E9 PM 80 - tan 80 tan 9. 77.49E6 The Pspce smulatn results are : -3db PM 9.63 44.45M.779G T nclude the eect all the parastc capactances. The area and permeter the surce and dran each transstr are ncluded n the PSpce netlst. The utput capactance s re-calculated t nclude all the parastc capactances. O (3.84 9.3375 0.3 55.4944)F 88.999F d π ( R 44E6 7E9 7M π mb ) (30.95 5.765.964)E - 6 88.999E -5 m db O d db (.545E6)(88.999E -5) ut O.075E9 0.3305E9 330.5M π π - -.075E9 PM 80 - tan 80 tan 9.5 44E9 L 44E6.075E9 The Pspce smulatn results are:

6.6343M 305.995M PM 9.69 *PSpce le r NMOS mmn Gate Ampler th *PMOS urrent Lad *Flename"Lab3.cr" N 0 D -.4903OLT A DD 3 0 D.5OLT SS 4 0 D -.5OLT G 5 0 D.5OLT G 6 0 D 0OLT M 5 4 MN W9.6U L5.4U AD40.3P AS40.3P PD7.6U PS7.6U M 6 3 3 MP W5.8U L5.4U AD08.36P AS08.36P PD60U PS60U.MODEL MN NMOS TO KP 40U GAMMA.0 LAMBDA0.0 PH0.6 TOX0.05U LD0.5U J5E-4 JSW0E-0 U0550 MJ0.5 MJSW0.5 GSO0.4E-9 GDO0.4E-9.MODEL MP PMOS TO- KP5U GAMMA0.6 LAMBDA0.0 PH0.6 TOX0.05U LD0.5U J5E-4 JSW0E-0 U000 MJ0.5 MJSW0.5 GSO0.4E-9 GDO0.4E-9 *Analyss.D N -.5.5 0.05.TF () N.A DE 00 HZ 0GHZ.PROBE.END 3

4