The US Liquid Argon Time Projection Chamber (LArTPC) experiments

Similar documents
arxiv: v1 [hep-ex] 26 Jul 2011

Jonathan Asaadi Syracuse University

ω γ Neutral Current Single Photon Production (NCγ) Outline 1. Oscillation physics 2. NOMAD 3. T2K/MINERvA 4. MicroBooNE 5. MiniBooNE+ 6.

Liquid Argon TPCs for future neutrino oscillation experiments

QE or not QE, that is the question

arxiv: v1 [hep-ex] 13 Sep 2010

PMT Signal Attenuation and Baryon Number Violation Background Studies. By: Nadine Ayoub Nevis Laboratories, Columbia University August 5, 2011

Neutrinos Induced Pion Production in MINERvA

arxiv: v1 [physics.ins-det] 17 Nov 2014

Long Baseline Neutrinos

The Short Baseline Neutrino Program at Fermilab

Neutrino Scattering in Liquid Argon TPC Detectors

PoS(ICHEP2016)293. The LArIAT experiment and the charged pion total interaction cross section results on liquid argon. Animesh Chatterjee

Challenges in ν-argon scattering and new results from the MicroBooNE experiment

arxiv: v1 [physics.ins-det] 5 Nov 2015

DUNE detector design and lowenergy reconstruction capabilities. Inés Gil Botella

Measurement of Muon Momentum Using Multiple Coulomb Scattering for the MicroBooNE Experiment

Neutrino Cross Section Measurements for Long-Baseline Acceleratorbased Neutrino Oscillation Experiments

Quasi-Elastic Cross Sections Pittsburgh Neutrino Flux Workshop

ICARUS T600 experiment: latest results and perspectives

The ICARUS Project FRONTIERS IN CONTEMPORARY PHYSICS II. Vanderbilt University, March 5-10, Sergio Navas (ETH Zürich) " Atmospheric neutrinos

Measuring Neutrino Proper0es with Liquid Argon TPCs

The MINERnA Experiment

Neutrino Scattering Results from MiniBooNE and SciBooNE

Neutrino Oscillations Physics at DUNE

A Demonstration of Light Guides for Light Detection in Liquid Argon TPCs

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15

- ICARUS status and near future

Single π production in MiniBooNE and K2K

First Observation of Low Energy Electron Neutrinos in a Liquid Argon Time Projection Chamber

Conventional neutrino experiments

MINOS. Physics Program and Construction Status. Karol Lang The University of Texas at Austin. YITP: Neutrinos and Implications for Physics Beyond

Detector Basics III. Mark Messier Indiana University. Neutrino Summer School Fermilab July 9, 2008

Neutrino Physics at Short Baseline

Charged current single pion to quasi-elastic cross section ratio in MiniBooNE. Steven Linden PAVI09 25 June 2009

Recent results from MiniBooNE on neutrino oscillations

Looking Forward to the Future QE* Needs of Oscillation Experiments

Recent results from MINERvA

On the measurements of neutrino energy spectra and nuclear effects in neutrino-nucleus interactions

Neutrino interaction at K2K

Observation of flavor swap process in supernova II neutrino spectra

Developing Zero-Suppression Schemes for the Deep Underground Neutrino Experiment. Maggie Beheler-Amass August 4, 2017

PoS(EPS-HEP2017)074. Darkside Status and Prospects. Charles Jeff Martoff Temple University

SciBar and future K2K physics. F.Sánchez Universitat Aútonoma de Barcelona Institut de Física d'altes Energies

Neutrino-Nucleus Scattering at MINERvA

Charged Current Inclusive Scattering in MINERnA

The HARP Experiment. G. Vidal-Sitjes (INFN-Ferrara) on behalf of the HARP Collaboration

PHY 599: How it is usually done

arxiv: v1 [nucl-ex] 7 Sep 2009

Neutrino Cross Sections and Scattering Physics

DarkSide new results and prospects

Perspective from Fermilab NRC-DUSEL, December 15, 2010

Accelerator Neutrino Experiments News from Neutrino 2010 Athens

The LAr1-ND Experiment

Camillo Mariani Center for Neutrino Physics, Virginia Tech

Performance of the ICARUS T600 detector

Charged Current Quasielastic Analysis from MINERνA

Neutrino Oscilla8ons

MicroBooNE: PMT Signal Attenuation and Baryon Number Violation Background Studies. Nadine Ayoub Nevis Laboratories, Columbia University

Strangeness Produc/on in ArgoNeut via An/- neutrino Sca5ering from Protons

Searching for Physics Beyond the Standard Model with Accelerator ν Experiments W.C Louis, LANL. MiniBooNE Status FNAL ORNL

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV

1. The ICARUS T600 detector

MiniBooNE Progress and Little Muon Counter Overview

Main Injector Particle Production Experiment

PoS(NEUTEL2015)037. The NOvA Experiment. G. Pawloski University of Minnesota Minneapolis, Minnesota 55455, USA

BNL Very Long Baseline Neutrino Oscillation Expt.

Low-Energy Neutrino-Argon Interactions: A Window into Stellar Collapse. Christopher Grant

Particle Production Measurements at Fermilab

Cosmic Muons Induced EM Shower in NOνA

PHYS 5326 Lecture #2. Wednesday, Jan. 24, 2007 Dr. Jae Yu. Wednesday, Jan. 24, 2007 PHYS 5326, Spring 2007 Jae Yu

Quasi-Elastic Scattering in MINERvA

Hadronization model. Teppei Katori Queen Mary University of London CETUP neutrino interaction workshop, Rapid City, SD, USA, July 28, 2014

arxiv: v1 [physics.ins-det] 14 Jan 2016

Long Baseline Neutrino Experiments

Measurement of Neutrino-Nucleon Neutral-Current Elastic Scattering Cross-section at SciBooNE

Recent Results from Alysia Marino, University of Colorado at Boulder Neutrino Flux Workshop, University of Pittsburgh, Dec 6 8,2012

Publications of Francesco Arneodo: journal articles

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrino Physics at Short Baseline

Longbase Neutrino Physics. Neil McCauley University of Liverpool Birmingham February 2013

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors

K2K and T2K. 2006/10/19 For the 2006 External Review Panel. Masato Shiozawa Kamioka Observatory

MINERvA - Neutrino-nucleus cross sections are important!

NEW νe Appearance Results from the. T2K Experiment. Matthew Malek Imperial College London. University of Birmingham HEP Seminar 13 June 2012

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University

QUARKNET ANNUAL REPORT 2017 UNIVERSITY OF TENNESSEE, KNOXVILLE S. GOLLAPINNI, K. GUNTHOTI September 24, 2017

Introduction to Neutrino Interaction Physics NUFACT08 Summer School June 2008 Benasque, Spain Paul Soler

Paolo Agnes Laboratoire APC, Université Paris 7 on behalf of the DarkSide Collaboration. Dark Matter 2016 UCLA 17th - 19th February 2016

Neutrino Cross Sections for (Future) Oscillation Experiments. Pittsburgh Flux Workshop December 7, 2012 Deborah Harris Fermilab

Status of experimental neutrino-nucleus scattering at a few GeV

NINJAExperiment: NINJA. Tsutomu Fukuda(IAR, Nagoya University) on behalf of NINJA collaboration

Understanding Misclassification in a Five Particle CNN Jonathan Karp 8/04/2016

Gadolinium Doped Water Cherenkov Detectors

Long & Very Long Baseline Neutrino Oscillation Studies at Intense Proton Sources. Jeff Nelson College of William & Mary

PoS(Nufact08)003. Status and Prospects of Long Baseline ν Oscillation Experiments

Recent results from Super-Kamiokande

Latest Results from the OPERA Experiment (and new Charge Reconstruction)

Neutrinos & the MINOS Experiment

Transcription:

The US Liquid Argon Time Projection Chamber (LArTPC) experiments outline 1. Introduction 2. ArgoNeuT experiment 3. MicroBooNE experiment 4. Future large LArTPC experiments 5. Conclusion Teppei Katori for MicroBooNE collaboration Massachusetts Institute of Technology Neutrino-Nucleus Interactions in the Few-GeV Region (NuInt11) Dehradun, Uttarkhand, India, March 7, 2011 03/07/2011 Teppei Katori, MIT 1

1. Introduction 2. ArgoNeuT experiment 3. MicroBooNE experiment 4. Future large LArTPC experiments 5. Conclusion 03/07/2011 Teppei Katori, MIT 2

1. What is LArTPC? a modern bubble chamber experiment The principle of LArTPC - 3D track reconstruction 03/07/2011 Teppei Katori, MIT 3

ν 1. What is LArTPC? a modern bubble chamber experiment The principle of LArTPC - 3D track reconstruction Charged particle tracks ionize Argon atoms 40 Ar 03/07/2011 Teppei Katori, MIT 4

1. What is LArTPC? a modern bubble chamber experiment The principle of LArTPC - 3D track reconstruction Charged particle tracks ionize Argon atoms Scintillation light (~ns) is detected by PMTs at same time 03/07/2011 Teppei Katori, MIT 5

1. What is LArTPC? a modern bubble chamber experiment The principle of LArTPC - 3D track reconstruction Then ionized electrons are collected by anode wires (~ms) 03/07/2011 Teppei Katori, MIT 6

1. What is LArTPC? a modern bubble chamber experiment The principle of LArTPC - 3D track reconstruction Then ionized electrons are collected by anode wires (~ms) Electrons near the wires are collected first, and electrons far from the wires are collected last, so drift coordinate information is converted to electron drift time (time is projected) 03/07/2011 Teppei Katori, MIT 7

1. Why LArTPC? A candidate large neutrino detector LArTPC vs Water Cherenkov detector - 6 times smaller mass LArTPC has same sensitivity with large Water Cherenkov detector for CPV - Using de/dx and separation of vertex and photon conversion point, essentially no misid between single electron and photon conversion 300kt Water Cherenkov detector Energy loss in the first 24mm of track: 250MeV single electron vs 250MeV photon conversion 50kt LArTPC detector 03/07/2011 Teppei Katori, MIT 8

1. Where are we? We need to demonstrate! US path to future large LArTPC - The 0.7 ton ArgoNeuT was successfully completed. - We are ready for 150 ton MicroBooNE experiment. - future goal is the 20k ton detector (LAr20). 100% R&D 50%R&D 50%Physics 100% Physics 03/07/2011 Teppei Katori, MIT 9

1. Introduction 2. ArgoNeuT experiment 3. MicroBooNE experiment 4. Future large LArTPC experiments 5. Conclusion 03/07/2011 Teppei Katori, MIT 10

2. ArgoNeuT First US LArTPC neutrino experiment - NuMI neutrino beamline (wideband 3GeV beam with long tail up to 20GeV) - 1.35E20 POT, dominated with anti-neutrino mode (~12k total neutrino event in TPC volume) - small fiducial mass (0.25ton), but using MINOS near detector as muon ranger cryostat volume TPC volume ArgoNeuT 0.7 ton 0.25 ton # channel 480 wire pitch Reaction type ν µ CC electronics style 4 mm JFET (293K) #events (TPC volume) ~6.6k anti-ν µ CC ~5k ν µ CCQE ~600 ν e CC ~130 Argo- NeuT Neutrinos MINOS near detector hall MINOS near detector max. drift length 0.5m (330µs) 03/07/2011 Teppei Katori, MIT 11 light collection none

2. ArgoNeuT First US LArTPC neutrino experiment - NuMI neutrino beamline (wideband 3GeV beam with long tail up to 20GeV) - 1.35E20 POT, dominated with anti-neutrino mode (~12k total neutrino event in TPC volume) - small fiducial mass (0.25ton), but using MINOS near detector as muon ranger ArgoNeuT demonstrates LArTPC neutrino analysis 2 π o s decayed to 4 gammas, then converted to 4 e + e - pairs ArgoNeuT cryostat volume 0.7 ton TPC volume 0.25 ton # channel 480 wire pitch 4 mm electronics style JFET (293K) max. drift length 0.5m (330µs) 03/07/2011 Teppei Katori, MIT 12 light collection none

2. ArgoNeuT First US LArTPC neutrino experiment - NuMI neutrino beamline (wideband 3GeV beam with long tail up to 20GeV) - 1.35E20 POT, dominated with anti-neutrino mode (~12k total neutrino event in TPC volume) - small fiducial mass (0.25ton), but using MINOS near detector as muon ranger test TPC Bo ArgoNeuT demonstrates LArTPC neutrino analysis - wire signals are Fourier deconvoluted Cosmic ray data electron neutrino candidate event (single EM shower) Filter function ArgoNeuT cryostat volume 0.7 ton TPC volume 0.25 ton # channel 480 wire pitch 4 mm electronics style JFET (293K) max. drift length 0.5m (330µs) 03/07/2011 Teppei Katori, MIT 13 light collection none Raw data Deconvoluted data

2. ArgoNeuT First US LArTPC neutrino experiment - NuMI neutrino beamline (wideband 3GeV beam with long tail up to 20GeV) - 1.35E20 POT, dominated with anti-neutrino mode (~12k total neutrino event in TPC volume) - small fiducial mass (0.25ton), but using MINOS near detector as muon ranger ArgoNeuT demonstrates LArTPC neutrino analysis - wire signals are Fourier deconvoluted - powerful reconstruction software, LArSoft Hit: location in time on a wire where signal is present Cluster: collection of hits that are near each other in time and space Prong: collection of clusters that occupy the same time and space Shower, Track, etc: higher reconstruction objects ArgoNeuT cryostat volume 0.7 ton TPC volume 0.25 ton # channel 480 wire pitch 4 mm electronics style JFET (293K) max. drift length 0.5m (330µs) 03/07/2011 Teppei Katori, MIT 14 light collection none

2. ArgoNeuT First US LArTPC neutrino experiment - NuMI neutrino beamline (wideband 3GeV beam with long tail up to 20GeV) - 1.35E20 POT, dominated with anti-neutrino mode (~12k total neutrino event in TPC volume) - small fiducial mass (0.25ton), but using MINOS near detector as muon ranger ArgoNeuT demonstrates LArTPC neutrino analysis - wire signals are Fourier deconvoluted - powerful reconstruction software, LArSoft Reconstructed CCQE candidate event ArgoNeuT talk in QE session! (by J. Spitz) ArgoNeuT cryostat volume 0.7 ton TPC volume 0.25 ton # channel 480 wire pitch 4 mm electronics style JFET (293K) max. drift length 0.5m (330µs) 03/07/2011 Teppei Katori, MIT 15 light collection none

1. Introduction 2. ArgoNeuT experiment 3. MicroBooNE experiment 4. Future large LArTPC experiments 5. Conclusion 03/07/2011 Teppei Katori, MIT 16

3. MicroBooNE Path to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT Fermilab overview Booster Target Hall MicroBooNE MicroBooNE detector ArgoNeuT MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 86 ton max. drift length 0.5m (330µs) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~9000 wire pitch 4 mm 3 mm # wire plane 2 3 03/07/2011 Teppei Katori, MIT 17 light collection none 30 of 8 PMT

3. MicroBooNE Path to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess MicroBooNE ν e appearance candidate MiniBooNE collaboration, PRL102(2009)101802 ArgoNeuT MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 86 ton max. drift length 0.5m (330µs) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~9000 wire pitch 4 mm 3 mm MicroBooNE detector # wire plane 2 3 03/07/2011 Teppei Katori, MIT 18 light collection none 30 of 8 PMT

3. MicroBooNE Path to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess - bigger volume (~71k νccqe, 112k νcc in TPC volume, 6E20POT) ArgoNeuT MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 86 ton max. drift length 0.5m (330µs) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~9000 wire pitch 4 mm 3 mm 10.4m MicroBooNE detector # wire plane 2 3 03/07/2011 Teppei Katori, MIT 19 light collection none 30 of 8 PMT 2.3m 2.6m

3. MicroBooNE Path to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess - bigger volume (~71k νccqe, 112k νcc in TPC volume, 6E20POT) - longer drift length (high purity LAr) Liquid Argon Purity Demonstrator (LAPD) tank ArgoNeuT MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 86 ton max. drift length 0.5m (330µs) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~9000 wire pitch 4 mm 3 mm MicroBooNE detector filters # wire plane 2 3 03/07/2011 Teppei Katori, MIT 20 light collection none 30 of 8 PMT

3. MicroBooNE Path to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess - bigger volume (~71k νccqe, 112k νcc in TPC volume, 6E20POT) - longer drift length (high purity LAr) Liquid Argon Purity Demonstrator (LAPD) material test cryostat Luke tank ArgoNeuT MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 86 ton max. drift length 0.5m (330µs) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~9000 wire pitch 4 mm 3 mm MicroBooNE detector # wire plane 2 3 03/07/2011 Teppei Katori, MIT 21 light collection none 30 of 8 PMT filters

3. MicroBooNE Path to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess - bigger volume (~71k νccqe, 112k νcc in TPC volume, 6E20POT) - longer drift length (high purity LAr) - cold electronics (pre-amp, immersed in LAr) Cryogenic CMOS front end prototype (87K) ArgoNeuT MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 86 ton max. drift length 0.5m (330µs) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~9000 wire pitch 4 mm 3 mm MicroBooNE detector # wire plane 2 3 03/07/2011 Teppei Katori, MIT 22 light collection none 30 of 8 PMT

3. MicroBooNE Path to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess - bigger volume (~71k νccqe, 112k νcc in TPC volume, 6E20POT) - longer drift length (high purity LAr) - cold electronics (pre-amp, immersed in LAr) - finer wire pitch (40MeV proton track is ~1.5cm in LAr) Wire plane prototype MicroBooNE detector ArgoNeuT MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 86 ton max. drift length 0.5m (330µs) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~9000 wire pitch 4 mm 3 mm # wire plane 2 3 03/07/2011 Teppei Katori, MIT 23 light collection none 30 of 8 PMT

3. MicroBooNE Path to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess - bigger volume (~71k νccqe, 112k νcc in TPC volume, 6E20POT) - longer drift length (high purity LAr) - cold electronics (pre-amp, immersed in LAr) - finer wire pitch (40MeV proton track is ~1.5cm in LAr) - light collection system behind the wire planes (it can trigger 40MeV proton) MicroBooNE PMT test stand TPB coated acrylic plate MicroBooNE detector 128nm ArgoNeuT cryostat volume 0.7 ton MicroBooNE 450nm 150 ton TPC volume 0.25 ton 90 ton max. drift length 0.5m (330µs) 2.5m (1.5ms) electronics style CMOS (87K) # channel JFET (293K) PMT unit 480 wire pitch 4 mm 3 mm # wire plane 2 3 light collection none 30 of 8 PMT 03/07/2011 ~9000 Teppei Katori, MIT 24

3. MicroBooNE Path to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess - bigger volume (~71k νccqe, 112k νcc in TPC volume, 6E20POT) - longer drift length (high purity LAr) - cold electronics (pre-amp, immersed in LAr) - finer wire pitch (40MeV proton track is ~1.5cm in LAr) - light collection system behind the wire planes (it can trigger 40MeV proton) In a nutshell MicroBooNE is a large volume high resolution active target detector (we can see the back of ICARUS!) ArgoNeuT MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 86 ton max. drift length 0.5m (330µs) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~9000 wire pitch 4 mm 3 mm MicroBooNE detector # wire plane 2 3 03/07/2011 Teppei Katori, MIT 25 light collection none 30 of 8 PMT

3. MicroBooNE physics Event rate (BNB, 86ton TPC volume, 6E20POT) 63 ton reaction #event fraction CCQE CC ν µ +n >µ - +p 71135 45.0 NCEL NC ν µ +N >ν µ +N 22949 14.5 resonance pion production coherent pion production CC ν µ +p >µ - +p+π + 21837 13.8 CC ν µ +n >µ - +p+π o 8270 5.2 CC ν µ +n >µ - +n+π + 7900 5.0 NC ν µ +p >ν µ +p+π o 3898 2.5 NC ν µ +p >ν µ +n+π + 2464 1.6 NC ν µ +n >ν µ +n+π o 4838 3.1 NC ν µ +n >ν µ +p+π - 3207 2.0 CC ν µ +A >µ - +A+π + 3105 2.0 NC ν µ +A >ν µ +A+π o 2003 1.3 total 151606 96.0 03/07/2011 Teppei Katori, MIT 26

3. MicroBooNE physics, Δs ν µ + p ν µ + p ν µ + n ν µ + n Neutral Current Elastic (NCE) event (23k in TPC volume, 6E20POT) - MiniBooNE: no proton-neutron separation below 350 MeV (proton Cherenkov threshold). - SciBooNE: hard to understand low energy protons (>200 MeV for analysis). MiniBooNE collaboration, PRD82(2010)092005 H. Takei, Fermilab-Thesis-2009-19 - LArTPC can measure low energy protons (~40MeV protons corresponds to Q 2 ~0.08 GeV 2 ). BNL734 data ICARUS proton dq/dx MicroBooNE - lowest reconstructable projected data points proton is ~50 MeV ICARUS collaboration PRD74(2006)112001 Δs, strange quark spin components in nucleon - Δs is Q 2 =0 limit of the isoscalar part of axial vector form factor of NCE events. - previous experiments (BNLE734, MiniBooNE) are limited Q 2 > 0.4 GeV 2. unmeasured Ahrens et al, PRD35(1987)785 03/07/2011 Teppei Katori, MIT 27

3. MicroBooNE physics, coherent pion production Recent data of coherent pion productions - No charged current coherent pion production is observed. - Neutral current coherent pion production is observed. K2K collaboration, PRL95(2005)252301 MiniBooNE collaboration, PLB664(2008)41; PRD82(2010)092005 ν µ + A µ + A + π + ν µ + A µ + A + π o SciBooNE collaboration, PRD78(2008)112004 SciBooNE collaboration, PRD81(2009)033004; PRD81(2010)111102 Vertex activity - SciBooNE uses energy deposit around vertex (called vertex activity) to distinguish coherent and resonance pion production. - 3mm coordinate resolution of MicroBooNE allows fine pion measurement and vertex activity. SciBooNE νccπ + sample vertex activity MicroBooNE expected events in TPC volume (6E20POT) νccqe νccπ + (resonance) νccπ + (coherent) νncπ o (resonance) νncπ o (coherent) events 72k 30k 3k 14k 2k 03/07/2011 Teppei Katori, MIT 28

3. MicroBooNE physics, ν2nsrc Cartoon of inside of nucleus 2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, JLab Hall A collabo. and proton-neutron pairs dominate (~90%). - 2 nucleons are emitted opposite directions JLab Hall A collabo. PRL99(2007)072501 Science320(2008)1476 JLab Hall A big bite correlated proton pair measurement 03/07/2011 Teppei Katori, MIT 29

3. MicroBooNE physics, ν2nsrc Cartoon of inside of nucleus 2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, and proton-neutron pairs dominate (~90%). - 2 nucleons are emitted opposite directions JLab Hall A collabo. Science320(2008)1476 JLab Hall A collabo. PRL99(2007)072501 neutrino 2NSRC (ν2nsrc) - Growing interest on this subject, why not with neutrinos!? Particle Zoo coolness neutrinos charged leptons 03/07/2011 Teppei Katori, MIT 30

3. MicroBooNE physics, ν2nsrc Cartoon of inside of nucleus 2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, and proton-neutron pairs dominate (~90%). - 2 nucleons are emitted opposite directions JLab Hall A collabo. Science320(2008)1476 JLab Hall A collabo. PRL99(2007)072501 neutrino 2NSRC (ν2nsrc) - Growing interest on this subject, why not with neutrinos!? - Never confirmed in neutrino scattering Berge et al., PRD18(1978)1367 Fermilab 15ft bubble chamber 03/07/2011 Teppei Katori, MIT 31

3. MicroBooNE physics, ν2nsrc Cartoon of inside of nucleus 2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, and proton-neutron pairs dominate (~90%). - 2 nucleons are emitted opposite directions JLab Hall A collabo. Science320(2008)1476 JLab Hall A collabo. PRL99(2007)072501 neutrino 2NSRC (ν2nsrc) - Growing interest on this subject, why not with neutrinos!? Berge et al., - Never confirmed in neutrino scattering PRD18(1978)1367 - Unique place to study the role of 2NSRC on nuclear transition electron scattering - long arm spectrometers target detectors neutrino scattering - active target, vertex detector target and detector? vertex activity 03/07/2011 Teppei Katori, MIT 32

3. MicroBooNE physics, ν2nsrc Cartoon of inside of nucleus 2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, and proton-neutron pairs dominate (~90%). - 2 nucleons are emitted opposite directions JLab Hall A collabo. Science320(2008)1476 JLab Hall A collabo. PRL99(2007)072501 neutrino 2NSRC (ν2nsrc) - Growing interest on this subject, why not with neutrinos!? Berge et al., - Never confirmed in neutrino scattering PRD18(1978)1367 - Unique place to study the role of 2NSRC on nuclear transition - Responsible for MiniBooNE absolute xs measurements? Recent CCQE results MiniBooNE collaboration, PRD81(2010)092005 03/07/2011 Teppei Katori, MIT 33

3. MicroBooNE physics, ν2nsrc Cartoon of inside of nucleus 2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, and proton-neutron pairs dominate (~90%). - 2 nucleons are emitted opposite directions ν µ + X(np) X + µ + p + p JLab Hall A collabo. Science320(2008)1476 JLab Hall A collabo. PRL99(2007)072501 neutrino 2NSRC (ν2nsrc) - Growing interest on this subject, why not with neutrinos!? Berge et al., - Never confirmed in neutrino scattering PRD18(1978)1367 - Unique place to study the role of 2NSRC on nuclear transition - Responsible for MiniBooNE absolute xs measurements? ν2nsrc at MicroBooNE - Very distinct event topology (CM frame) muon + 2 protons back-to-back emission - High resolution LATPC can measure 2 short proton tracks - Vertex activity might reveal the first time the role of 2NSRC on nuclear transition MiniBooNE collaboration, PRD81(2010)092005 ArgoNeuT 2 tracks CCQE candidate in 3D (data) 03/07/2011 Teppei Katori, MIT 34

3. MicroBooNE physics, NuMI neutrinos MicroBooNE receives neutrinos both from Booster Neutrino beam (BNB) and NuMI! - upgrade 700kW NuMI will have 6E20POT/yr. - 40k νcc event and 7.7k anti-νcc event from NuMI, 6E20POT. MicroBooNE detector MicroBooNE detector 03/07/2011 Teppei Katori, MIT 35

3. MicroBooNE physics, hyperon production MicroBooNE receives neutrinos both from Booster Neutrino beam (BNB) and NuMI! - upgrade 700kW NuMI will have 6E20POT/yr. - 40k νcc event and 7.7k anti-νcc event from NuMI, 6E20POT. Neutrino-Nucleon hyperon productions - High resolution detector allows hyperon measurements - Very low statistics (26 events) from 70 bubble chambers Λ production measurements - Uniquely sensitive to anti-neutrino - No Pauli blocking - Λ polarization? Neutrino78(1978)37, PRL33(1975)1446 ν µ + p µ + + Λ o ν µ + p µ + + Σ o MicroBooNE capability - We expect few 100s of Λ o s in TPC volume, from NuMI, 6E20POT. ArgoNeuT Λ o production (MC) ν µ + p µ + + Λ o Λ o p + π 03/07/2011 Teppei Katori, MIT 36

1. Introduction 2. ArgoNeuT experiment 3. MicroBooNE experiment 4. Future large LArTPC experiments 5. Conclusion 03/07/2011 Teppei Katori, MIT 37

4. Long Baseline Neutrino Experiment (LBNE) LAr20 for LBNE - LBNE will be located ~1300km from Fermilab. - Main injector based ~2MW neutrino factory is used for θ 13 search and CPV measurement. - Large LArTPC (LAr20) is a candidate detector for LBNE anode ArgoNeuT MicroBooNE LAr20 cryostat volume 0.7 ton 150 ton 25k ton TPC volume 0.25 ton 86 ton 16.8k ton cathode max. drift length 0.5m (330µs) 2.5m (1.5ms) 2.5m (1.4ms) electronics style JFET (293K) CMOS (87K) CMOS (87K) # channel 480 ~9000 ~645,000 wire pitch 4 mm 3 mm 3 mm # wire plane 2 3 3 03/07/2011 Teppei Katori, MIT 38 light collection none 30 of 8 PMT TBD

5. Conclusion LArTPC is a feasible candidate large detector for future long baseline neutrino oscillation experiment, such as LBNE ArgoNeuT is the first US LArTPC neutrino experiment, and successfully completed its data taking 150ton MicroBooNE is planned to take data from 2013. MicroBooNE is the necessary path for future large LArTPC and it has a rich physics program. 03/07/2011 Teppei Katori, MIT 39

MicroBooNE collaboration Brookhaven National Laboratory Columbia University University of Cincinnati Fermi National Accelerator Laboratory Kansas State University Los Alamos National Laboratory Massachusetts Institute of Technology Michigan State University Princeton University Saint Mary's University of Minnesota Syracuse University University of Texas, Austin Yale University Thank you for your attention! 03/07/2011 Teppei Katori, MIT 40

back up 03/07/2011 Teppei Katori, MIT 41

4. Why Argon? Noble gas comparison - lower boiling point is easier to handle - higher density has more energy deposit - longer wavelength is easier to detect - Xe>Kr>Ar>Ne>He but Xe and Kr are expensive 03/07/2011 Teppei Katori, MIT 42

3. MicroBooNE Event rate (BNB, 6E20POT) 63.5 ton 03/07/2011 Teppei Katori, MIT 43

3. MicroBooNE Event rate (NuMI, 6E20POT) 03/07/2011 Teppei Katori, MIT 44

ν 1. What is LArTPC? a modern bubble chamber experiment The principle of LArTPC - 3D track reconstruction Charged particle tracks ionize Argon atoms Scintillation light (very fast) are detected by PMTs same time Then ionized electron are corrected by anode wire by drift field (~500V/cm) Electrons near the wire are collected first, and electrons fur from the wire are collected last (Z-axis information is converted to electron drift time) 03/07/2011 Teppei Katori, MIT 45 45

4. LArTPC all over the world ICARUST600@Gran Sasso - physics run is ongoing at Gran Sasso LArTPC@KEK - ready to run ArgoNeuT size (250L) LArTPC with 2 phase (upper gas phase for LEM) ARGONTUBE@Swiss group - goal is to demonstrate ~5m electron drift (210 stage Cockcroft-Walton inside of cryostat) 03/07/2011 Teppei Katori, MIT 46

2. ArgoNeuT First US LArTPC neutrino experiment - NuMI neutrino beamline (wideband 3GeV beam with long tail up to 20GeV) - 1.35E20 POT, dominated with anti-neutrino mode (~12k total neutrino event) - small fiducial mass (0.25ton), but using MINOS near detector as muon ranger (0.5GeV<Tµ(max)<5GeV, depending on angle) - Neutrino interactions are viewed in 2 of 2D planes (=3D reconstuctable) A neutrino event (CC DIS event with 2π o production) ArgoNeuT cryostat volume 0.7 ton TPC volume 0.25 ton # channel 480 wire pitch 4 mm electronics style JFET (293K) max. drift length 0.5m (330µs) 03/07/2011 Teppei Katori, MIT 47 light collection none

2. ArgoNeuT First US LArTPC neutrino experiment - NuMI neutrino beamline (wideband 3GeV beam with long tail up to 20GeV) - 1.35E20 POT, dominated with anti-neutrino mode (~12k total neutrino event) - small fiducial mass (0.25ton), but using MINOS near detector as muon ranger (0.5GeV<Tµ(max)<5GeV, depending on angle) - Neutrino interactions are viewed in 2 of 2D planes (=3D reconstuctable) - Gamma ray looks 2 MIP particles (= separable from electron) e γ e + e - cryostat volume TPC volume ArgoNeuT 0.7 ton 0.25 ton # channel 480 wire pitch electronics style 4 mm JFET (293K) Single wire information from data max. drift length 0.5m (330µs) 03/07/2011 Teppei Katori, MIT 48 light collection none

2. ArgoNeuT First US LArTPC neutrino experiment - NuMI neutrino beamline (wideband 3GeV beam with long tail up to 20GeV) - 1.35E20 POT, dominated with anti-neutrino mode (~12k total neutrino event) - small fiducial mass (0.25ton), but using MINOS near detector as muon ranger (0.5GeV<Tµ(max)<5GeV, depending on angle) - Neutrino interactions are viewed in 2 of 2D planes (=3D reconstuctable) - Gamma ray looks 2 MIP particles (= separable from electron) - powerful de/dx PID de/dx from CCQE candidate tracks - precise event-by-event PID by de/dx! ArgoNeuT cryostat volume 0.7 ton TPC volume 0.25 ton # channel 480 wire pitch 4 mm electronics style JFET (293K) max. drift length 0.5m (330µs) 03/07/2011 Teppei Katori, MIT 49 light collection none

3. MicroBooNE Path to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess - bigger volume (~72k νccqe, 115k νcc in TPC volume, 6E20POT) - longer drift length (high purity LAr) - cold electronics (pre-amp, immersed in LAr) - finer wire pitch (40MeV proton track is ~1.5cm in LAr) - 3 wire planes (more complicated topologies are measured) ν Ambiguity occurs if track is parallel to wire plane ArgoNeuT 2 wire planes MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 90 ton max. drift length 0.5m (330µs) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~9000 wire pitch 4 mm 3 mm X T T X T MicroBooNE detector # wire plane 2 3 03/07/2011 Teppei Katori, MIT 50 light collection none 30 of 8 PMT Y Y

3. MicroBooNE Path to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess - bigger volume (~72k νccqe, 115k νcc in TPC volume, 6E20POT) - longer drift length (high purity LAr) - cold electronics (pre-amp, immersed in LAr) - finer wire pitch (40MeV proton track is ~1.5cm in LAr) - 3 wire planes (more complicated topologies are measured) Ambiguity occurs if track is parallel to wire plane ArgoNeuT 3 wire planes MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 90 ton max. drift length 0.5m (330µs) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~9000 wire pitch 4 mm 3 mm X T T X T MicroBooNE detector # wire plane 2 3 03/07/2011 Teppei Katori, MIT 51 light collection none 30 of 8 PMT Y T Y U