PHYS 208, Sections , Spring 2017

Similar documents
PHYS 208, sections , Spring 2017

PHYS 208, sections , Spring 2018

PHYS 208, sections , Fall 2017

University Physics (Volume 2) by Young and Freedman, 14th ed., with Modern Physics for Modified Mastering. ISBN13:

PHYSICS 206, Spring 2019

COURSE OUTLINE. Upon completion of this course the student will be able to:

University Of Pennsylvania Department of Physics PHYS 141/151 Engineering Physics II (Course Outline)

PHYS 1112: Introductory Physics-Electricity and Magnetism, Optics, Modern Physics

10/11/2018 1:48 PM Approved (Changed Course) PHYS 42 Course Outline as of Fall 2017

PHYS F212X FE1+FE2+FE3

ESSEX COUNTY COLLEGE Mathematics and Physics Division PHY 104 General Physics II Course Outline

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS CALCULUS BASED PHYSICS I PHYS 2110

Mineral Area College FALL credit hours

Required Textbook. Grade Determined by

AP Physics C Electricity and Magnetism

Physics 273 (Fall 2013) (4 Credit Hours) Fundamentals of Physics II

PHYS 122 Introductory Physics II Dr. Eric C. Anderson UMBC Fall 2016 Syllabus. Getting ready

AP Physics C. Magnetism - Term 4

PHYS 272 (Spring 2018): Introductory Physics: Fields Homeworks

AP Physics C. Electricity - Term 3

ELECTROMAGNETIC THEORY

CLASSICAL ELECTRODYNAMICS I Physics 6/75203 SPRING 2013

SCIENCE DEPT CHAIR: Mr. Scheidt AS 212B

OAKTON COMMUNITY COLLEGE COURSE SYLLABUS. I. Course Course Course Prefix Number Name Credit: Lecture Lab. PHY 132 College Physics II 4 3 2

AP Physics C Liberty High School, Hillsboro, OR (PCC PHY 213 General Physics (Calculus))

University of Colorado at Boulder Summer 2017, Session B Tuesday, July 11 - Friday, August 11. Prof. Mik Sawicki PHYS 1120 COURSE CALENDAR WEEK 1

Physics 9, Introductory Physics II Spring 2010

4 credits, 3-hrs. lecture/2-hrs. lab/2-hrs. recitation Lecture:

EET 492: Electromagnetic Fields and Waves. Fall Syllabus

PHYSICS PHYSICS FOR SCIENTISTS AND ENGINEERS. Course Outline - Spring 2009

Advanced Engineering Mathematics Course Number: Math Spring, 2016

PS 250 Physics III for Engineers Embry-Riddle University Summer A 2014

Physics 141 Course Information

Central Michigan University College of Science and Technology. Course Syllabus

Physics 141 Course Information

STATISTICAL AND THERMAL PHYSICS

Introductory Physics PHYS 120 Challenge Program Course - Southwest Minnesota State University

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Physics Summer 1996

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS ELECTRICITY & MAGNETISM W/LAB PHY 2310

Spring 2014 ECEN Signals and Systems

COWLEY COLLEGE & Area Vocational Technical School

CHEMISTRY 3A INTRODUCTION TO CHEMISTRY SPRING

SPRING 2014 Department of Physics & Astronomy, UGA PHYS 4202/6202 Electricity and Magnetism II (as of Jan. 07/2014)

Physics Fundamentals of Astronomy

PHY 112 GENERAL PHYSICS II WITH LAB

MASTER SYLLABUS

Physics Lecture 01: MON 25 AUG

Physics Fundamentals of Astronomy

ECE 4800 Fall 2011: Electromagnetic Fields and Waves. Credits: 4 Office Hours: M 6-7:30PM, Th 2-3:30, and by appointment

Physics 9, Introductory Physics II Fall 2011

Welcome to Physics 161 Elements of Physics Fall 2018, Sept 4. Wim Kloet

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS ELEMENTS OF PHYSICS II W/LAB PHY 2220

Page 1 of 5 Printed: 2/4/09

Chemistry 8 Principles of Organic Chemistry Spring Semester, 2013

INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS Physics 4/56301 SPRING 2016 INSTRUCTOR:

ECE 3110 Electromagnetic Fields I Spring 2016

Physics Fall Semester. Sections 1 5. Please find a seat. Keep all walkways free for safety reasons and to comply with the fire code.

LURLEEN B. WALLACE COMMUNITY COLLEGE COURSE SYLLABUS

Welcome to PHY2054C. Office hours: MoTuWeTh 10:00-11:00am (and after class) at PS140

CENTRAL TEXAS COLLEGE SYLLABUS FOR MATH 2415 CALCULUS III. Semester Hours Credit: 4

CENTRAL TEXAS COLLEGE SYLLABUS FOR MATH 2318 Linear Algebra. Semester Hours Credit: 3

Prerequisites: Successful completion of PHYS 2222 General Physics (Calculus) with a grade of C or better.

Describe the forces and torques exerted on an electric dipole in a field.

ASTR/PHYS 109: Big Bang and Black Holes Fall 2018

Department of Physics & Astronomy Trent University

ASTRONOMY 112: Stars, Galaxies, and Cosmology Spring 2014 Syllabus Section MWF 9:00 9:50 AM Room: PS167

Wilson Area School District Planned Course Guide

B.Sc. in Electronics and Communication Engineering, Cairo University, Cairo, Egypt with Distinction (honors), 1992

2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text.

Electricity & Magnetism Lecture 18

Updated: Page 1 of 6

Angelina College Science and Mathematics Chemistry 1105 Introductory Chemistry Internet General Syllabus

Course Content (visit for details)

AP Physics C Syllabus

Department of Mechanical Engineering MECH 221 (with MECH 224 & MATH 255) Engineering Science I


Textbooks, supplies and other Resources TITLE: CHEMISTRY: A MOLECULAR APPROACH EDITION:4 TH EDITION

Lecture 1. EE70 Fall 2007

Reid State Technical College

University of Wisconsin-Eau Claire CHEM 103: General Chemistry- Syllabus Spring 2014

AS 203 Principles of Astronomy 2 Introduction to Stellar and Galactic Astronomy Syllabus Spring 2012

Important Dates. Non-instructional days. No classes. College offices closed.

Stellar Astronomy 1401 Spring 2009

Physics 4322 Spring Section Introduction to Classical Electrodynamics - Part 2

GEOLOGY 100 Planet Earth Spring Semester, 2007

Upon completion of the course, the student should be competent to perform the following tasks:

PHYS 1444 Section 004 Lecture #22

Historical Geology, GEOL 1120 (final version) Spring 2009

AS 101: The Solar System (Spring 2017) Course Syllabus

Physics for Scientists and Engineers 4th Edition 2017

Important Dates. Non-instructional days. No classes. College offices closed.

Lecture 13.2 :! Inductors

Here are some internet links to instructional and necessary background materials:

San José State University Aerospace Engineering Department AE138: Vector Based Dynamics for Aerospace Applications Fall 2018

General Chemistry II (CHEM 1312) Credit: 3 semester credit hours (3 hours lecture) Prerequisite: CHEM 1311 and CHEM 1111

Contact Hours Face to Face: 1.5 hr lecture; 1.5 hr tutorial Online: hr (pace depends on student) lecture video and assessment

Syllabus, General Chemistry I, CHM 1142 Section TCAA, Fall, 2008 McCall Hall, Room 318 MWF 9:00-9:50 AM

GENERAL PLANT PATHOLOGY PLPA 3000 Spring Instructor: Dr. Kathy S. Lawrence Office Hours: 8:00-10:00 MW

WEST LOS ANGELES COLLEGE Introduction to General Chemistry CHEMISTRY 60 SYLLABUS; 5 units

Transcription:

COLLEGE OF SCIENCE DEPARTMENT OF PHYSICS AND ASTRONOMY PHYS 208, Sections 549-553, Spring 2017 Instructor Information Instructor Dr. Jeremy Holt Telephone 979.845.1411 Email holt@physics.tamu.edu (please start subject line with PHYS 208) Office CYCL 206 Office hours MW 9:00-10:00am or by appointment Course Meeting Times and Locations Lecture MW 4:10-5:25pm in MPHY 205 Exam 1 M Feb 13 at 7:15pm Exam 2 M Mar 06 at 7:15pm Exam 3 M Apr 10 at 7:15pm Comprehensive Exam F Apr 28 at 7:15pm See attached Lab Schedule for the section-specific locations/times of the recitations and labs Course Description and Course Objectives Electricity & Magnetism for students in science and engineering. This is the second semester of a two-semester sequence in introductory physics. Topics include material covered in chapters 21-32 of the textbook, University Physics (see Text and Required Materials below). Knowledge to gain: Understanding of material covered in chapters 21-32 of the textbook, University Physics. Skills to gain: Ability to work through complex problems. See attached list of Learning Objectives. Pre-Requisites: PHYS 218 and MATH 151 or 171. You must have a working knowledge of plane geometry, trigonometry, and algebra. You will also be expected to have a working knowledge of derivatives and integrals, and be proficient in the use of vectors (addition, subtraction, dot and cross products). Co-Requisite: MATH 152 or 172. Text and Required Materials: The text is University Physics", 14th ed., Young and Freedman, vol. 2, stocked in the bookstore, or see the web-page for other versions that would suffice. Look for bundled Modified Mastering Physics access, or you must purchase access to this site separately. Also you will need to purchase an access code for WebAssign for the labs and FlipItPhysics for the pre-lectures. Finally, you must have an iclicker for the lectures. You also should have a pocket calculator capable of calculating arithmetic and trigonometric functions for homework. Pre-Lectures: PHYS 208 lectures follow a flipped course model, and as part of that we are using a pre-lecture system hosted on the online FlipItPhysics site. Please enter your UIN for your unique identifier when registering, to ensure that you get credit for your work. You are required to view the pre-lectures (narrated slides including a few online questions) ahead of the lectures, and the lectures will include quizzes to see if you have gained a basic understanding. The remainder of the lecture can then focus more on problem-solving. The FlipItPhysics site also includes Checkpoints following most pre-lectures, which are short quizzes to test for understanding. The course code for this course is: 4cf56102. Lectures and Clickers: The iclickers will be used for in-class conceptual testing and polling. To encourage class participation, credit for iclickers will be based in part on participation, as well as additional points based on correct answers. Full participation credit allows for 3 free drops (missed classes), to avoid complicated accounting for excused absences. To gain participation credit you must pre-register your device, and answer all of the questions in

class. Cheating by bringing a friend s clicker is a violation of the Aggie Honor Code, and will result in loss of all clicker points, and possible disciplinary action. To register the iclicker, go to http://www.iclicker.com/support/registeryourclicker/, and enter your first and last names (same as on your TAMU ID), then the TAMU UIN, then the "Remote ID" code from the back of your iclicker. (It can also be found on the LCD screen upon powering up the remote.) Technical problems with the clickers will likely need to be addressed to the support people at iclicker.com. Laboratory: The Lab is a part of this course, not treated as a separate grade. However, the Lab part of the course must be passed separately to pass the course. In order to pass the Lab part of the course, attendance at all Labs is required (with one make-up Lab available). The Lab Schedule is on a separate page, and posted on the web-page. The labs, along with pre-lab and post-lab assignments, will be obtained through the online WebAssign package. Note that although we do not have a Lab scheduled each week, you are expected to attend both Recitation and Lab each week for full credit. Missing the lab part will result in zero credit for the recitation quiz of that week. Exams: We will have 4 common exams (3 midterm exams and 1 comprehensive exam). The common exams are the extra evening sessions included in the course schedule when you registered. These exams start at 7:15 PM. The three midterm exams are expected to last 75 minutes, and the comprehensive exam is expected to last 120 minutes. The dates are listed above in Course Meeting Times and Locations. The locations for each exam will be announced in class. Exams generally consist of problems similar in content and difficulty to the homework, and they are expected to include both multiple-choice and free-response questions. Formula sheets will be provided for each exam. Absences: If you miss an exam due to an authorized excused absence as outlined in the University Regulations, you should attempt to contact me prior to the exam, but no later than the next class meeting following the missed exam to arrange for a makeup exam. With an official excuse, the missed exam score will likely be replaced by the makeup exam score. Note: Few conditions qualify as an authorized excused absence, so you must avoid missing exams except for extremely serious circumstances. Identification: You must bring your TAMU student ID with you to all exams for identification purposes. Course Topics and Schedule: Week of January 16 1/16 MLK holiday January 23 January 30 February 6 February 13 February 13 February 20 February 27 March 6 March 6 March 13 March 20 March 27 April 3 April 10 April 10 4/14 Reading Day April 17 April 24 April 28 May 01 Topic Chapter 21: Electric Charge and Electric Field Chapter 22: Gauss Law Chapter 23: Electric Potential Chapter 24: Capacitance and Dielectrics Exam I (Chapters 21-23) Chapter 25: Currents, Resistance, and Electromotive Force Chapter 26: DC Circuits Chapter 27: Magnetic Fields and Magnetic Forces Exam II (Chapters 24-26) Chapter 28: Sources of Magnetic Field Spring Break Chapter 29: Electromagnetic Induction Chapter 30: Inductance Chapter 31: Alternating Current Exam III (Chapters 27-30) Chapter 32: Electromagnetic Waves Wrap-up Chapter 32 and Review Comprehensive Exam (Chapters 21-32) Special Topics

Course Grade: The overall course grade is weighted as follows: Exams (3 Midterms and 1 Comprehensive) 70% Laboratory 9% Recitation Quizzes 5% Online homework 8% Pre-lectures/Checkpoints and in-class (clickers) 8% (5% Pre-lectures/Checkpoints + 3% clickers) Total 100% The exams are graded based on learning objectives (listed below). Each exam tests several different learning objectives and may test the same learning objective more than once. The grading keeps track of every instance in which a learning objective is tested and whether in that particular instance the objective was judged as passed or failed. Learning objectives will likely be tested multiple times across exams. At the end of the semester achieved objectives are those which were marked as passing greater than or equal to 60% of the tested times. In the comprehensive exams, the number of times of the tested learning objectives is weighted by a factor of 2 relative to the midterms. The fraction of achieved objectives at the end of the semester out of the number of tested objectives gives the numerical grade in the Exams portion of the table above. Grading Scale: A: 90-100 B: 80-89 C: 70-79 D: 60-69 F: <60 Homework and Recitation: Homework assignments are posted online on the Modified Mastering Physics (pearsonmylabandmastering.com) website, and you are responsible for completing and understanding these problems. By the end of the first week you should set up your Modified Mastering Physics account and complete the first homework assignment. When you first register, you must do so via the homework link on the ecampus site for your PHYS 208 course. You must work the online problems on your own, and keep up with the deadlines. Late submissions are accepted, however full credit will not be given. The penalty is 3% per hour past the deadline. To encourage doing the homework (which is necessary to succeed in the course!), the maximum penalty no matter how late is 50%. Details about the grading policy for individual homework problems can be found on the online site for example, in some cases you get several attempts to key in the correct answer, with a 3% penalty for wrong attempts. Web Pages: o ecampus.tamu.edu main course website for this class (will have lecture notes and grades) o TBD common course website for PHYS 208 sections using University Physics textbook o pearsonmylabandmastering.com (Modified) Mastering Physics for homework submission; register through ecampus.tamu.edu! o www.flipitphysics.com for pre-lectures and checkpoints o www.webassign.net/tamu/login.html for the labs ADA Policy: The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, currently located in the Disability Services building at the Student Services at White Creek complex on west campus or call 979-845-1637. For additional information, visit http://disability.tamu.edu. Honor Code: The Aggie Honor Code states, An Aggie does not lie, cheat, or steal or tolerate those who do. Further information regarding the Honor Council Rules and Procedures may be found on the web at http://aggiehonor.tamu.edu.

Learning Objectives: Electric Charge and Coulomb s Law 1. Describe how objects become electrically charged 2. Articulate the properties of conductors and insulators 3. Calculate the electric force between charges using Coulomb s Law 4. Calculate the Coulomb force exerted on a charged particle by other charged particles, using Coulomb s Law and Superposition 5. Calculate the electric field produced by a point charge 6. Calculate the electric field due to a collection of point charges and understand the distinction between electric force and electric field 7. Calculate the electric field caused by a continuous distribution of charge 8. Be able to interpret electric field lines 9. Calculate the force and torque on an electric dipole due to an external electric field, and the potential energy of an electric dipole Gauss Law 10. Articulate the concept of electric flux and be able to calculate the electric flux through a surface 11. Formulate how Gauss Law relates the electric flux through a closed surface to the charge enclosed by the surface 12. Articulate under what conditions Gauss Law is useful for determining electric field 13. Be able to use Gauss Law to calculate the electric field due to a symmetric charge distribution 14. Describe the electric field within a conductor and where the charge is located on a charged conductor. Electric Potential 15. Calculate the electric potential energy of a collection of charges 16. Articulate the meaning and significance of electric potential 17. Calculate the electric potential that a collection of charges produces at a point in space 18. Calculate the electric potential due to a continuous distribution of charges 19. Identify equipotential surfaces from electric field lines 20. Be able to use electric potential to calculate electric field Capacitance and Dielectrics 21. Identify the nature of capacitors and be able to quantify their ability to store charge (i.e. the capacitance) 22. Be able to combine the calculation of fields and potential functions to derive the capacitance of the three soluble systems 23. Analyze capacitors connected in a network (by determining equivalent capacitance for capacitors connected in series or parallel) 24. Calculate the amount of energy stored in a capacitor 25. Articulate how dielectrics make capacitors more effective (and how a dielectric within a charged capacitor becomes polarized) 26. Be able to apply Gauss Law when dielectrics are present Current, Resistance, and Electromotive Force 27. Articulate the concept of electric current and its relationship to drift velocity 28. Articulate the meaning of resistivity and conductivity 29. Calculate the resistance of a conductor from its dimensions and resistivity 30. Articulate Ohm s Law both in terms of the resistivity of a material (the microscopic form of Ohm s Law) and in terms of the resistance (macroscopic form of Ohm s Law) 31. Articulate the concept of electromotive force (emf) and how emf makes it possible for current to flow in a circuit 32. Identify the symbols used in circuit diagrams 33. Calculate energy and power in a circuit

Direct-Current Circuits 34. Analyze circuits with multiple resistors in series or parallel 35. Articulate Kirchhoff s Rules 36. Apply Kirchhoff s rules to analyze circuits 37. Articulate the functionality of ammeters and voltmeters and under what conditions these instruments are idealized 38. Analyze R-C Circuits 39. Apply analysis of circuits to household wiring examples and determine conditions for making circuit breaker trip Magnetic Field and Magnetic Forces 40. Describe how magnets interact with each other 41. Articulate what produces a magnetic field 42. Articulate the force exerted by a magnetic field on other moving charges or currents 43. Interpret magnetic field lines and calculate magnetic flux through a surface 44. Calculate the motion of charged particles in magnetic and electric fields 45. Calculate the magnetic force on a current-carrying wire 46. Calculate the torque on a magnetic dipole and the potential energy of a magnetic dipole in an external magnetic field Sources of Magnetic Field 47. Calculate the magnetic field due to a point charge with constant velocity 48. Calculate the magnetic field due to a current (using Biot-Savart Law) 49. Calculate the force between two long parallel conductors 50. Apply Ampere s Law to calculate the magnetic field 51. Recognize under what conditions Ampere s Law is useful to determine the magnetic field Electromagnetic Induction 52. Be able to calculate magnetic flux through a surface 53. Articulate how Faraday s Law relates the induced emf in a loop to the time-derivative of magnetic flux through the loop and be able to apply it to calculate induced emf 54. Apply Lenz s Law to determine the direction of an induced emf 55. Calculate the emf induced in a conductor moving through a magnetic field 56. Calculate the induced electric field generated by a changing magnetic flux 57. Articulate the concept of eddy currents 58. Articulate the concept of displacement current and be able to calculate it for a changing electric flux through a surface 59. Identify Maxwell s equations Inductance 60. Calculate mutual inductance and induced emf due to mutual inductance 61. Articulate the concept of self inductance and be able to relate the magnetic flux and current to the self inductance 62. Calculate the energy stored in a magnetic field 63. Analyze R-L circuits and describe the time-dependence of the current 64. Analyze L-C circuits and describe the time-dependence of the current 65. Recognize the time-dependence of the current in an L-R-C circuit Alternating-Current Circuits 66. Analyze an L-R-C series circuit with a sinusoidal emf 67. Understand the origin of resonances in L-R-C circuits (analogous to forced, damped harmonic oscillator) 68. Determine the amount of power flowing into or out of the alternating-current circuit Electromagnetic Waves 69. Articulate the key properties of electromagnetic waves (wave is transverse, relationship between E and B, speed of wave) 70. Be able to reproduce the wave equation mathematically and articulate the meaning of all quantities in the mathematical formulation of sinusoidal electromagnetic plane wave. 71. Use the Poynting vector to calculate the energy and momentum carried by the electromagnetic wave

PHYSICS 208 (Univ Phys) LAB SCHEDULE SPRING 2017 WEEK OF REC/ EXPERIMENTS 1. Jan 17-20 No Rec No lab 2. Jan 23-27 Rec Diagnostic Test 3. Jan 30 Feb3 Rec 2. E - Fields & Potentials 4. Feb 06-10 Rec 3. Capacitors(M) Exam review (T-F) 5. Feb 13-17 Rec 3. Capacitors (T-F) 6. Feb 20 24 Rec 1. Electrical Measurements 7. Feb 27 Mar3 Rec 5. Oscilloscope and RC Circuits(M) Exam Review (T-F) 8. Mar 06-10 Rec 5. Oscilloscope and RC Circuits(T-F) Mar 13 17 Spring Break 9. Mar 20 24 Rec 6. Magnetic Fields 10. Mar 27 31 Rec 8. Faraday s Law 11. Apr 03 07 Rec Exam Review (T-F) 12. Apr 10 14 Rec Exam Review (M) 13. Apr 17 21 Rec Make up lab 7. LR, LC, LRC Circuits 14. Apr 24 28 Rec Diagnostic Test 15. May 01-02 Last two days of classes NOTE: Univ Phys sections are highlighted in yellow. Times for Rec//Lab Monday Wednesday Friday 08:00-09:20 // 09:30-10:50 510(334//210) 531(334//210) 08:00-09:20 // 09:30-10:50 516(337//211) 554(337//211) 09:10-10:30 // 10:40-12:00 508(334//210) 09:10-10:30 // 10:40-12:00 539(337//211) 10:20-11:40 // 11:50-01:10 521(334//210) 526(334//210) 10:20-11:40 // 11:50-01:10 549(337//211) 542(337//211) 11:30-12:50 // 01:00-02:20 552(337//211) 11:30-12:50 // 01:00-02:20 534(334//210) 12:40-02:00 // 02:10-03:30 506(334//210) 12:40-02:00 // 02:10-03:30 517(337//211) 01:50-03:10 // 03:20-04:40 529(334//210) 01:50-03:10 // 03:20-04:40 540(337//211) 03:00-04:20 // 04:30-05:50 527(334//210) 03:00-04:20 // 04:30-05:50 532(337//211) 04:10-05:30 // 05:40-07:00 523(334//210) 04:10-05:30 // 05:40-07:00 519(337//211) 05:20-06:40 // 06:50-08:10 525(334//210) 05:20-06:40 // 06:50-08:10 538(337//211) Times for Rec//Lab Tuesday Thursday 08:00-09:20 // 09:30-10:50 522(334//210) 520(337//211) 08:00-09:20 // 09:30-10:50 09:35-10:55 // 11:05-12:25 550(337//211) 509(334//210) 09:35-10:55 // 11:05-12:25 11:10-12:30 // 12:40-02:00 528(334//210) 553(337//211) 11:10-12:30 // 12:40-02:00 12:45-02:05 // 02:15-03:35 201(333//212) 524(334//210) 12:45-02:05 // 02:15-03:35 518(337//211) 02:20-03:40 // 03:50-05:10 507(334//210) 536(337//211) 03:55-05:15 // 05:25-06:45 202(333//212) 530(334//210) 03:55-05:15 // 04:25-06:45 551(337//211) 05:30-06:50 // 07:00-08:20 541(337//211) 05:30-06:50 // 07:00-08:20 537(334//210) Lab manual not required. See instructor for more information on laboratories. Mr. Ramirez s Physics Lab Updates will be posted in the Physics Department web page http://physics.tamu.edu/students/lab/index.shtml In the lab, you will be provided with lab safety information and rules. It is imperative that the safety rules be followed by all students in the lab. Disobeying the safety rules can result in expulsion from the lab. ver1