One-dimensional kinematics

Similar documents
One-dimensional kinematics

PHY121 Formula Sheet

Rotary motion

PHY126 Summer Session I, 2008

COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER /2017

Review. Physics 231 fall 2007

Dynamics of Rigid Bodies

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it

Capítulo. Three Dimensions

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1

Scalars and Vectors Scalar

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Kinematics of Rigid Bodies in Three Dimensions. Seventh Edition CHAPTER

Physics 1: Mechanics

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles

Physics 111 Lecture 11

Rigid Bodies: Equivalent Systems of Forces

10/23/2003 PHY Lecture 14R 1

Chapter 10 and elements of 11, 12 Rotation of Rigid Bodies

Physics 207 Lecture 16

Study Guide For Exam Two

Physics 2A Chapter 11 - Universal Gravitation Fall 2017

a v2 r a' (4v) 2 16 v2 mg mg (2.4kg)(9.8m / s 2 ) 23.52N 23.52N N

Physics 1501 Lecture 19

Chapter 8. Linear Momentum, Impulse, and Collisions

Description Linear Angular position x displacement x rate of change of position v x x v average rate of change of position

Chapter 13 - Universal Gravitation

Exam 3: Equation Summary

24-2: Electric Potential Energy. 24-1: What is physics

Review of Vector Algebra and Vector Calculus Operations

From Newton to Einstein. Mid-Term Test, 12a.m. Thur. 13 th Nov Duration: 50 minutes. There are 20 marks in Section A and 30 in Section B.

Energy in Closed Systems

Chapter 5 Circular Motion

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems

Physics 201 Lecture 4

LINEAR MOMENTUM. product of the mass m and the velocity v r of an object r r

10/15/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101

Problem While being compressed, A) What is the work done on it by gravity? B) What is the work done on it by the spring force?

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

Physics 201 Lecture 18

Remember: When an object falls due to gravity its potential energy decreases.

Exam 3: Equation Summary

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

Mark answers in spaces on the answer sheet

Chapter 3 and Chapter 4

Part V: Velocity and Acceleration Analysis of Mechanisms

PHYS Week 5. Reading Journals today from tables. WebAssign due Wed nite

Kepler's 1 st Law by Newton

Chapter 1: Mathematical Concepts and Vectors

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?

CSU ATS601 Fall Other reading: Vallis 2.1, 2.2; Marshall and Plumb Ch. 6; Holton Ch. 2; Schubert Ch r or v i = v r + r (3.

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41.

RE 6.d Electric and Rest Energy RE 6.e EP6, HW6: Ch 6 Pr s 58, 59, 91, 99(a-c), 105(a-c)

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?

Spring 2002 Lecture #13

7/1/2008. Adhi Harmoko S. a c = v 2 /r. F c = m x a c = m x v 2 /r. Ontang Anting Moment of Inertia. Energy

( ) ( ) Review of Force. Review of Force. r = =... Example 1. What is the dot product for F r. Solution: Example 2 ( )

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum

1. Starting with the local version of the first law of thermodynamics q. derive the statement of the first law of thermodynamics for a control volume

Fundamental principles

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

Course Outline. 1. MATLAB tutorial 2. Motion of systems that can be idealized as particles

Chapter 13: Gravitation

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

Force of gravity and its potential function

TEST-03 TOPIC: MAGNETISM AND MAGNETIC EFFECT OF CURRENT Q.1 Find the magnetic field intensity due to a thin wire carrying current I in the Fig.

Rigid body simulation

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Principles of Physics I

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block?

PHYS 1443 Section 003 Lecture #17

b) (5) What average force magnitude was applied by the students working together?

gravity r2,1 r2 r1 by m 2,1

PHYSICS 231 Review problems for midterm 2

Dynamics of Rotational Motion

F 12. = G m m 1 2 F 21 = F 12. = G m 1m 2. Review. Physics 201, Lecture 22. Newton s Law Of Universal Gravitation

Physics 202, Lecture 2. Announcements

10/9/2003 PHY Lecture 11 1

Chapter 3. r r. Position, Velocity, and Acceleration Revisited

Mechanics Physics 151

Week 9 Chapter 10 Section 1-5

Chapter 12 Equilibrium and Elasticity

Central Force Motion

Chapter 23: Electric Potential

Gravitation. Chapter 12. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Chapter 07: Kinetic Energy and Work

Physics 207 Lecture 13. Lecture 13

Chapter 13 Gravitation

Lesson 8: Work, Energy, Power (Sections ) Chapter 6 Conservation of Energy

Central Force Problem. Central Force Motion. Two Body Problem: Center of Mass Coordinates. Reduction of Two Body Problem 8.01 W14D1. + m 2. m 2.

3.1 Electrostatic Potential Energy and Potential Difference

PHYS 1443 Section 002

ω = θ θ o = θ θ = s r v = rω

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

UNIVERSITÀ DI PISA. Math thbackground

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces.

Transcription:

Phscs 45 Fomula Sheet Eam 3 One-dmensonal knematcs Vectos dsplacement: Δ total dstance taveled aveage speed total tme Δ aveage veloct: vav t t Δ nstantaneous veloct: v lm Δ t v aveage acceleaton: aav t d v t dv d nstantaneous acceleaton: a lm One-dmensonal moton wth constant acceleaton: () v v + at () + ( v + v)t (3) + v t + at v v + a (4) ( ) Fee all (postve decton o taken to be upwad) and a g n the above 4 equatons o knematcs: () v v gt () + ( v + v)t (3) + v t gt v v g (4) ( ) Vectos n -D I a vecto A s wtten n component om as A A ˆ + A ˆ A, A then: Gettng magntude and decton o A om the components: A A + A (magntude o A ) A θ actan (decton o A ) A

Fomula Sheet Eam 3 Page Gettng components om magntude and decton: A A cosθ ( component o A ) A snθ ( component o A θ undestood to be the angle that ) } A makes wth the postve as A Vectos n 3-D I A A ˆ + A ˆ + A ˆ A, A, A then: A A + A + A -D Knematcs poston vecto: () t () t ˆ + ( t) ˆ ( t), ( t) Δ Δ Δ aveage veloct: v av, d d d nstantaneous veloct: v, aveage acceleaton: aav, nstantaneous acceleaton: dv dv dv a, d d d a, nstantaneous speed v (magntude o the nstantaneous veloct) 3-D knematcs poston vecto: () t () t ˆ + ( t) ˆ + ( t) ˆ ( t), ( t), ( t) Δ Δ Δ Δ aveage veloct: v av,, d d d d nstantaneous veloct: v,, aveage acceleaton: aav,, nstantaneous acceleaton: dv dv dv dv a,, d d d d a,, nstantaneous speed v (magntude o the nstantaneous veloct)

Fomula Sheet Eam 3 Page 3 Pojectle Moton decton (moton wth constant veloct): a v v + v t decton (ee all... postve decton o taken to be upwad): () v v gt () + ( v + v) t (3) + vt gt v v g Relatve Moton (4) ( ) vpa vpb + vba Newton s Laws o Moton Two boad categoes o oces: contact oces (objects n contact wth one anothe) and eld oces (objects not n contact wth one anothe). Gavt s the onl eld oce we wll deal wth n ths couse. Weght: w mg st law: v s constant unless object (o sstem) epeences net etenal oce. nd law : F ma mples thee statements, n geneal: F ma, F ma, and F ma *o sstems o objects, F m a et ss ss 3 d law: Wheneve one object eets a oce on a second object, the second eets a oce on the st; these two oces ae equal n magntude and opposte n decton: F F Equlbum An object s sad to be n equlbum (eall n tanslatonal equlbum) : F a *eall mples thee sepaate equements o tanslatonal equlbum: ) F a ) F a 3) F a Fcton oces s μs k μk n n

Fomula Sheet Eam 3 Page 4 Ccula Moton nd law (centpetal decton): ( F ) maad Radal (centpetal) acceleaton: a ad ad v a I thee s a tangental acceleaton a also, then: dv a Dot Poduct (Scala Poduct) Fo an two vectos A A, A, A A B AB cosθ, n whch: and B B, B, B : A A + A + A Wok B B + B + B Altenatve (equvalent) denton o dot poduct: A B A B + A B + A B Wok Vaable Foces: W F d (geneal denton o wok) I F has onl an component and ths component depends on, then: W F( ) d Constant Foces: W F Δ (-D o 3-D path) W FΔ (-D path) Spngs Hooke s law: F k. k the spng constant o the oce constant. Potental eneg stoed n a spng (elastc potental eneg): Wok-Eneg Theoem ΔK W net Uel k Knetc eneg: K mv Powe Instantaneous Powe:

Fomula Sheet Eam 3 Page 5 de Geneal Denton: Rate at whch eneg beng suppled b o to a sstem: P I eneg comes om wok beng done, then the powe s the ate at whch wok s done: dw P P F v (altenatve denton) Aveage Powe: ΔE ΔW Pav Consevatve Foces, Potental Eneg, and Consevaton o Eneg Consevatve Foces: Wok done b a consevatve oce: W c ΔU, o some potental eneg U Wok done s ndependent o path. Wok done gong once aound closed path s eo. Potental Eneg: Gavtatonal potental eneg (nea suace o Eath): U gav mg Elastc Potental Eneg: Uel Total mechancal eneg: E K + U Nonconsevatve Foces: Wnc Δ E I W nc, E conseved. Foce and Potental Eneg F F du d du d du F d Lnea Momentum Lnea momentum: k p mv p mv p mv p mv dp Δp Fnet Fnet av Δ t Newton s second law: ( ) net F s net (etenal) oce ( Fnet F ) Impulse Vang oce: t J F t Constant oce: J F (geneal denton o mpulse)

Fomula Sheet Eam 3 Page 6 Impulse-momentum theoem: Jnet Δp, n whch: Collsons t Jnet Fnet (vang oce) o Jnet Fnet (constant oce) t Two boad categoes: head-on and glancng Fo each catego, thee classes:. elastc: p and K conseved. nelastc: p conseved, K not 3. completel nelastc: p conseved, K not, objects stck togethe Head-on collsons:. elastc: v + m v m v m v (p-consevaton) m + v v v + v + ( othe eq deved n class). nelastc: m v + mv mv + mv (p-consevaton) 3. completel nelastc: v + m v m m v (p-consevaton) Glancng (-D) collsons: p p p p ( ) m + Cente o Mass and Sstems o Patcles m + m+ + mnn m + m+ + mnn X CM m+ m + + mn Mtot m + m + + mnn m + m + + mnn YCM m+ m + + mn Mtot nd law o sstem: dp ( F ), n whch P mv + mv+ + mnvn s total momentum o sstem. et P MtotvCM I mass o sstem s constant, then: ( F ) MtotaCM Rotatonal Knematcs et s angle θ n adans: θ (s length o ac swept out) angula dsplacement: Δ θ θ θ Δθ θ θ aveage angula veloct: ω av t t dθ nstantaneous angula veloct: ω Δω ω aveage angula acceleaton: α av Δ t t ω t

Fomula Sheet Eam 3 Page 7 nstantaneous angula acceleaton: dω d θ α *θ undestood to be n adans n all o the above Rotatonal moton wth constant angula acceleaton: () ω ω + α t () θ θ + ( ω + ω )t (3) θ θ + ω t + α t ω ω + α θ θ (4) ( ) Rotatonal and Lnea Quanttes tan tan v v ω a a α Radal (centpetal) acceleaton: a a ω ad Rollng Wthout Slppng vcm Rω ( v tanslatonal speed o cente o mass o ollng object) Rotatonal Knetc Eneg and Moment o Ineta Geneal Fomula o Moment o Ineta: I dm Moment o Ineta o Collecton o N Pont Masses: m Moments o Ineta o Dstbuted Objects: N I Rotatonal Knetc Eneg: K ot Iω Total Knetc Eneg: K total K tans + K ot MvCM + I CM ω

Fomula Sheet Eam 3 Page 8 (Note: Hee v CM s the tanslatonal veloct o the cente o mass and I CM s the moment o neta about the cente o mass.) Paallel-as Theoem I I + Md P CM Pependcula-as Theoem I I + I Coss Poduct (Vecto Poduct) A B ( A ) ˆ ( ) ˆ B AB + AB AB + ( AB AB) ˆ A B ABsnφ Toque and Angula Acceleaton Toque: τ F τ F Relaton Between Toque and Angula Acceleaton (Newton s Second Law o Rotatonal Moton): τ I α Angula Momentum net Fo pont patcle: L p. Fo gd bod otatng about a ed smmet as: L Iω. dl Newton s Second Law o Rotatonal Moton: τ net. (Note hee that τ net s the net etenal toque.) Equlbum Thee condtons equed o tue equlbum (tanslatonal and otatonal equlbum):. F (.e., a ). F (.e., a ) 3. τ o an as (.e., α about an as) net Gavt mm Fgav G (Newton s law o unvesal gavtaton) N m G 6.67 (gavtatonal constant) kg g GM (acceleaton due to gavt above planet, moon, etc., o mass M)

Fomula Sheet Eam 3 Page 9 mm U G (gavtatonal potental eneg o an two masses m and m ) gav GM vesc (escape speed) R Smple Hamonc Moton (SHM) Relatonshps among equenc, angula equenc and peod o snusods: T ω π π T ω Mass on Spng Acos ωt+ φ (most geneal om o dsplacement as a uncton o tme) ( ) ω k m m T π k v A + ω v φ tan ω Smple Pendulum L T π g Phscal Pendulum T π I mgd Sola Sstem Data adus o Eath: adus o Moon: mass o Eath: mass o Moon: mass o Sun: R 6.37 m E R.74 m M 6 6 4 M 5.97 kg E 7.35 kg 3. kg Eath-Moon dstance (cente-to-cente): 3.84 m Eath-Sun dstance (cente-to-cente):.5 m 8