(r) 2.0 E N 1.0

Similar documents
Quantum impurities in a bosonic bath

Numerical renormalization group method for quantum impurity systems

Entanglement spectra in the NRG

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach

Numerical renormalization group method for quantum impurity systems

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu

Serge Florens. ITKM - Karlsruhe. with: Lars Fritz and Matthias Vojta

Phase Diagram of the Multi-Orbital Hubbard Model

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund

arxiv: v2 [cond-mat.str-el] 3 Sep 2012

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

Solution of the Anderson impurity model via the functional renormalization group

PHYSIK-DEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN. The Kondo exciton: non-equilibrium dynamics after a quantum quench in the Anderson impurity model

Transport Coefficients of the Anderson Model via the numerical renormalization group

Effet Kondo dans les nanostructures: Morceaux choisis

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor

Numerical Renormalization Group for Quantum Impurities 1

The bosonic Kondo effect:

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Part III: Impurities in Luttinger liquids

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

Numerical renormalization group and multi-orbital Kondo physics

Coulomb-Blockade and Quantum Critical Points in Quantum Dots

Increasing localization

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Orbital order and Hund's rule frustration in Kondo lattices

arxiv: v2 [cond-mat.str-el] 13 Apr 2018

Fate of the Kondo impurity in a superconducting medium

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling

5 Numerical renormalization group and multiorbital

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID

Finite-frequency Matsubara FRG for the SIAM

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram

Kondo satellites in photoemission spectra of heavy fermion compounds

Dr. Andrew K. Mitchell

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

An efficient impurity-solver for the dynamical mean field theory algorithm

Local moment approach to multi-orbital Anderson and Hubbard models

CFT approach to multi-channel SU(N) Kondo effect

Open and Reduced Wilson Chains for Quantum Impurity Models

Quantum magnetism and the theory of strongly correlated electrons

Advanced Computation for Complex Materials

Quantum phase transitions

arxiv: v1 [cond-mat.str-el] 20 Mar 2008

Matrix product state calculations for one-dimensional quantum chains and quantum impurity models

Can electron pairing promote the Kondo state?

SSH Model. Alessandro David. November 3, 2016

Entanglement in Many-Body Fermion Systems

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

"From a theoretical tool to the lab"

Numerical Renormalization Group studies of Correlation effects in Phase Coherent Transport through Quantum Dots. Theresa Hecht

Intermediate valence in Yb Intermetallic compounds

A theoretical study of the single-molecule transistor

Physics 607 Final Exam

Solutions Final exam 633

Present and future prospects of the (functional) renormalization group

Topological Kondo Insulators!

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES

Curriculum Vitae. Ning-Hua Tong

Luigi Paolasini

Exotic phases of the Kondo lattice, and holography

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Quantum quenches in 2D with chain array matrix product states

2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview

Time Independent Perturbation Theory Contd.

Quantum phase transitions and the Luttinger theorem.

Introduction to DMFT

Two-channel Kondo physics in odd impurity chains

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

Cluster Extensions to the Dynamical Mean-Field Theory

Kondo Effect in Nanostructures

Stability of semi-metals : (partial) classification of semi-metals

Loop optimization for tensor network renormalization

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Numerical renormalization group calculations for Kondo-type models of spin clusters on a nonmagnetic metallic substrate

The density matrix renormalization group and tensor network methods

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction

Many-Body Localization. Geoffrey Ji

Lecture 6. Fermion Pairing. WS2010/11: Introduction to Nuclear and Particle Physics

Introductory lecture on topological insulators. Reza Asgari

Metals without quasiparticles

Quantum Transport through Coulomb-Blockade Systems

QUALIFYING EXAMINATION, Part 1. 2:00 PM 5:00 PM, Thursday September 3, 2009

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

1 Wilson s Numerical Renormalization Group

The nature of superfluidity in the cold atomic unitary Fermi gas

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model

Disordered topological insulators with time-reversal symmetry: Z 2 invariants

Quantum critical Kondo destruction in the Bose-Fermi Kondo model with a local transverse field

w2dynamics : operation and applications

7.4. Why we have two different types of materials: conductors and insulators?

3. Quantum matter without quasiparticles

16 Dynamical Mean-Field Approximation and Cluster Methods for Correlated Electron Systems

Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method

Transcription:

The Numerical Renormalization Group Ralf Bulla Institut für Theoretische Physik Universität zu Köln 4.0 3.0 Q=0, S=1/2 Q=1, S=0 Q=1, S=1 E N 2.0 1.0 Contents 1. introduction to basic rg concepts 2. introduction to quantum impurity physics 0.0 0 20 40 60 80 N 3. the Numerical Renormalization Group application to the single-impurity Anderson model 4. fixed points in quantum impurity models 5. summary 624th Wilhelm und Else Heraeus-Seminar, Simulating Quantum Processes and Devices Physikzentrum Bad Honnef, September 21, 26

1. introduction to basic rg concepts consider a model on a one-dimensional lattice, with operators a i (i: lattice site), parameters J, h,..., and Hamiltonian H(J, h,...). i=1 2 3 4 5 6... J J J J J a 1 a 2 a 3 a 4 a 5 a... 6 h h h h h h combine two sites to give (effectively) one site with operators a i and parameters J, h,.... J J... a 1 a a... 2 3 h h h we assume that the Hamiltonian H of the effective model is of the same form, with renormalized parameters: H = H(J, h,...). then rescale the model to the original lattice spacing:... J J a a... 1 2 a 3... h h h

the mapping H H is a renormalization group transformation H(J, h,...) = R{H(J, h,...)} with K = (J, h,...): R( K ) = K h now consider a sequence of transformations: K K... R K K R K K this results in a trajectory in parameter space: J flow diagrams and fixed points h stable fixed point h unstable fixed point K * R( K ) = K K* J all perturbations are irrelevant J at least one relevant perturbation

the central issue: How does the behaviour of the system change under a scale transformation? the physics of the problem described as a flow between fixed points. A B S: starting point C identify the fixed points of the model (and their physical meaning) identify the relevant/irrelevant perturbations if possible: describe the full flow from S to C and finally: calculate physical properties

some technical issues: how to perform the mapping H H for a given model? Ising model:(1d) in the partition function Z, sum over every second spin but: the whole strategy depends on the details of the model spins/fermions/bosons dimension, lattice structure, etc. = for a given model, it is a priori not clear whether a successful rg scheme can be developed at all in the following: (numerical) renormalization group for quantum impurity models Wilson s NRG for the single-impurity Anderson model interpretation of fixed points and flow diagrams

2. introduction to quantum impurity physics the Kondo effect: magnetic impurities in metals T -dependence of resistivity ρ metal 0 T

2. introduction to quantum impurity physics the Kondo effect: magnetic impurities in metals T -dependence of resistivity scattering processes of conduction electrons at magnetic impurities ρ c V U V c f f f metal 0 T

2. introduction to quantum impurity physics the Kondo effect: magnetic impurities in metals T -dependence of resistivity scattering processes of conduction electrons at magnetic impurities ρ c V U V c T K metal f f f screening of magnetic moments due to singlet formation 0 T 1 ( ) f c f c 2

modelling of magnetic impurities in metals here: single-impurity Anderson model [A.C. Hewson, The Kondo Problem To Heavy Fermions, CUP 1993] H = ε f f σf σ + Uf f f f σ + ε k c kσ c kσ + V kσ kσ ( f σ c kσ + c kσ fσ ) the model describes: formation of local moments: f, f scattering of conduction electrons screening of local moments below temperature scale T K

3. the numerical renormalization group K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975) Kondo problem review: R. Bulla, T. Costi, and Th. Pruschke, Rev. Mod. Phys. 80, 395 (2008) (ω) conduction band 1 0 1 ω impurity

0 E N V Λ 1 3 Λ 3 Λ 2 Λ 1 ε 0 ε 0 1/2 Λ E N E N+1 N ε N ε N ε N+1 after truncation (ω) 2... ω Λ 1 1 Λ (ω) 1. NRG-discretization parameter Λ > 1 (ω) 1 1 ω ε0 ε1 ε2 ε3 V t 0 t 1 t 2 1 Λ 1 Λ 2 Λ 3... Λ 3 Λ 2 Λ 1 1 ω H N : ε0 ε V t 0 t N 1 t 0 t N 1 r,s N+1 : r N s (N+1) H N+1: V t 0 t N 1 t N a) b) c) d)

0 E N V Λ 1 3 Λ 3 Λ 2 Λ 1 ε 0 ε 0 1/2 Λ E N E N+1 N ε N ε N ε N+1 after truncation (ω) 2... ω Λ 1 1 Λ 2. logarithmic discretization (ω) (ω) 1 1 ω ε0 ε1 ε2 ε3 V t 0 t 1 t 2 1 1 ω H N : ε0 ε V t 0 t N 1 t 0 t N 1 r,s N+1 : r N s (N+1) H N+1: V t 0 t N 1 t N a) b) c) d)

0 E N V Λ 1 3 Λ 3 Λ 2 Λ 1 ε 0 ε 0 1/2 Λ E N E N+1 N ε N ε N ε N+1 after truncation (ω) 2... ω Λ 1 1 Λ 3. mapping on semi-infinite chain (ω) 1 1 ω ε ε ε ε 0 1 2 3 ε0 ε1 ε2 ε3 V t 0 t 1 t 2 V t 0 t 1 t 2 H N : ε0 ε V t 0 t N 1 t 0 t N 1 r,s N+1 : r N s (N+1) H N+1: V t 0 t N 1 t N a) b) c) d)

0 E N V Λ 1 3 Λ 3 Λ 2 Λ 1 ε 0 1/2 Λ E N E N+1 N ε N after truncation (ω) 2... ω Λ 1 1 Λ 4. iterative diagonalization (ω) ε 0 εn 1 1 ω H : N V t 0 t N 1 ε 0 ε N ε0 ε1 ε2 ε3 V t 0 t 1 t 2 V t 0 t N 1 H N : ε0 ε V t 0 t N 1 r,s N+1 : r N s (N+1) t 0 t N 1 r,s N+1 : r N s (N+1) ε 0 ε N ε N+1 ε 0 ε N ε N+1 H N+1: V t 0 t N 1 t N a) b) c) d) H N+1 : V t 0 t N 1 t N

0 E N V Λ 1 3 Λ 3 Λ 2 Λ 1 ε 0 1/2 Λ E N E N+1 N ε N after truncation (ω) 2... ω Λ 1 1 Λ 5. truncation (ω) a) E N b) c) d) 1/2 Λ E N E N+1 after truncation 1 1 ω ε ε ε ε V t 0 t 1 t 2 H N : ε0 ε V t 0 t N 1 t 0 t N 1 r,s : r s (N+1) N+1 N ε 0 ε N ε N+1 H N+1: V t 0 t N 1 t N 0 a) b) c) d)

logarithmic discretization starting point: siam in the integral representation: H imp = σ H bath = σ H imp bath = σ ε f f σf σ + Uf f f f, 1 1 1 1 dε g(ε)a εσa εσ, ) dε h(ε) (f σa εσ + a εσf σ. Λ > 1 defines a set of intervals with discretization points ± x n = Λ n, n = 0, 1, 2,.... 1 Λ 1 Λ 2 Λ 3... Λ 3 Λ 2 Λ 1 1 ε

width of the intervals: d n = Λ n (1 Λ 1 ) within each interval: introduce a complete set of orthonormal functions { ψ np(ε) ± 1 = dn e ±iωnpε for x n+1 < ±ε < x n 0 outside this interval. expand the conduction electron operators a εσ in this basis a εσ = [ ] a npσψ np(ε) + + b npσψnp(ε), np assumption: h(ε) = h ± n, x n+1 < ±ε < x n, the hybridization term then takes the form: 1 1 dε h(ε)f σa εσ = 1 π f σ [ γ + n a n0σ + γn ] b n0σ the impurity couples only to the p = 0 components of the conduction band states! n

the conduction electron term transforms to: 1 (ξ + n a npσa npσ + ξ n b npσb npσ ) dε g(ε)a εσa εσ = 1 np + n,p p ( α + n (p, p )a npσa np σ α n (p, p )b npσb np σ ). For a linear dispersion, g(ε) = ε, one obtains: α ± n (p, p ) = 1 Λ 1 2πi ξ ± n = ± 1 2 Λ n (1 + Λ 1 ), Λ n p p exp [ 2πi(p p) 1 Λ 1 ].

structure of the Hamiltonian p.................. 3 b 02 σ 2 1 α (p,p ) 0 n=0 1 2...... 2 1 0 ε impurity couples to p=0 only discretization of the Hamiltonian: drop the terms with p 0 in the conduction band

now: relabel the operators a n0σ a nσ, etc., the discretized Hamiltonian takes the form: [ξ + n a nσa nσ + ξ n b nσb nσ ] H = H imp + nσ [ 1 ( + γ + n a nσ + γ ) ] n b nσ π + σ 1 π σ f σ [ n n ( γ + n a nσ + γ n b nσ) ] f σ (ω) 1 1 ω

mapping on a semi-infinite chain orthogonal transformation of the operators {a nσ, b nσ} to a new set of operators {c nσ} such that the discretized Hamiltonian takes the form: H = H imp + V σ [f σc 0σ + c 0σ fσ ] + )] [ε nc nσc nσ + t n (c nσc n+1σ + c n+1σ cnσ σn=0 ε ε ε ε 0 1 2 3 V t 0 t 1 t 2 the mapping is equivalent to the tridiagonalization of a matrix

for a constant density of states ( ) ( 1 + Λ 1 1 Λ n 1) t n = 2 1 Λ 2n 1 1 Λ 2n 3 Λ n/2. In the limit of large n this reduces to t n 1 2 ( 1 + Λ 1) Λ n/2. this means: in moving along the chain we start from high energies (U, V, D) and go to arbitrary low energies high energies renormalization group low energies in real space: double the system size by adding two sites to the chain (for Λ = 2)

iterative diagonalization the chain Hamiltonian can be viewed as a series of Hamiltonians H N (N = 0, 1, 2,...) which approaches H in the limit N : H = lim N Λ (N 1)/2 H N, with + H N = Λ (N 1)/2 [H imp + N ε nc nσc nσ + σn=0 N 1 σn=0 ξ0 π ) (f σc 0σ + c 0σ fσ σ t n (c nσc n+1σ + c n+1σ cnσ ) ]. two successive Hamiltonians are related by H N+1 = ΛH N + Λ N/2 σ +Λ N/2 σ ε N+1 c N+1σ c N+1σ t N (c Nσ c N+1σ + c N+1σ c Nσ ),

starting point: H 0 = Λ 1/2 [ H imp + σ ε 0 c 0σ c 0σ + ξ0 π σ ( f σc 0σ + c 0σ fσ ) ]. renormalization group transformation: H N+1 = R (H N ) H N : ε 0 εn V t 0 t N 1 ε 0 ε N V t 0 t N 1 r,s N+1 : r N s (N+1) ε 0 ε N ε N+1 H N+1 : V t 0 t N 1 t N

set up an iterative scheme for the diagonalization of H N construct a basis for H N+1 r; s N+1 = r N s(n + 1). diagonalization: new eigenenergies E N+1 (w) and eigenstates w N+1 truncation: a) E N b) c) d) 1/2 Λ E N E N+1 after truncation 0

renormalization group flow and fixed points plot the rescaled many-particle energies E N as a function of N (odd N only) fixed points of the single-impurity Anderson model 4.0 3.0 NRG flow diagram Q=0, S=1/2 Q=1, S=0 Q=1, S=1 FO: free orbital LM: local moment SC: strong coupling E N 2.0 1.0 0.0 0 20 40 60 80 N parameters: ε f = 0.5 10 3, U = 10 3, V = 0.004, and Λ = 2.5

renormalization group flow and fixed points plot the rescaled many-particle energies E N as a function of N (odd N only) fixed points of the single-impurity Anderson model FO: free orbital LM: local moment SC: strong coupling E N NRG flow diagram 4.0 Q=0, S=1/2 Q=1, S=0 3.0 Q=1, S=1 2.0 FO LM SC 1.0 0.0 0 20 40 60 80 N parameters: ε f = 0.5 10 3, U = 10 3, V = 0.004, and Λ = 2.5

4. fixed points in quantum impurity models quantum impurity models show a variety of different fixed points here: quantum critical point in the soft-gap Anderson model single-impurity Anderson model with hybridization function (ω) = ω r interacting fixed point (ω) 1.0 0.5 r=0.5 r=1.0 r=2.0 0.0-1.0 0.0 1.0 ω non-fermi liquid fixed point in the two-channel Kondo model J J Majorana fermions

soft-gap Anderson model phase diagram flow diagrams 0.06 < c = c > c b 3.0 local moment quantum critical strong coupling a b c 0.04 SC 2.0 0.02 symmetric case asymmetric case LM Λ N/2 E N 1.0 0.00 0.00 0.25 0.50 0.75 r quantum phase transition between SC and LM phases 0.0 0 50 100 N 0 50 100 N 0 50 100 N non-trivial structure of the qcp [H.-J. Lee, R. Bulla, M. Vojta J. Phys.: Condens. Matter 17, 6935 (2005)]

two-channel Kondo model J J H = kσ ε k c kσα c kσα + J α α S s α non-fermi liquid fixed point with residual impurity entropy S imp = 1 2 ln 2 2.5 NRG flow diagram characteristic structure of the non-fermi liquid fixed point E N 2 1.5 1 0.5 0 0 10 20 30 40 50 60 N

structure of the fixed point E two sectors of excitations degeneracies 9/8 1... 32 26... 26... 32 5/8 1/2 12 10 10 12 1/8 0 4 2 2 4 sector I sector II the many-particle spectra of each sector can be constructed from single-particle spectra of Majorana fermions

single-particle spectra E sector I E sector II 5/2 5/2 2 2 3/2 3/2 1 1 1/2 1/2 0 0 [R. Bulla, A.C. Hewson, G.-M. Zhang, Phys. Rev. B 56, 11721 (1997)]

where does this structure come from? vector and scalar Majorana fermion chains with different boundary conditions impurity conduction electrons 0 1 2 3 4 vector scalar from the numerical analysis of the two-channel Anderson model we obtain emergent fractionalized degrees of freedom (Majorana fermions) at the low-energy fixed point!

5. summary in this talk: a short introduction to the renormalization group concept quantum impurity physics the NRG method focus on: flow diagrams and fixed point I did not discuss: how to calculate physical properties all the recent developments which considerably extended the power of the NRG method; see the work of F. Anders, Th. Costi, J. von Delft, A. Mitchell, A. Weichselbaum,... relation to other renormalization group methods DMRG frg