Chapter 16: Star Birth

Similar documents
Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc.

Star-Forming Clouds. Stars form in dark clouds of dusty gas in interstellar space. The gas between the stars is called the interstellar medium.

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc.

Chapter 15 Star Birth. Star-Forming Clouds. Stars form in dark clouds of dusty gas in interstellar space

10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure

The Life and Death of Stars

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

Stellar Birth. Stellar Formation. A. Interstellar Clouds. 1b. What is the stuff. Astrophysics: Stellar Evolution. A. Interstellar Clouds (Nebulae)

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)?

Energy. mosquito lands on your arm = 1 erg. Firecracker = 5 x 10 9 ergs. 1 stick of dynamite = 2 x ergs. 1 ton of TNT = 4 x ergs

Chapter 9. The Formation and Structure of Stars

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy

Chapter 12: The Lives of Stars. How do we know it s there? Three Kinds of Nebulae 11/7/11. 1) Emission Nebulae 2) Reflection Nebulae 3) Dark Nebulae

AST 101 Introduction to Astronomy: Stars & Galaxies

Chapter 19: Our Galaxy

Physics Homework Set 2 Sp 2015

THE INTERSTELLAR MEDIUM

Astro 1050 Wed. Apr. 5, 2017

Star Formation. Stellar Birth

Chapter 11 Review. 1) Light from distant stars that must pass through dust arrives bluer than when it left its star. 1)

Things to do 2/28/17. Topics for Today. C-N-O Fusion Cycle. Main sequence (MS) stars. ASTR 1040: Stars & Galaxies

Remember from Stefan-Boltzmann that 4 2 4

Lecture 21 Formation of Stars November 15, 2017

Atoms and Star Formation

The Ecology of Stars

Guiding Questions. Stellar Evolution. Stars Evolve. Interstellar Medium and Nebulae

Stellar Astronomy Sample Questions for Exam 4

Astronomy 104: Second Exam

5) What spectral type of star that is still around formed longest ago? 5) A) F B) A C) M D) K E) O

Our goals for learning: 2014 Pearson Education, Inc. We see our galaxy edge-on. Primary features: disk, bulge, halo, globular clusters All-Sky View

Stars, Galaxies & the Universe Lecture Outline

Stellar Evolution: Outline

AST 101 INTRODUCTION TO ASTRONOMY SPRING MIDTERM EXAM 2 TEST VERSION 1 ANSWERS

Name Date Period. 10. convection zone 11. radiation zone 12. core

Spiral Density waves initiate star formation

Topics for Today s Class

Chapter 12 Star Stuff

Cosmic Evolution, Part II. Heavy Elements to Molecules

The Interstellar Medium. Papillon Nebula. Neutral Hydrogen Clouds. Interstellar Gas. The remaining 1% exists as interstellar grains or

Review Questions for the new topics that will be on the Final Exam

Recall what you know about the Big Bang.

Mid term. Highest score without bonuses: 98 % (Alex) Re- +2 Astro- jeopardy: Final à Mean/Median: 80

The Formation of Stars

1 The Life Cycle of a Star

Stars & Galaxies. Chapter 27 Modern Earth Science

Chapter 10 The Interstellar Medium

Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars

Exam #2 Review Sheet. Part #1 Clicker Questions

Astr 2310 Thurs. March 23, 2017 Today s Topics

Chapter 21 Galaxy Evolution. How do we observe the life histories of galaxies?

Astronomy 104: Stellar Astronomy

Chapter 14: The Bizarre Stellar Graveyard

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

NSCI 314 LIFE IN THE COSMOS

Chapters 12 and 13 Review: The Life Cycle and Death of Stars. How are stars born, and how do they die? 4/1/2009 Habbal Astro Lecture 27 1

Edwin Hubble Discovered galaxies other than the milky way. Galaxy:

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants

Cosmic Evolution, Part II. Heavy Elements to Molecules

Beyond the Solar System 2006 Oct 17 Page 1 of 5

LIFE CYCLE OF A STAR

14.1 A Closer Look at the Sun

the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes

Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere.

Chapter 33 The History of a Star. Introduction. Radio telescopes allow us to look into the center of the galaxy. The milky way

A Star Becomes a Star

25/11/ Cosmological Red Shift:

17.1 Lives in the Balance. Our goals for learning: How does a star's mass affect nuclear fusion?

Astro 1050 Fri. Apr. 10, 2015

Chapter 18 Lecture. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc.

1 A Solar System Is Born

Chapter 28 Stars and Their Characteristics

Chapter 11 The Formation and Structure of Stars

What is a star? A body of gases that gives off tremendous amounts of energy in the form of light & heat. What star is closest to the earth?

The Bizarre Stellar Graveyard

Earth Science, 13e Tarbuck & Lutgens

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10

LIFE CYCLE OF A STAR

10/29/2009. The Lives And Deaths of Stars. My Office Hours: Tuesday 3:30 PM - 4:30 PM 206 Keen Building. Stellar Evolution

Daily Science 03/30/2017

Announcements. L! m 3.5 BRIGHT FAINT. Mass Luminosity Relation: Why? Homework#3 will be handed out at the end of this lecture.

Chapter 18 The Bizarre Stellar Graveyard. White Dwarfs. What is a white dwarf? Size of a White Dwarf White Dwarfs

Today. When does a star leave the main sequence?

The Electromagnetic Spectrum

Chapter 17 Lecture. The Cosmic Perspective Seventh Edition. Star Stuff Pearson Education, Inc.

Stellar evolution Part I of III Star formation

Comparing a Supergiant to the Sun

LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night

Galaxies and the Universe. Our Galaxy - The Milky Way The Interstellar Medium

Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE

Gravitational collapse of gas

The Milky Way Galaxy and Interstellar Medium

Stars and Galaxies 1

HR Diagram, Star Clusters, and Stellar Evolution

White dwarfs are the remaining cores of dead stars. Electron degeneracy pressure supports them against the crush of gravity. The White Dwarf Limit

Astronomy 1 Fall 2016

Beyond Our Solar System Chapter 24

The Interstellar Medium (ch. 18)

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar.

8/30/2010. Classifying Stars. Classifying Stars. Classifying Stars

Transcription:

Chapter 16 Lecture Chapter 16: Star Birth

Star Birth

16.1 Stellar Nurseries Our goals for learning: Where do stars form? Why do stars form?

Where do stars form?

Star-Forming Clouds Stars form in dark clouds of dusty gas in interstellar space. The gas between the stars is called the interstellar medium.

Composition of Clouds We can determine the composition of interstellar gas from its absorption lines in the spectra of stars. 70% H, 28% He, 2% heavier elements in our region of Milky Way

Molecular Clouds Most of the matter in star-forming clouds is in the form of molecules (H 2, CO, etc.). These molecular clouds have a temperature of 10 30 K and a density of about 300 molecules per cubic centimeter.

Molecular Clouds Most of what we know about molecular clouds comes from observing the emission lines of carbon monoxide (CO).

Interstellar Dust Tiny solid particles of interstellar dust block our view of stars on the other side of a cloud. Particles are < 1 micrometer in size and made of elements like C, O, Si, and Fe.

Interstellar Reddening Stars viewed through the edges of the cloud look redder because dust blocks (shorter-wavelength) blue light more effectively than (longer-wavelength) red light.

Interstellar Reddening Long-wavelength infrared light passes through a cloud more easily than visible light. Observations of infrared light reveal stars on the other side of the cloud.

Observing Newborn Stars Visible light from a newborn star is often trapped within the dark, dusty gas clouds where the star formed.

Observing Newborn Stars Observing the infrared light from a cloud can reveal the newborn star embedded inside it.

Glowing Dust Grains Dust grains that absorb visible light heat up and emit infrared light of even longer wavelength.

Glowing Dust Grains Long-wavelength infrared light is brightest from regions where many stars are currently forming.

Why do stars form?

Gravity versus Pressure Gravity can create stars only if it can overcome the force of thermal pressure in a cloud. Emission lines from molecules in a cloud can prevent a pressure buildup by converting thermal energy into infrared and radio photons.

Mass of a Star-Forming Cloud A typical molecular cloud (T~ 30 K, n ~ 300 particles/cm 3 ) must contain at least a few hundred solar masses for gravity to overcome pressure. Emission lines from molecules in a cloud can prevent a pressure buildup by converting thermal energy into infrared and radio photons that escape the cloud.

Resistance to Gravity A cloud must have even more mass to begin contracting if there are additional forces opposing gravity. Both magnetic fields and turbulent gas motions increase resistance to gravity.

Fragmentation of a Cloud Gravity within a contracting gas cloud becomes stronger as the gas becomes denser. Gravity can therefore overcome pressure in smaller pieces of the cloud, causing it to break apart into multiple fragments, each of which may go on to form a star.

Fragmentation of a Cloud A turbulent cloud containing 50 solar masses of gas

Fragmentation of a Cloud The random motions of different sections of the cloud cause it to become lumpy.

Fragmentation of a Cloud Each lump of the cloud in which gravity can overcome pressure can go on to become a star. A large cloud can make a whole cluster of stars.

Isolated Star Formation Gravity can overcome pressure in a relatively small cloud if the cloud is unusually dense. Such a cloud may make only a single star.

Thought Question What would happen to a contracting cloud fragment if it were not able to radiate away its thermal energy? A. It would continue contracting, but its temperature would not change. B. Its mass would increase. C. Its internal pressure would increase.

Thought Question What would happen to a contracting cloud fragment if it were not able to radiate away its thermal energy? A. It would continue contracting, but its temperature would not change. B. Its mass would increase. C. Its internal pressure would increase.

The First Stars Elements like carbon and oxygen had not yet been made when the first stars formed. Without CO molecules to provide cooling, the clouds that formed the first stars had to be considerably warmer than today's molecular clouds. The first stars must therefore have been more massive than most of today's stars for gravity to overcome pressure.

Simulation of the First Star Simulations of early star formation suggest the first molecular clouds never cooled below 100 K, making stars of ~100M Sun.

What have we learned? Where do stars form? Stars form in dark, dusty clouds of molecular gas with temperatures of 10 30 K. These clouds are made mostly of molecular hydrogen (H 2 ) but stay cool because of emission by carbon monoxide (CO). Why do stars form? Stars form in clouds that are massive enough for gravity to overcome thermal pressure (and any other forms of resistance). Such a cloud contracts and breaks up into pieces that go on to form stars.

16.2 Stages of Star Birth Our goals for learning: What slows the contraction of a starforming cloud? What is the role of rotation in star birth? How does nuclear fusion begin in a newborn star?

What slows the contraction of a starforming cloud?

Trapping of Thermal Energy As contraction packs the molecules and dust particles of a cloud fragment closer together, it becomes harder for infrared and radio photons to escape. Thermal energy then begins to build up inside, increasing the internal pressure. Contraction slows down, and the center of the cloud fragment becomes a protostar.

Growth of a Protostar Matter from the cloud continues to fall onto the protostar until either the protostar or a neighboring star blows the surrounding gas away.

What is the role of rotation in star birth?

Evidence from the Solar System The nebular theory of solar system formation illustrates the importance of rotation.

Conservation of Angular Momentum The rotation speed of the cloud from which a star forms increases as the cloud contracts.

Rotation of a contracting cloud speeds up for the same reason a skater speeds up as she pulls in her arms.

Flattening Collisions between particles in the cloud cause it to flatten into a disk.

Collisions between gas particles in cloud gradually reduce random motions. Collisions between gas particles also reduce up and down motions. The spinning cloud flattens as it shrinks.

Formation of Jets Rotation also causes jets of matter to shoot out along the rotation axis.

Jets are observed coming from the centers of disks around protostars.

The jets ram into interstellar gas, heating it and causing it to glow.

Thought Question What would happen to a protostar that formed without any rotation at all? A. Its jets would go in multiple directions. B. It would not easily form planets. C. It would be very bright in infrared light. D. It would not be round.

Thought Question What would happen to a protostar that formed without any rotation at all? A. Its jets would go in multiple directions. B. It would not easily form planets. C. It would be very bright in infrared light. D. It would not be round.

How does nuclear fusion begin in a newborn star?

From Protostar to Main Sequence A protostar looks starlike after the surrounding gas is blown away, but its thermal energy comes from gravitational contraction, not fusion. Contraction must continue until the core becomes hot enough for nuclear fusion. Contraction stops when the energy released by core fusion balances energy radiated from the surface the star is now a main-sequence star.

Birth Stages on a Life Track A life track illustrates a star's surface temperature and luminosity at different moments in time.

Assembly of a Protostar Luminosity and temperature grow as matter collects into a protostar.

Convective Contraction Surface temperature remains near 3000 K while convection is main energy transport mechanism.

Radiative Contraction Luminosity remains nearly constant during late stages of contraction, while radiation transports energy through star.

Self-Sustaining Fusion Core temperature continues to rise until star begins fusion and arrives on the main sequence.

Life Tracks for Different Masses Models show that Sun required about 30 million years to go from protostar to main sequence. Higher-mass stars form faster. Lower-mass stars form more slowly.

What have we learned? What slows the contraction of a star-forming cloud? The contraction of a cloud fragment slows when thermal pressure builds up because infrared and radio photons can no longer escape. What is the role of rotation in star birth? Conservation of angular momentum leads to the formation of disks around protostars.

What have we learned? How does nuclear fusion begin in a newborn star? Nuclear fusion begins when contraction causes the star's core to grow hot enough for fusion.

16.3 Masses of Newborn Stars Our goals for learning: What is the smallest mass a newborn star can have? What is the greatest mass a newborn star can have? What are the typical masses of newborn stars?

What is the smallest mass a newborn star can have?

Fusion and Contraction Fusion will not begin in a contracting cloud if some sort of force stops contraction before the core temperature rises above 10 7 K. Thermal pressure cannot stop contraction because the star is constantly losing thermal energy from its surface through radiation. Is there another form of pressure that can stop contraction?

Degeneracy Pressure: The laws of quantum mechanics prohibit two electrons from occupying the same state in same place.

Thermal Pressure: Depends on heat content. Is the main form of pressure in most stars. Degeneracy Pressure: Particles can't be in same state in same place. Doesn't depend on heat content.

Brown Dwarfs Degeneracy pressure halts the contraction of objects with < 0.08M Sun before core temperature becomes hot enough for fusion. Starlike objects not massive enough to start fusion are brown dwarfs.

Brown Dwarfs A brown dwarf emits infrared light because of heat left over from contraction. Its luminosity gradually declines with time as it loses thermal energy.

Brown Dwarfs in Orion Infrared observations can reveal recently formed brown dwarfs because they are still relatively warm and luminous.

What is the greatest mass a newborn star can have?

Radiation Pressure Photons exert a slight amount of pressure when they strike matter. Very massive stars are so luminous that the collective pressure of photons drives their matter into space.

Upper Limit on a Star's Mass Models of stars suggest that radiation pressure limits how massive a star can be without blowing itself apart. Maximum long thought to be around 150M Sun, but new observations indicate some may be even larger!

Luminosity Stars more massive than 150M Sun would blow apart. Stars less massive than 0.08M Sun can't sustain fusion. Temperature

What are the typical masses of newborn stars?

Demographics of Stars Observations of star clusters show that star formation makes many more low-mass stars than high-mass stars.

What have we learned? What is the smallest mass a newborn star can have? Degeneracy pressure stops the contraction of objects <0.08M Sun before fusion starts. What is the greatest mass a newborn star can have? Stars greater than about 150M Sun would be so luminous that radiation pressure would blow them apart. New observations may require raising this limit.

What have we learned? What are the typical masses of newborn stars? Star formation makes many more low-mass stars than high-mass stars.