Lecture 2: Stresses in Pavements

Similar documents
Stresses and Strains in flexible Pavements

Figure 2-1: Stresses under axisymmetric circular loading

Flexible Pavement Stress Analysis

INTRODUCTION TO PAVEMENT STRUCTURES

ACET 406 Mid-Term Exam B

Lecture 3: Stresses in Rigid Pavements

ALACPA-ICAO Seminar on PMS. Lima Peru, November 2003

Rigid Pavement Stress Analysis

Structural Design of Pavements

NUMERICAL STUDY OF STRUCTURAL RESPONSES OF RIGID AND FLEXIBLE PAVEMENTS UNDER HEAVY VEHICLES LOADING

Stress and Strain Factors for Three-Layer Elastic Systems

Stress Rotations Due to Moving Wheel Loads and Their Effects on Pavement Materials Characterization

Rigid Pavement Mechanics. Curling Stresses

Computation of Equivalent Single-Wheel Loads Using Layered Theory

Analysis of Non-Linear Dynamic Behaviours in Asphalt Concrete Pavements Under Temperature Variations

VERTICAL STRESS INCREASES IN SOIL TYPES OF LOADING. Point Loads (P) Line Loads (q/unit length) Examples: -Posts

2002 Pavement Design

Why Dynamic Analysis Is Needed?

Field Rutting Performance of Various Base/Subbase Materials under Two Types of Loading

Effect of Transient Dynamic Loading on Flexible Pavement Response

Pavement Design Where are We? By Dr. Mofreh F. Saleh

NJDOT RESEARCH PROJECT MANAGER: Mr. Anthony Chmiel

Mechanistic Pavement Design

Rigid pavement design

BENCHMARK LINEAR FINITE ELEMENT ANALYSIS OF LATERALLY LOADED SINGLE PILE USING OPENSEES & COMPARISON WITH ANALYTICAL SOLUTION

Assessment of boundaryelement method for modelling the structural response of a pavement

NOTTINGHAM DESIGN METHOD

Flexible Pavement Design

Impact of Water on the Structural Performance of Pavements

Flexible Pavement Analysis Considering Temperature Profile and Anisotropy Behavior in Hot Mix Ashalt Layer

Assessment of Analytical Techniques of Flexible Pavements by Final Element Method and Theory of Multi-Layer System

Mechanistic-Empirical Pavement Design Guide: A User s Perspective. Brian D. Prowell, Ph.D., P.E.

ACKNOWLEDGMENT OF SPONSORSHIP

Evaluation of Rutting Depth in Flexible Pavements by Using Finite Element Analysis and Local Empirical Model

Guide for Mechanistic-Empirical Design

Lecture 7 Constitutive Behavior of Asphalt Concrete

Characterizing Horizontal Response Pulse at the Bottom of Asphalt Layer Based on Viscoelastic Analysis

2008 SEAUPG CONFERENCE-BIRMINGHAM, ALABAMA

Determination of Resilient Modulus Model for Road-Base Material

Analysis of in-service PCC pavement responses from Denver International Airport

SENSITIVITY ANALYSIS OF THE VESYS PROGRAM TO PREDICT CRITICAL PAVEMENT RESPONSES FOR RUTTING AND FATIGUE PERFORMANCES OF PAVEMENT INFRASTRUCTURES

Development of a Quick Reliability Method for Mechanistic-Empirical Asphalt Pavement Design

EXAMINATION OF MECHANICAL PROPERTIES IN UNBOUND ROAD BASES

2002 Design Guide Preparing for Implementation

Design of Overlay for Flexible Pavement

Determination of AASHTO Layer Coefficients for Granular Materials by Use of Resilient Modulus

Assessment of Computer Programs for Analysis of Flexible Pavement Structure

[5] Stress and Strain

Characterization of Anisotropic Aggregate Behavior Under Variable Confinement Conditions

FINITE ELEMENT METHOD IN STATISTICAL ANALYSIS OF FLEXIBLE PAVEMENT

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 4, No 3, 2014

Application of layered system analysis to the design of flexible pavements, April 1973, M.S. thesis

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

Unbound Pavement Applications of Excess Foundry System Sands: Subbase/Base Material

Analysis of Damage of Asphalt Pavement due to Dynamic Load of Heavy Vehicles Caused by Surface Roughness

APPENDIX A PROGRAM FLOW CHARTS

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

Exercise: concepts from chapter 8

Improvement of Cracking Resistance for the Semi-Rigid Base Layer Reinforced by Geogrid

Flexural Life of Unbound Granular Pavements with Chip Seal Surfacings

Mechanical Properties of Materials

Evaluation of Vertical Compressive Stress on Stabilized Subgrade in Pavement System

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

FINITE ELEMENT ANALYSIS OF ARKANSAS TEST SERIES PILE #2 USING OPENSEES (WITH LPILE COMPARISON)

ABSTRACT. PARK, HEE MUN. Use of Falling Weight Deflectometer Multi-Load Level Data for

The theories to estimate lateral earth pressure due to a strip surcharge loading will

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground

AASHTO Rigid Pavement Design

STUDY ON EFFECTS OF NONLINIAR DISTRIBUTION AND SLAB THICKNESS ON THERMAL STRESS OF AIRPORT CONCRETE PAVEMENT

Effect of tire type on strains occurring in asphalt concrete layers

ANALYSING A PAVEMENT STRUCTURE WITH A CRUSHED STONE OVERLAYING ON AN EXISTING THICK ASPHALT LAYER

Chapter 5. Vibration Analysis. Workbench - Mechanical Introduction ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

FULL-DEPTH HMA PAVEMENT DESIGN

THE BEHAVIOUR OF FLEXIBLE PAVEMENT BY NONLINEAR FINITE ELEMENT METHOD

Published online: 26 Feb 2009.

Evaluating Structural Performance of Base/Subbase Materials at the Louisiana Accelerated Pavement Research Facility

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. Fall 2004

Particle flow simulation of sand under biaxial test

ANNEX 1. PAVEMENT DESIGN METHODS

TRB DETERMINATION OF CRITICAL BENDING STRESSES IN THE PCC LAYER WITH ASPHALT OVERLAY

MECHANICS OF MATERIALS

Calibration of Mechanistic-Empirical Fatigue Models Using the PaveLab Heavy Vehicle Simulator

MECHANICS OF MATERIALS

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

ACKNOWLEDGMENT OF SPONSORSHIP

Chapter 3. Load and Stress Analysis

Pavement Discontinuities and Dynamic Load Response

Lecture 8. Stress Strain in Multi-dimension

Analysis of forming- Slipline Field Method

Implementation of M-E PDG in Kansas

Tensile stress strain curves for different materials. Shows in figure below

7. Authors 8. Performing Organization L. Ke, S. Nazarian, I. Abdallah, and D. Yuan Report No. Research Report

Chapter 3. Load and Stress Analysis. Lecture Slides

Subject Index. STP1026-EB/Nov. 1989

MECH 401 Mechanical Design Applications

Settlements and stresses of multi-layered grounds and improved grounds by equivalent elastic method

Transcription:

Lecture 2: Stresses in Pavements

Stresses in Layered Systems At any point, 9 stresses exist. They are 3 normal stresses (s z, s r, s t ) and 6 shearing stresses ( t rz = t zr, t rt = t tr, and t tz = t zt ). At each point in the system there exists a certain orientation of the element such that the shearing stresses acting on each face are zero. The normal stresses under this condition are principal stresses and are denoted by s 1 (major), s 2 (intermediate) and s 3 (minor) principal stresses.

Layered Elastic Models Boussinesq Theory Layer characterized by E and n. Homogeneous, isotropic, stresses and stains determined from a point load on surface of semi-infinite half-space. Further work expanded solutions to uniform, circular load by means of integration over the loaded area. Burmister Theory Two-layered system developed in 1940 s. Three Layer System Developed by Acum and Fox in 1950 s. Homogeneous, isotropic, full friction between layers, stresses on centerline only. Continuity equation satisfied at interfaces (same vertical stress, shear stress, vertical displacement, and radial displacement). If frictionless, shear stress and radial displacement are zero at interface

Layered Elastic Models (LEM) Basic Assumptions: Each layer is homogeneous, isotropic, and linearly elastic with an elastic modulus of E and Poisson's ratio of n. The material is weightless (geostatic stresses are ignored). Each layer has a finite thickness, except the lowest layer. A uniform pressure is applied over a circular area. Interface condition (continuity vs. frictionless). Surface shear forces are not present.

Flexible Pavement Responses Responses in flexible pavements under the moving traffic loads are greatly influenced by: Type of flexible pavement. Ratio of the moduli of various layers. Types of flexible pavements: Thin HMA over aggregate base Thick HMA over aggregate base Full depth HMA HMA over stabilized base HMA over existing HMA or PCC (similar to composite pavement concept)

Flexible Pavement Model q

Stresses and Strains in Flexible Pavements Function of the following: Material properties of each layer Thickness of each layer Loading conditions Environmental impact Pavement responses generally of interest: Surface deflection (represents surface rutting). Horizontal tensile strain at bottom of AC layer (controls bottom up fatigue cracking). Vertical compressive strain on top of intermediate layer (base or subbase rutting). Vertical compressive strain on top of the subgrade (controls subgrade rutting).

Pavement Response Locations Used in Evaluating Load Effects

One-Layer System (Boussinesq Equations) The original elastic theory published by Boussinesq in 1885. For computing stresses and deflections in an elastic half-space material composed of homogeneous, isotropic, and linearly elastic material. Still widely used in soil mechanics and foundation design.

Formulas for Calculating Stresses under a Circular Loaded Area

Generalized Hook s Law Elasticity Equations for the Calculation of Strains

Calculation of the Strains The equations are only valid along the load centerline.

Deflection Calculations Calculation of the deflections at different depths along the load centerline: Surface deflections along the load centerline (@ z=0):

Nature of Responses under Flexible and Rigid Plates Flexible plate: Uniform Contact Pressure Variable Deflection Profile Flexible Plate Rigid Plate plate: Non-Uniform Contact Pressure Equal Deflection Rigid Plate

Stresses under the Rigid Plate Reminder: Contract stresses are non uniform under a rigid plate. s 0 is the average pressure acting on the rigid plate (such as concrete slab). s 0 P a 2

Deflection under the Rigid Plate Reminder: Deflections are equal under a rigid plate. s 0 is the average pressure acting on the rigid plate (such as concrete slab). P s 0 a 2

Comparison of Deflections at the Surface Rigid vs. Flexible Plate The deflection under a rigid plate is 79% of that under a flexible plate.

One Layer Systems Foster and Ahlvin (1954) developed charts for computing vertical, tangential and radial stresses. The charts were developed for μ = 0.5. This work was subsequently refined by Ahlvin and Ulery (1962) allowing for evaluation of stresses and strains at any point in the homogenous mass for any μ. Due to symmetry, there are only three normal stresses, s z, s r and s t and one shear stress t rz. One-layer theory can be applied as an approximation for a conventional flexible pavement with granular base/subbase with a thin asphaltic layer on a stiff subgrade comparable to the base/subbase. (i.e., E 1 /E 2 ~ 1). The deflection that occurs within the pavement layers (D p ) is neglected and therefore, the pavement surface deflection (D T ) is equal to the deflection on the top of subgrade (D s ): D T = D p + D s, D p = 0, therefore D T = D s

Charts for One Layer Solutions (after Foster and Ahlvin, 1954)

Charts for One Layer Solutions (after Foster and Ahlvin, 1954)

Charts for One Layer Solutions (after Foster and Ahlvin, 1954)

Charts for One Layer Solutions (after Foster and Ahlvin, 1954)

Tables for One-layer Solutions by Ahlvin and Ulery (1962)

Burmister s Theory of Two-Layer Systems As we discussed in the first lecture, one of the primary functions of the pavements is to protect the subgrade. Burmister (1958) obtained solutions for two-layer problem by using strain continuity equations. Based on Burmister s solutions, vertical stresses are greatly influenced by the modular ratio (i.e., E 1 /E 2 ). Vertical stress decreases considerably with increase in modular ratio. For example, based on the plot provided in the next slide: for z/a=1 and E 1 /E 2 = 1, s z at interface = 68% of contact pressure. for z/a=1 and E 1 /E 2 = 100, s z at interface = 8% of contact pressure.

Burmister s Solutions for Vertical Stresses 0.08 0.68

Burmister Solutions for Deflections Burmister extended the one-layer solutions to two and three layers in 1958. He assumed layers have full frictional contact at the interface and n=0.5. Equations and graphs are typically used to calculate the responses under the load. The deflection under flexible plate (w 0 ) for two layer system can be calculated from the following equation: 1.5 P a 0 E P: Load distributed over a circular plate a: Radius of flexible plate E 1 : Modulus of elasticity for the surface layer E 2 : Modulus of elasticity of the subgrade F 2 : Deflection coefficient 2 F 2

Burmister s Solutions for Surface Deformations The deflection coefficient (F 2 ) can be estimated from the following graph:

Burmister s Solutions for Vertical Interface Stresses for Two Layer Systems

Three Layer Systems Fox and Acum developed closed form solutions for boundary stresses in the center of a circular uniformly loaded area. They assumed Passion's ratio of 0.5 for all layers. Later Jones and Peattie (1962) expanded the equations for three layer systems, they developed graphical solutions of responses based on the following parameters: K 1 = E 1 /E 2 K 2 = E 2 /E 3 A = a/h 2 H = h 1 /h 2 Schematic plot showing the locations of the pavement response solutions.

Influence of Layer Thickness on Vertical Stress Distributions (σ z ) K 1 = E 1 /E 2 =20 K 2 = E 2 /E 3 =20 A = a/h 2 H = h 1 /h 2

Influence of Modular Ratio K 1 on Vertical Stress Distributions (σ z ) K 1 = E 1 /E 2 K 1 = E 1 /E 2 K 2 = E 2 /E 3 =10 A = a/h 2 =1 H = h 1 /h 2 =1/4 Vertical stress at the top of subgrade decreases slightly as asphalt layer stiffness increases Vertical stress at the bottom of surface layer decreases as top layer stiffness increases

K 1 = E 1 /E 2 =20 K 2 = E 2 /E 3 A = a/h 2 =1 H = h 1 /h 2 =1/4 Influence of Modular Ratio K 2 on Vertical Stress Distributions (σ z )

Typical Distribution of the Shear Stresses in Multi-Layer Systems Influence of (E 1 /E 2 ) Influence of modulus ratio K 1 (= E 1 /E 2 ) on the distribution of shear stresses. K 1 =1 represents the Boussinesq s solution for single layer system (E 1 =E 2 ). Notice that the increasing modular ratios results in the maximum shear stress in the top layer, however the shear stress at interface is inversely related to the modular ratios.

Typical Distribution of the Shear Stresses in Multi-Layer Systems Influence of layer thickness (a/h 1 ) on the distribution of shear stresses. Notice the effect of nonlinearity in shear stresses for very thin surface layers (higher values of a/h 1 ). Both nonlinearity and magnitude of the shear stresses increase with reduction in surface layer thickness. This is why very thin asphalt pavements are prone to develop shear deformations. There is no control for shear deformation of flexible pavements in any design guide. Influence of (a/h 1 )

Odemark s Method of Equivalent Thickness Odemark developed a method to transform a system consisted of several layers with different stiffness properties into one single layer with one modulus value. Elastic-half space equations such as Boussinesq solutions can be used to calculate the responses under the wheel load.

Odemark s Method of Equivalent Thickness Assuming the Passions' ratio of the two layers to be the same we have:

Method of Equivalent Thicknesses (Odemark s General Equation) h ei h i 3 E E (1 m 2 i i 1 2 i 1 (1 mi ) ) h ei = Calculated equivalent thickness for i th layer h i = Layer thickness for i th layer E i = Modulus for i th layer E i+1 = Modulus for (i+1) th layer m i = Poisson s ratio for i th layer m i+1 = Poisson s ratio for (i+1) th layer

Odemark Equivalent Layer-Example

Multi-Layer Systems Responses Computer Programs WINJULIA KENLAYER ELSYM5 LEAP2 EVERSTRS Typical Input Material properties: modulus (E) and Poisson's Ratio (n). Layer thicknesses. Loading conditions: magnitude of axle load, gear configurations, contact radius (tire footprint), or contact pressure. Slip between layers (fully bonded or partially bonded layers).

Limitations of Layered Elastic Models (LEM) Effects of wheel loads applied close to cracks or edges (or joints in rigid pavements) require asymmetry - not available in LEM. Information on slip generally not available influence can be dramatic ( BISAR program accommodates for the slip and interlayer shear). Geostatic stresses are neglected. Vertical and lateral variation in dynamic or resilient modulus cannot be accounted for in LEM (Anisotropy). Stresses and strains calculated in unbound materials can be unreasonable such as unrealistically high tensile stresses at the bottom of UAB due to stress sensitivity and anisotropy of the materials. (more discussion on this will be presented in the lecture on the characterization of unbound granular materials).

Limitations of Layered Elastic Models (LEM), Cont. Layered elastic method doesn t account for dynamic nature of the wheel load. LEM represent tire-pavement contact as uniformly loaded, circular area while research demonstrates that actual contact area shape varies with loading and tire specifications.

Determination of the Tire Footprint

Vertical Stress Distribution under Dual Wheel Load

Super Position of Wheel Loads

Example Pavement (6 Base)

Example Pavement (10 Base)

Example Pavement (14 Base)

Depth, in Vertical Stress Distributions Vertical Stress, psi 0 0 10 20 30 40 50 60 70 80 90 100 2 4 6 8 10 12 14 16 18 20 22 20 Soft Subgrade (4 ksi) Stiff Subgrade (12 ksi)

Depth, in Shear Stress in the YZ-plane 0 Shear Stress, psi 0 2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 Soft Subgrade (4 ksi) Stiff Subgrade (12 ksi) 18 20 22