Lecture 17. Implicit differentiation. Making y the subject: If xy =1,y= x 1 & dy. changed to the subject of y. Note: Example 1.

Similar documents
QUESTION BANK ON. CONIC SECTION (Parabola, Ellipse & Hyperbola)

Conic section. Ans: c. Ans: a. Ans: c. Episode:43 Faculty: Prof. A. NAGARAJ. 1. A circle

( 1 ) Find the co-ordinates of the focus, length of the latus-rectum and equation of the directrix of the parabola x 2 = - 8y.

PRACTICE PAPER 6 SOLUTIONS

CO-ORDINATE GEOMETRY

l (D) 36 (C) 9 x + a sin at which the tangent is parallel to x-axis lie on

1 is equal to. 1 (B) a. (C) a (B) (D) 4. (C) P lies inside both C & E (D) P lies inside C but outside E. (B) 1 (D) 1

Conic Sections. Geometry - Conics ~1~ NJCTL.org. Write the following equations in standard form.

Equations of Ellipse Conics HSC Maths Extension 2

Parabola. The fixed point is called the focus and it is denoted by S. A (0, 0), S (a, 0) and P (x 1, y 1 ) PM=NZ=NA+AZ= x 1 + a

Mathematics Extension 2

Mixed exercise 3. x y. cosh t sinh t 1 Substituting the values for cosh t and sinht in the equation for the hyperbola H. = θ =

Time : 3 hours 02 - Mathematics - July 2006 Marks : 100 Pg - 1 Instructions : S E CT I O N - A

a Write down the coordinates of the point on the curve where t = 2. b Find the value of t at the point on the curve with coordinates ( 5 4, 8).

Edexcel GCE A Level Maths. Further Maths 3 Coordinate Systems

Conic Sections Session 2: Ellipse

Circles. Example 2: Write an equation for a circle if the enpoints of a diameter are at ( 4,5) and (6, 3).

JEE-ADVANCED MATHEMATICS. Paper-1. SECTION 1: (One or More Options Correct Type)

The Distance Formula. The Midpoint Formula

3.4 Conic sections. Such type of curves are called conics, because they arise from different slices through a cone

by Abhijit Kumar Jha

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A

Mathematics Extension 2

Conic Sections Session 3: Hyperbola

IIT JEE Maths Paper 2

CIRCLES PART - II Theorem: The condition that the straight line lx + my + n = 0 may touch the circle x 2 + y 2 = a 2 is

SOLVED SUBJECTIVE EXAMPLES

Trans Web Educational Services Pvt. Ltd B 147,1st Floor, Sec-6, NOIDA, UP

Mathematics Extension 2

Distance and Midpoint Formula 7.1

y mx 25m 25 4 circle. Then the perpendicular distance of tangent from the centre (0, 0) is the radius. Since tangent

2. (i) Find the equation of the circle which passes through ( 7, 1) and has centre ( 4, 3).

Rectangular Hyperbola Conics HSC Maths Extension 2

(D) (A) Q.3 To which of the following circles, the line y x + 3 = 0 is normal at the point ? 2 (A) 2

TARGET : JEE 2013 SCORE. JEE (Advanced) Home Assignment # 03. Kota Chandigarh Ahmedabad

Objective Mathematics

Senior Math Circles February 18, 2009 Conics III

MATHEMATICS Code No. 13 INSTRUCTIONS

Honors Precalculus Chapter 8 Summary Conic Sections- Parabola

QUESTION BANK ON STRAIGHT LINE AND CIRCLE

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A

CIRCLES. ii) P lies in the circle S = 0 s 11 = 0

PARABOLA. AIEEE Syllabus. Total No. of questions in Parabola are: Solved examples Level # Level # Level # Level # 4..

CRASH COURSE IN PRECALCULUS

CURVATURE AND RADIUS OF CURVATURE

KEMATH1 Calculus for Chemistry and Biochemistry Students. Francis Joseph H. Campeña, De La Salle University Manila

Chapter 1 Analytic geometry in the plane

SYSTEM OF CIRCLES OBJECTIVES (a) Touch each other internally (b) Touch each other externally

Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths

So, eqn. to the bisector containing (-1, 4) is = x + 27y = 0

2012 HSC Mathematics Extension 2 Sample Answers

KEY FOR MATHS EXAMINATION PART - I 25. b d inverse axiom 27. d [3] 1. a 1 2. c k a 1 4. c

Transweb Educational Services Pvt. Ltd Tel:

= 0 1 (3 4 ) 1 (4 4) + 1 (4 3) = = + 1 = 0 = 1 = ± 1 ]

+ 2gx + 2fy + c = 0 if S

TARGET QUARTERLY MATHS MATERIAL

MATH-1420 Review Concepts (Haugen)

Practice Assessment Task SET 3

FORM VI MATHEMATICS EXTENSION II

Mathematics Extension 2

H2 MATHS SET D PAPER 1

Analytic Geometry MAT 1035

9.1 Circles and Parabolas. Copyright Cengage Learning. All rights reserved.

*P46958A0244* IAL PAPER JANUARY 2016 DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA. 1. f(x) = (3 2x) 4, x 3 2

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science

MockTime.com. (b) 9/2 (c) 18 (d) 27

Analytic Geometry MAT 1035

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) , PART III MATHEMATICS

Indefinite Integration

MATHEMATICS EXTENSION 2

CIRCLES: #1. What is an equation of the circle at the origin and radius 12?

Sec 4 Maths SET D PAPER 2

PROVINCIAL EXAMINATION MINISTRY OF EDUCATION, SKILLS AND TRAINING MATHEMATICS 12 GENERAL INSTRUCTIONS

STRAIGHT LINES EXERCISE - 3

x n+1 = ( x n + ) converges, then it converges to α. [2]

d) Find the equation of the circle whose extremities of a diameter are (1,2) and (4,5).

ADDITIONAL MATHEMATICS

Foundations of Calculus. November 18, 2014

Fall Exam 4: 8&11-11/14/13 - Write all responses on separate paper. Show your work for credit.

MockTime.com. NDA Mathematics Practice Set 1.

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD SCHEME OF VALUATION. Subject : MATHEMATICS Subject Code : 35

January 21, 2018 Math 9. Geometry. The method of coordinates (continued). Ellipse. Hyperbola. Parabola.

(c) n (d) n 2. (a) (b) (c) (d) (a) Null set (b) {P} (c) {P, Q, R} (d) {Q, R} (a) 2k (b) 7 (c) 2 (d) K (a) 1 (b) 3 (c) 3xyz (d) 27xyz

Lone Star College-CyFair Formula Sheet

CONIC SECTIONS TEST FRIDAY, JANUARY 5 TH

Edexcel Core Mathematics 4 Parametric equations.

Name of Exam. Centre...Exam. Centre No.:... Test Booklet Code :... Test Booklet No.:...

JEE MAIN 2013 Mathematics

y 1 x 1 ) 2 + (y 2 ) 2 A circle is a set of points P in a plane that are equidistant from a fixed point, called the center.

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves

Possible C4 questions from past papers P1 P3

Mathematics Extension 1

10.1 Review of Parametric Equations

MATH 680 : History of Mathematics

Pre-Calculus EOC Review 2016

Part r A A A 1 Mark Part r B B B 2 Marks Mark P t ar t t C C 5 Mar M ks Part r E 4 Marks Mark Tot To a t l

PENRITH HIGH SCHOOL MATHEMATICS EXTENSION HSC Trial

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253

Extra FP3 past paper - A

ALGEBRA 2 X. Final Exam. Review Packet

Transcription:

Implicit differentiation. Lecture 17 Making y the subject: If xy 1,y x 1 & dy dx x 2. But xy y 2 1 is harder to be changed to the subject of y. Note: d dx (f(y)) f (y) dy dx Example 1. Find dy dx given xy y2 1. 1 y + x 1 dy dy dx 2y dx 0 x dy dy dx 2y dx y dy dx y x 2y y 2y x Example 2. Find dy dx if x2 y 3 1. 2xy 3 + x 2 3y 2 dy dx 0 3x 2 y 2 dy dx 2xy3 dy dx 2xy3 3x 2 y 2 2y 3x

Lecture 18 Implicit functions examples from Set 6M (Coroneos, 1982c) Question 7. If x 2 y (x + y) 3, show that dy dx y x. d dx x2 y d dx (x + y)3. y( d dx x2 )+x 2 d dy y dy dx d dx (x3 +3x 2 y +3xy 2 + y 3 ). 2xy + x 2 dy dx d dx x3 + d dx 3x2 y + d dx 3xy2 + d dx y3 3x 2 + y d dx 3x2 +3x 2 d dy y dy dx + y2 d d dy dx3x +3xdy y2 dx + d dy dy y3 dx 3x 2 +6xy +3x 2 dy dx +3y2 +6xy dy dy dx +3y2 dx. dy dx (2x2 +6xy +3y 2 ) 3x 2 4xy 3y 2. dy dx 3x2 4xy 3y 2 2x 2 +6xy+3y 2 3(x+y)2 +2xy 3(x+y) 2 x 2 x+y x+y 3(x+y)3 +2x 2 y+2xy 2 3(x+y) 3 x 3 x 2 y 3x2 y+2x 2 y+2xy 2 3x 2 y x 3 x 2 y (since x 2 y (x + y) 3 ) 2xy2 x 2 y 2x 2 y x 3 2y2 xy 2xy x 2 y x 2y x 2y x y x. Question 8. If xy +5x + 8 0, show that x 2 dy dx 8. d d dx (xy +5x +8) dx 0. y d dx x + x d dy y dy dx + d dx 5x + d dx 80. y + x dy dx +50. x dy dx y 5. dy dx y 5 x ( ) x 2 dy dx y 5 x2 x xy 5x 8 (since xy +5x +80).

Question 9. If ax 2 + by 2 c show that d2 y dx 2 d dx ax2 + b d dy dy y2 dx d dx c. 2ax +2by dy dx 0 dy dx 2ax 2by ax d2 y dx 2 d dx d dx a a b by ( dy dx ) a b xy 1 b (y 1 1+x dy 1 dy ( 1 y ) x y ax 2 by dy dx ) ac b 2 y 3. a ( by 2 +ax 2 b 2 y 3 ) ac b 2 y 3 (since ax 2 + by 2 c).

The Circle (Cartesian equation) Parametric Equations Lecture 19 The Conic Sections x 2 + y 2 a 2 centre at origin and radius a. (x h) 2 +(y k) 2 a 2 centre (h.k) and radius a. Idea of parametric equations is to express x and y in terms of a 3rd variable such as t or θ. E.g.,find the cartesian equation of the following curve: { parametric x 1+t t x 1 equations y t 2 y (x 1) 2 - cartesian equation. x a cos θ y a sin θ -from the diagram. -parametric equations of a circle centre (0, 0),radius a. With centre (h, k),parametric equations are: x h + a cos θ y k + a sin θ.

Circle on diameter A(x 1,y 1 ),B(x 2,y 2 ): Since AP BP,gradAP.gradBP 1. y y 1 x x 1 y y 2 x x 2 1 (y y 1 )(y y 2 ) (x x 1 )(x x 2 ) (y y 1 )(y y 2 )+(x x 1 )(x x 2 )0. Eg. 1. Find the equation of the circle with diameter A, B where A (1, 2) and B (3, 1). Find the centre and radius. y 2 x 1 y+1 x 3 1 (y 2)(y +1)+(x 1)(x 3)0 y 2 y 2 + x 2 4x +10 y 2 y + 1 2 + x2 4x +4+14 1 2. (x 2) 2 +(y 1 2 )2 3 1 4 the centre (2, 1 2 ),radius 13 2. Example 1 from Coroneos, 1982b, p25. Find the equation of the circle (i) centre the origin to pass through the point ( 3, 7) (ii) centre (1, 4) to touch the line 2x 3y 9 (iii) which touches the coordinates axes and passes through (8, 1). (i) x 2 + y 2 ( 3 0) 2 +(7 0) 2 i.e., x 2 + y 2 58.

( ) 2 (ii) (x 1) 2 +(y +4) 2 2(1) 3( 4) 9 i.e.,(x 1) 2 +(y +4) 2 25 2 2 +( 3) 2 13. (iii) (x a) 2 +(y a) 2 a 2 where (8 a) 2 +(1 a) 2 a 2. Hence 64 16a + a 2 +1 2a + a 2 a 2 a 2 18a +650 (a 5)(a 13) 0 a 5, 13 (x 5) 2 +(y 5) 2 25or(x 13) 2 +(y 13) 2 169.

Lecture 20 Eg. 1. Find the equation of the tangent and normal to the circle x 2 + y 2 5atP (2, 1). Since it is a circle with centre (0, 0),then the normal does as well the equation of the normal can be found and also the tangent since the normal tangent. However by calculus methods, x 2 + y 2 5 2x +2y dy dx 0 dy dx x y m T 2 1 2 and m N 1 2. Using y y 1 m(x x 1 ): Tangent y 1 2(x 2) y 1 2x +4 2x + y 50 Normal y 1 1 2 (x 2) 2y 2x 2 x 2y 0. Eg. 2. Find the equation of the tangent and normal to x 2 + y 2 a 2 at (i) P (x, y) (ii) P (a cos θ, a sin θ). (i) x 2 + y 2 a 2 2x +2y dy dx 0

dy dx x y m T x 1 y 1 and m N y 1 x 1 since y y 1 m(x x 1 ) Tangent y y 1 x 1 y 1 (x x 1 ) y 1 y y 2 1 x 1 x + x 2 1 x 1 x + y 1 y x 2 1 + y 2 1 a 2 x 1 x + y 1 y a 2 Normal y y 1 y 1 x 1 (x x 1 ) x 1 y x 1 y 1 y 1 x x 1 y 1 y 1 x x 1 y 0 (ii) dy dx x m T y. a cos θ a sin θ m N sin θ cos θ cos θ sin θ tan θ. cot θ Tangent y y 1 m(x x 1 ) y a sin θ cos θ sin θ (x a cos θ) y sin θ a sin 2 θ x cos θ + a cos θ x cos θ + y sin θ a sin 2 θ + a cos 2 θ x cos θ + y sin θ a Normal y y 1 m(x x 1 ) y a sin θ sin θ cos θ (x a cos θ) y cos θ a sin θ cos θ x sin θ a sin θ cos θ x sin θ y cos θ 0

Eg. 3. Find the equation of the tangent to the circle x 2 + y 2 16 and perpendicular to 3x 2y 7. Line has m 3 2. m T 2 3 2x +3y k 2x +3y k 0 Perpendicular distance of tangent to centre of circle radius of circle. d ax 1+by 1 +c a 4 2 +b 2 k 13 4 (since c is constant and x 1 and y 1 0.) k ±4 13 2x +3y ± 4 13.

Lecture 21 Ratio of distance from a fixed point (focus) to the distance from a fixed line (directrix) equals a constant (eccentricity, e). PS PM e e>1 hyperbola e 1 circle e<1 ellipse. Ellipse. x General equation: 2 a + y2 2 b 1 a>b. 2 where foci (±ae, 0) directrix x ± a e eccentricity: e 2 1 b2 a 2 e 1 b2 a 2

Parametric equation Parametric equations of ellipse are x a cos θ, y b sin θ

Note for b>awe have Eg. Find the eccentricity, foci, directrices, and sketch the ellipse 4x 2 +9y 2 18. Also find the parametric equation. 4x 2 18 + 9y2 18 1 2x 2 9 + y2 2 1 x 2 9/2 + y2 2 1 a 3 2 and b 2 1 b2 a 2 e ( foci: (±ae, 0) 1 2 9/2 5 3. ± 3 2 5 3, 0 ) ( ± 5 2, 0 ) directrices x ± a e ± 3/ 2 5/3 ± 3 2 3 5 ± 9 10

Parametric equations: x 3 2 cos θ, y 2 sin θ, 0 θ<2π.

Tangents and Normals to ellipses Lecture 22 x 2 a 2 + y2 b 2 1 2y dy b 2 dx 2x a 2 dy dx b2 x a 2 y. At P (a cos θ, b sin θ) y y 1 m(x x 1 ) m tan b2 (cos θ b cos θ a 2 (b sin θ) a sin θ equation is y b sin θ b cos θ a sin θ (x a cos θ). ay sin θ ab sin 2 θ bx cos θ + ab cos 2 θ bx cos θ + ay sin θ ab(sin 2 θ + cos 2 θ) x cos θ a + y sin θ b 1 m norm 1 m tan a sin θ b cos θ equation is y b sin θ a sin θ b cos θ (x a cos θ) by cos θ b 2 sin θ cos θ ax sin θ a 2 sin θ cos θ ax sin θ by cos θ a 2 sin θ cos θ + b 2 sin θ cos θ 0 ax cos θ by sin θ a2 b 2 ax sec θ bycosec θ a 2 b 2 At P (x 1,y 1 ), equation is y y 1 b2 x 1 a 2 y 1 (x x 1 ) a 2 yy 1 a 2 y 2 1 b 2 x 1 (x x 1 ) a 2 yy 1 a 2 y 2 1 b 2 xx 1 + b 2 x 2 1 b 2 xx 1 b 2 x 2 1 + a 2 yy 1 a 2 y 2 1 0 b 2 xx 1 + a 2 yy 1 b 2 x 2 1 + a 2 y 2 1 xx 1 a + yy 2 1 b x2 2 1 a + y2 2 1 b 2 x 1x a + y 1y 2 b 1 2 Tangent:- Normal:- Tangent:- Normal:- + y2 On x2 a 2 m norm b 2 1,P(x 1,y 1 ) 1 m tan a2 y 1 b 2 x 1 1 since x2 a 2 + y2 b 2 1

and (y y 1 ) a2 y 1 b 2 x 1 (x x 1 ) b 2 x 1 y b 2 x 1 y 1 a 2 y 1 x a 2 y 1 x 1 b 2 x 1 y a 2 y 1 x b 2 x 1 y 1 a 2 y 1 x x 1 y 1 (b 2 a 2 ) b 2 x 1 y a 2 y 1 x x 1 y 1 b 2 a 2 a2 y 1 x b 2 x 1 y x 1 y 1 a 2 b 2 a2 x x 1 b2 y y 1 a 2 b 2 Note: A latus rectum (plural - latus recta ) is the perpendicular chord to the major axis of summetry of the shape passing through the focus (plural - foci ).

Lecture 23 Example. P is the point (a cos θ, b sin θ) one : x2 a 2 + y2 b 2 1 with eccentricity e, focis, S. i. Show that SP a(1 e cos θ) and find an expression for SP. Show that SP + S P is independent of the position of P. ii. If the normal at P intersects the major axis at G and minor axis at H, show that PG PH 1 e2. PS PM e PS PM.e ( a e a cos θ)e a ae cos θ a(1 e cos θ) PS PM e S P ep M e( a e + a cos θ) a + ae cos θ a(1 + e cos θ) SP + S P a(1 e cos θ)+a(1 + e cos θ) a(1 e cos θ +1+e cos θ) 2a which is independant of the position of P. Normal: ax sec θ bycosec θ a 2 b 2 major axis: y 0 ax sec θ a 2 b 2 x a2 b 2 a sec θ G( a2 b 2 a sec θ, 0) Minor axis: x 0 by cosec θ a 2 b 2 y (a2 b 2 ) bcosec θ and therefore H (0, (a2 b 2 ) bcosec θ )

PG PH (a cos θ a2 b 2 a sec θ )2 +(b sin θ) 2 (a cos θ) 2 +(b sin θ ( b2 a 2 cosec θ ))2 (a cos θ a cos θ+ b2 a cos θ)2 +(b sin θ) 2 (a cos θ) 2 +(b sin θ b sin θ+ a2 b b 4 a 2 cos2 θ+b 2 sin 2 θ a 2 cos 2 θ+ a4 b 2 sin2 θ b 6 cos 2 θ+a 2 b 4 sin 2 θ a 4 b 2 cos 2 θ+a 6 sin 2 θ b 2 cos 2 θ+a 2 sin 2 θ a 2 b 2 cos 2 θ+a 2 sin 2 θ b2 b2 a 2 1 e 2 since e 2 1 b2 a 2. sin θ)2

From Coroneos, 1982b, Set 2D Q8. Lecture 24 8. P is the point (a cos θ, b sin θ) on the ellipse E and Q is the corresponding point on the auxiliary circle C (i.e., P, Q have the same abscissa). State the coordinates of Q. (i) Find the equation of the tangent at P to E and at Q to C. Prove that these tangents meet on the major axis of the ellipse. (ii) Showthat the perpendicular distance from a focus S of E to the tangent at Q to C is equal to SP. (iii) Find the equation of OQ and of the normal to E at P. Showthat these meet on the circle x 2 + y 2 (a + b) 2. Q (a cos θ, a sin θ) (i) When E is the locus of P, the equation of E is x2 a + y2 2 b 2 Hence dy dx b2 x a 2 y tan P : y b sin θ dy and thus at P, dx b2 cos θ b cos θ a 2 b sin θ a sin θ. 1, and therefore 2x a 2 + 2y b 2 dy dx 0. b sin θ a cos θ (x a cos θ). Hence ay sin θ ab sin2 θ b cos θ + ab cos 2 θ. bx cos θ + ay sin θ ab(sin 2 θ + cos 2 θ)ab. When C is the locus of Q, the equation of C is x 2 + y 2 a 2 and therefore 2x +2y dy and therefore dy dx x y. at Q, dy dx a cos θ a sin θ cos θ sin θ tan Q : y a sin θ cos θ sin θ (x a cos θ) y sin θ a sin 2 θ x cos θ + a cos 2 θ x cos θ + y sin θ a(sin 2 θ + cos 2 θ)a. When y 0 for tan P,bxcos θ ab a cos θ dx 0 x and for tan Q, x cos θ a and therefore x a cos θ which is the same point for tan P (( a cos θ, 0)) and therefore the two tangents meet on the major axis of the ellipse (x-axis (y 0)). (ii) When a focus of E is S, S is (ae, 0) SP (a cos θ ae) 2 +(bsin θ 0) 2 a 2 (cos θ e) 2 + b 2 sin 2 θ a 2 (cos θ e) 2 + a 2 (1 e 2 )(1 cos 2 θ) a cos 2 θ 2e cos θ + e 2 +1 cos 2 θ e 2 + e 2 cos 2 θ a e 2 cos 2 θ 2e cos θ +1 a (e cos θ 1) 2 a e cos θ 1. The perpendicular distance from S to tan Q is ae cos θ+0 sin θ a sin 2 θ+cos 2 θ a e cos θ 1 SP.

(iii) Equation OQ is y a sin θ a cos θ x sin θ cos θ x x sin θ y cos θ 0 (since O is the origin). Norm P : y b sin θ a sin θ b cos θ (x a cos θ) and therefore ax sin θ b 2 cos θ sin θ ax sin θ a 2 sin θ cos θ ax sin θ by cos θ (a 2 b 2 ) cos θ sin θ ax sin θ by cos θ cos θ sin θ cos θ sin θ ax cos θ by sin θ ax sec θ bycosec θ a2 b 2 where OQ and Norm P meet, x sin θ y cos θ 0 x sin θ y cos θ and ax sin θ by cos θ (a 2 b 2 ) cos θ sin θ ax sin θ bx sin θ (a 2 b 2 ) cos θ sin θ x sin θ(a b) (a b)(a + b) cos θ sin θ x sin θ (a + b) sin θ cos θ x (a + b) cos θ and y cos θ (a + b) cos θ sin θ y (a + b) sin θ which are the parametric equations of the circle, centre (0, 0) and radius (a + b) units which has cartesian equation x 2 + y 2 (a + b) 2 and therefore OQ and Norm P meet on the circle x 2 + y 2 (a + b) 2. The Hyperbola y2 b 2 General Equation x2 a 2 directrices x ± a e, asymptotes y ± b a x Parametricequations x a sec θ, y b tan θ (Note: e PS PM 1 eccentricity e 2 1+ b2 a e 2 therefore PS > PM). 1+ b2 a 2 > 1, foci (±ae, 0),

Note xy 1 is a rectangular hyperbola, i.e., Example. For the hyperbola 3x 2 y 2 27 find the vertex, foci, directrices, asymptotes, eccentricity and sketch the hyperbola. Find the acute angle between the asymptotes. 3x 2 y 2 27. x 2 9 y2 27 1 a 3 b 273 3 Vertices (3, 0), ( 3, 0). e 1+ b2 a 2 1+ 27 9 2 Foci: (±, 0) Directrices: x ± 3 2 Assymptotes: y ± 3x

tan θ 3 θ 60 AOB is the acute angle between the assymptotes and therefore it is 60.

Supp. Set 2F, Q1,9 (Coroneos, 1982b): Lecture 25 1. For the hyperbola H : x 2 /16 y 2 /9 1, find the coordinates of the foci S, S. P is any point (4 sec θ, 3 tan θ) onh. (i) Show that PS 5 sec θ 4 and PS 5 sec θ + 4; and hence prove the difference of the focal distances to P is independent of the position of P on H. (ii) Prove the tangent at P has equation x sec θ/4 y tan θ/3 1. If this tangent meets the transverse axis in T, show that S P : PS S T : TS. Deduce that the tangent at P bisects the angle S PS. (iii) Show the normal at P has equation 4x/ sec θ +3y/ tan θ 25. If this normal meets the x-axis in G, prove that S P : PS S G : SG. Solution. For hyperbola H : x 2 /16 y 2 /91,fociS and S are (± 16 1+ 9 16, 0) (±5, 0) and P on H is (4 sec θ, 3 tan θ). (i) PS PS 1+ 9 16 (4 sec θ 16 ) 5 1+ 9 4 (4 sec θ 16 5 ) 5 sec θ 4 16 1+ 9 16 (4 sec θ + 16 1+ 9 16 ) 5 4 (4 sec θ + 16 5 ) 5 sec θ +4. the difference of the focal distances to P is (5 sec θ +4) (5 sec θ 4) 8 which is independant of θ and independant of the position of P on H. dy dx (ii) For H, x 8 2y dy 9 0 and therefore dx 9x 36 sec θ 16y 48 tan θ 3 sec θ 4 tan θ at P and therefore tan P is y 3 tan θ 3 sec θ 4 tan θ (x 4 sec θ) i.e., 4y tan θ 12 tan2 θ 3xsec θ 12 sec 2 θ i.e., 3x sec θ 4y tan θ 12 sec 2 θ 12 tan 2 θ 12(sec 2 θ tan 2 θ) 12 i.e., x sec θ 4 y tan θ 3 1. If this meets transverse axis in T, then for T, y 0 and therefore x sec θ 4 1 and therefore x 4 4 sec θ and therefore T is ( sec θ, 0) and threrfore S T : TS ( 4 sec θ +5):(5 4 sec θ ) (5 sec θ + 4) : (5 sec θ 4). S P : PS (5 sec θ +4):(5secθ 4) S T : TS (from (i)) and therefore if S P is produced to I such that SI TP, then S P PI S T TS (by intercept theory) S P PI (above) and therefore and therefore PI PS. Therefore IPS PS S P PS S P is isosceles with PIS ISP (base s of isosceles IPS) SPT (alternate). But PIS S PT (corresponding) and therefore S PT TPS and therefore the tangent at P (i.e., TP) bisects S PS. 4 tan θ (iii) Norm P is y 3 tan θ 3 sec θ (x 4 sec θ) and therefore 3y sec θ 9 tan θ sec θ 4x tan θ + 16 sec θ tan θ and therefore 4x tan θ +3ysec θ 16 sec θ tan θ + 9 tan θ sec θ 4x 25 sec θ tan θ and therefore sec θ + 3y tan θ 25. Where G is the x-intercept, y 0 and therefore 4x 25 sec θ 25 sec θ sec θ 25 and therefore x 4 and therefore G is ( 4, 0) and therefore

S 25 sec θ 25 sec θ 25 sec θ+20 G : SG ( 4 +5) : ( 4 5)( 25 sec θ 20 ) (5 sec θ+4) : (5 sec θ 4) S P : SP and therefore S P : SP S G : SG. 9. Write down the equations of the asymptotes of the hyperbola H : x 2 /9 y 2 /16 1. (i) Prove that the part of the tangent at P (3 sec θ, 4 tan θ) onh which is intercepted between the asymptotes is bisected at P. (ii) Show that this tangent forms with the asymptotes a triangle of constant area. (iii) Prove that the tangent intercepted between the asymptotes subtends a constant angle at a focus. Solution. For the hyperbola H : x 2 /9 y 2 /16 1, asymptotes are y ± 16 3 x ± 4 3 x. (i) For x 2 /9 y 2 /16 1, 2x/9 (2y/16) dy dy dx 0 and therefore dx 16x 16(3 sec θ) 9y 9(4 tan θ) 4 sec θ 3 tan θ at P (3 sec θ, 4 tan θ)onh and therefore Tan P is y 4 tan θ 4 sec θ 3 tan θ (x 3 sec θ) and therefore 3y tan θ 12 tan 2 θ 4xsec θ 12 sec 2 θ and therefore 4x sec θ 3y tan θ 12 sec 2 θ + 2 tan 2 θ 12(sec 2 θ tan 2 θ) 12 and if this tangent crosses the asymptote y 4 3x at A, then for A, y 4 3 x and 4x sec θ 3y tan θ 12 and therefore 4x sec θ 3( 4 3 ) tan θ 12 and therefore 4x sec θ 4x tan θ 12 and therefore x(4 sec θ 4 tan θ) 12 and therefore 12 x 4 sec θ 4 tan θ 12 4(sec θ tan θ) 3 sec θ tan θ and therefore y 4 3 ( 3 sec θ tan θ ) 4 sec θ tan θ 3 and therefore A is ( sec θ tan θ, 4 sec θ tan θ ). If Tan P crosses the asymptote y 4 3x at B, then for B, y 4 3 x and 4x sec θ 3y tan θ 12 and therefore 4x sec θ 3( 4 3x) tan θ 12 12 and therefore 4x sec θ +4xtan θ 12. x(4 sec θ + 4 tan θ) 12. x 12 4(sec θ+tan θ) 3 3 ( sec θ+tan θ, 4 sec θ+tan θ 3 sec θ tan θ + 3 sec θ+tan θ ( (3( (3( (3( 2 sec θ 2(1) sec θ+tan θ and therefore y 4 3 ( 3 ) and therefore the midpoint of AB is 2, 1 sec θ tan θ + 1 sec θ+tan θ sec θ+tan θ+sec θ tan θ 4 sec θ tan θ 4 sec θ+tan θ 2 ), 4( 2(sec 2 θ tan 2 θ) ), 4( 2 tan θ ), 4( 2(1) ) 2 ) 1 sec θ tan θ 1 sec θ+tan θ 2 )) sec θ+tan θ (sec θ tan θ) 2(sec 2 θ tan 2 θ) )) sec θ+tan θ ) 4 sec θ+tan θ 4 sec θ+4 tan θ and therefore B is (3 sec θ, 4 tan θ) P and therefore the part of the tangent at P (3 sec θ, 4 tan θ)onh which is intercepted between the asymptotes is bisected at P. (ii) Where O is the origin (0, 0), 3 OA ( sec θ tan θ )2 4 +( sec θ tan θ )2 9 16 (sec θ tan θ) + 2 (sec θ tan θ) 2 25 (sec θ tan θ) 2 5 sec θ tan θ.

3 OB ( sec θ+tan θ )2 4 +( sec θ+tan θ )2 9 16 (sec θ+tan θ) + 2 (sec θ+tan θ) 2 25 (sec θ+tan θ) 2 5 sec θ+tan θ. AOB 2 AOX 2 tan 1 4 ( sec θ tan θ / 3 sec θ tan θ ) 2 tan 1 4 3 Area AOB 1 2 OB OB sin AOB 1 2 5 sec θ tan θ 5 sec θ+tan θ sin(2 tan 1 4 3 ) 25 sec 2 θ tan 2 θ (sin tan 1 4 3 cos tan 1 4 3 ) 4 25( 3 4 2 +3 2 4 2 +3 2 )unit2 12 25( 4 2 +3 )unit 2 2 25( 12 25 unit2 12unit 2 which is a constant and therefore the tangent forms with the asymptotes of a triangle of constant area. (iii) The focus S is ( 9, 1+ 16 9, 0) (3( 5 3 ), 0) (5, 0) and therefore ASB 180 tan 1 (( 4 sec θ tan θ 0)/( 3 180 tan 1 (( 4 sec θ tan θ 1+(( 4 sec θ tan θ sec θ tan θ 5)) (( 4 sec θ+tan θ 0)/( 3 sec θ+tan θ 5)) sec θ tan θ 5))(( 4 sec θ+tan θ 0)/( 3 sec θ+tan θ 5)) 3 5(sec θ tan θ) 4 3 4(sec θ+tan θ) )/( sec θ tan θ )) (( sec θ+tan θ )/( sec θ+tan θ )) 3 5(sec θ tan θ) 4 3 5(sec θ+tan θ) )/( sec θ tan θ ))(( sec θ+tan θ )/( sec θ+tan θ )) 1+(( 4 sec θ tan θ 0)/( 3 180 tan 1 (4/(3 5(sec θ tan θ)))+(4/(3 5(sec θ+tan θ))) 1 (4/(3 5(sec θ tan θ)))(4/(3 5(sec θ+tan θ))) 180 tan 1 (4(3 5(sec θ+tan θ))+4(3 5(sec θ tan θ)))/((3 5(sec θ tan θ)(3 5(sec θ+tan θ))) ((3 5(sec θ tan θ))(3 5(sec θ+tan θ)) 4(4))/((3 5(sec θ tan θ)(3 5(sec θ+tan θ))) 180 tan 1 (4(3 5(sec θ+tan θ))+4(3 5(sec θ tan θ))) ((3 5(sec θ tan θ))(3 5(sec θ+tan θ)) 4(4) 1 12 20 sec θ 20 tan θ+12 20 sec θ+20 tan θ 9 15(sec θ+tan θ) 15(sec θ tan θ)+25(sec 2 θ tan 2 θ) 16 1 24 20 sec θ 180 tan 180 tan 25(1) 7 15 sec θ 15 tan θ 15 sec θ+15 tan θ 180 tan 1 4(6 10 sec θ) 18 30 sec θ 180 tan 1 4(6 10 sec θ) 3(6 10 sec θ) 180 tan 1 4 3 180 53 8 126 52 which is a constant and therefore the tangent intercepted between the asymptotes subtends a constant angle at a focus (53 8 at one focus and 126 52 at the other).

Lecture 26 Rectangualar Hyperbola - asymptotes are at 90 to each other. x 2 a 2 For y2 a 2 1orx 2 y 2 a 2 i.e., asymptotes: y ±x, eccentricity: e 1+ b2 a 2 2. swiveled around the origin, we get xy c 2 ofparametric equations x cp, y c p

Tangents and normals at P (cp, c p ): xy c 2 y c 2 x 1 dy dx c2 x 2 c2 x c2 2 (cp) (a + p) 1 2 p. 2 Tan P : y c p 1 p (x cp) x + p 2 y cp + cp x + p 2 y 2cp Norm P : y c p p2 (x cp) p 3 x py p 4 c c c(p 4 1).