Some identities related to Riemann zeta-function

Similar documents
A RECIPROCAL SUM RELATED TO THE RIEMANN ζ FUNCTION. 1. Introduction. 1 n s, k 2 = n 1. k 3 = 2n(n 1),

RECIPROCAL SUMS OF SEQUENCES INVOLVING BALANCING AND LUCAS-BALANCING NUMBERS

On Generalized Fibonacci Polynomials and Bernoulli Numbers 1

Sharp inequalities and asymptotic expansion associated with the Wallis sequence

The Greatest Common Divisor of k Positive Integers

The Spectral Norms of Geometric Circulant Matrices with Generalized Tribonacci Sequence

Some new sequences that converge to the Ioachimescu constant

Sums of finite products of Chebyshev polynomials of the third and fourth kinds

On some Diophantine equations

Sums of Tribonacci and Tribonacci-Lucas Numbers

Wirtinger inequality using Bessel functions

On Some Identities and Generating Functions

Fourier series of sums of products of ordered Bell and poly-bernoulli functions

Some new continued fraction sequence convergent to the Somos quadratic recurrence constant

1 Examples of Weak Induction

Research Article On Maslanka s Representation for the Riemann Zeta Function

Some inequalities for unitarily invariant norms of matrices

Discrete Math, Spring Solutions to Problems V

1. INTRODUCTION AND RESULTS

ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS

Trace inequalities for positive semidefinite matrices with centrosymmetric structure

198 VOLUME 46/47, NUMBER 3

Cullen Numbers in Binary Recurrent Sequences

All Good (Bad) Words Consisting of 5 Blocks

Research Article New Partition Theoretic Interpretations of Rogers-Ramanujan Identities

The Asymptotic Expansion of a Generalised Mathieu Series

ζ (s) = s 1 s {u} [u] ζ (s) = s 0 u 1+sdu, {u} Note how the integral runs from 0 and not 1.

k-jacobsthal and k-jacobsthal Lucas Matrix Sequences

Growth properties at infinity for solutions of modified Laplace equations

British Journal of Applied Science & Technology 10(2): 1-11, 2015, Article no.bjast ISSN:

Approximations to inverse tangent function

ON SUMS AND RECIPROCAL SUM OF GENERALIZED FIBONACCI NUMBERS BISHNU PADA MANDAL. Master of Science in Mathematics

LINEAR RECURRENCES AND CHEBYSHEV POLYNOMIALS

Exact Determinants of the RFPrLrR Circulant Involving Jacobsthal, Jacobsthal-Lucas, Perrin and Padovan Numbers

Research Article A New Roper-Suffridge Extension Operator on a Reinhardt Domain

New families of special numbers and polynomials arising from applications of p-adic q-integrals

Number Theory and Algebraic Equations. Odile Marie-Thérèse Pons

1.2 The Well-Ordering Principle

A class of mixed orthogonal arrays obtained from projection matrix inequalities

On the possible quantities of Fibonacci numbers that occur in some type of intervals

Congruences for central factorial numbers modulo powers of prime

Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions

Balancing And Lucas-balancing Numbers With Real Indices

Computing the Determinant and Inverse of the Complex Fibonacci Hermitian Toeplitz Matrix

CONGRUENCES FOR BERNOULLI - LUCAS SUMS

k-tuples of Positive Integers with Restrictions

On the solvability of an equation involving the Smarandache function and Euler function

Research Article On New Wilker-Type Inequalities

Sums of finite products of Legendre and Laguerre polynomials

Marcos J. González Departamento de Matemáticas Puras y Aplicadas, Universidad Simón Bolívar, Sartenejas, Caracas, Venezuela

On series of functions with the Baire property

Introduction to Induction (LAMC, 10/14/07)

HIGHER-ORDER DIFFERENCES AND HIGHER-ORDER PARTIAL SUMS OF EULER S PARTITION FUNCTION

Polyexponentials. Khristo N. Boyadzhiev Ohio Northern University Departnment of Mathematics Ada, OH

Series of Error Terms for Rational Approximations of Irrational Numbers

Some algebraic identities on quadra Fibona-Pell integer sequence

Partition Congruences in the Spirit of Ramanujan

BIVARIATE JACOBSTHAL AND BIVARIATE JACOBSTHAL-LUCAS MATRIX POLYNOMIAL SEQUENCES SUKRAN UYGUN, AYDAN ZORCELIK

ABSTRACT 1. INTRODUCTION

Oscillation theorems for nonlinear fractional difference equations

Research Article The Adjacency Matrix of One Type of Directed Graph and the Jacobsthal Numbers and Their Determinantal Representation

THE LAPLACE TRANSFORM OF THE FOURTH MOMENT OF THE ZETA-FUNCTION. Aleksandar Ivić

Research Article Fourier Series of the Periodic Bernoulli and Euler Functions

A System of Difference Equations with Solutions Associated to Fibonacci Numbers

ON THE DIVISOR FUNCTION IN SHORT INTERVALS

Fall 2017 Test II review problems

Strong convergence theorems for total quasi-ϕasymptotically

k-pell, k-pell-lucas and Modified k-pell Numbers: Some Identities and Norms of Hankel Matrices

Schwarz lemma involving the boundary fixed point

2 Simply connected domains

#A87 INTEGERS 18 (2018) A NOTE ON FIBONACCI NUMBERS OF EVEN INDEX

Proof of Lagarias s Elementary Version of the Riemann Hypothesis.

Optimal bounds for Neuman-Sándor mean in terms of the convex combination of the logarithmic and the second Seiffert means

Explicit Bounds Concerning Non-trivial Zeros of the Riemann Zeta Function

9 MODULARITY AND GCD PROPERTIES OF GENERALIZED FIBONACCI NUMBERS

The k-fibonacci matrix and the Pascal matrix

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

A Note on the Determinant of Five-Diagonal Matrices with Fibonacci Numbers

Diophantine Equations. Elementary Methods

5. Sequences & Recursion

Lyapunov-type inequalities and disconjugacy for some nonlinear difference system

Analytic. Number Theory. Exploring the Anatomy of Integers. Jean-Marie. De Koninck. Florian Luca. ffk li? Graduate Studies.

Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind

A regularity criterion for the generalized Hall-MHD system

Research Article Taylor s Expansion Revisited: A General Formula for the Remainder

On Some Combinations of Non-Consecutive Terms of a Recurrence Sequence

Some Fun with Divergent Series

An improved generalized Newton method for absolute value equations

Research Article A Note on Kantorovich Inequality for Hermite Matrices

Generalized divisor problem

On the Sylvester Denumerants for General Restricted Partitions

The generalized order-k Fibonacci Pell sequence by matrix methods

Pacific Journal of Mathematics

Introduction to Number Theory

Math 229: Introduction to Analytic Number Theory The product formula for ξ(s) and ζ(s); vertical distribution of zeros

A Generalization of the Gcd-Sum Function

Evidence for the Riemann Hypothesis

ON INTEGERS EXPRESSIBLE BY SOME SPECIAL LINEAR FORM. 1. Introduction

A first digit theorem for powerful integer powers

Florian Luca Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P , Morelia, Michoacán, México

Transcription:

Xin Journal of Inequalities and Applications 206 206:2 DOI 0.86/s660-06-0980-9 R E S E A R C H Open Access Some identities related to Riemann zeta-function Lin Xin * * Correspondence: estellexin@stumail.nwu.edu.cn School of Mathematics, Northwest University,Xi an,shaanxi,p.r.china Abstract It is well known that the Riemann zeta-function ζ s plays a very important role in the study of analytic number theory. In this paper, we use the elementary method and some new inequalities to study the computational problem of one kind of reciprocal sums related to the Riemann zeta-function at the integer point s 2, and for the special values s 2,, we give two exact identities for the integer part of the reciprocal sums of the Riemann zeta-function. For general integer s 4, we also propose an interesting open problem. MSC: B8; M06 Keywords: Riemann zeta-function; inequality; function [x]; identity; elementary method Introduction Let complex number s σ + it, ifσ >, then the famous Riemann zeta-function ζ s is defined by the Dirichlet series ζ s n n s, and it is analytic everywhere except for a simple pole at s with residue. As regards the various properties of ζ s, many mathematicians have studied them and obtained abundant research results. Some related work can be found in [ ], and [4]. However, many research results as regards the Riemann zeta-function basically can be summarized in three aspects: A the estimation of the order for the Riemann zetafunction; B the mean value theorem for the Riemann zeta-function; C the zeros density estimation for the Riemann zeta-function. Particularly with regard to a most important problem related to the zeros density estimation of the Riemann zeta-function one has the most famous Riemann hypothesis. This paper is inspired by [5, 6], and [7], we will study the properties of the Riemann zeta-function from another angle. For convenience, we first introduce the concept of the Fibonacci sequence {F n }: For all integers n, the famous Fibonacci sequence F n is defined by F n [ + 5 n 5 2 5 2 n ]. 206 Xin. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original authors and the source, provide a link to the Creative Commons license, and indicate if changes were made.

XinJournal of Inequalities and Applications 206 206:2 Page 2 of 6 It is clear that F n is a second-order linear recurrence sequence. That is, F n+ F n + F n with F 0 0andF. This sequence has many important positions in the research of pure mathematics and applied mathematics, and it has attracted of many scholars attention and interest. For example, Ohtsuka and Nakamura [5] first studied the properties of the reciprocal sums of F n, and they proved two identities: [ F k [ F 2 k ] ] { F n 2, F n 2, { F n F n, F n F n, ifn 2iseven; ifn isodd, ifn 2iseven; ifn is odd, where the function [x] denotes the greatest integer x. Xu and Wang [6] studied a similar problem. They considered the infinite sum of the cubes of the reciprocal F n and obtained a complex computational formula: [ ]. F k Zhang and Wang [7] considered the computational problem of Pell numbers and proved the identity [ P k ] { P n + P n 2, P n + P n 2, ifn 2isanevennumber; ifn isanoddnumber, where the Pell numbers P n are defined by P 0 0,P,andP n+ 2P n +P n for all integers n. Some other results related to recursive sequence, recursive polynomial and their promotion forms can also be found in [8 5], here no longer list them one by one. Inspired by the above, we may naturally ask: for the part sums of reciprocal Riemann zeta-function, does there exist a beautiful computational formula? That is to say, for any integers s 2 and n >, does there exist an interesting computational formula for [ ]. k s About this problem, as far as we know, it seems that none had studied it yet, we also have not seen any related result before. But we think this problem is very interesting and important, because it depicts other important properties of the Riemann zeta-function, especially the asymptotic properties of its part sums. The main purpose of this paper is to study this problem, and use the elementary method and some new inequalities to give two interesting identities for withs 2and.That is, we shall prove the following two conclusions. Theorem For any n, we have the identity [ ] n.

XinJournal of Inequalities and Applications 206 206:2 Page of 6 Theorem 2 For any positive integer n, we have [ ] 2nn. k For s 4, through inspection of the data, we found a very strange problem: there is no such an integral coefficient polynomial f x with degree that the following identity holds: [ ] f n. k 4 Therefore, how to give a precise calculation formula for withs 4isaverycomplicated problem. So we propose the following. Open problem For integer s 4, does there exist an exact computational formula for? We hope people who are interested in this problem can study it together with us, and solve this problem finally. 2 Several lemmas In this section, we shall give some simple lemmas, which are necessary in the proofs of our theorems. First we have the following inequality. Lemma For any integer n >,we have the inequality k < 2nn. Proof In fact, for any integer n 2, note that we have the decomposition n n + 2 n n + and we have k < 2 2 k kk kk + k and kk k + 2 n n n n k k + 2k k k + kk 2 2 n n kk + 2nn. This proves Lemma. Lemma 2 For any integer n 2, we also have the inequality 22n 22n + 22n2n ++ < 2n + 2n.

XinJournal of Inequalities and Applications 206 206:2 Page 4 of 6 Proof It is clear that for all integers n 2, the inequality in Lemma 2 is equivalent to the following inequality: or 2 2n2n + 2n 22n 2n 22n + 2 2n2n ++ 2 < 6n 2n 2 +6n 8n 2n 4n 4n 2 6n + 5 2 4n2 +2n + 2 < 6n 2n 2 +6n 8n 8n 2n 2 +6n, 2 but the inequality 2is equivalent to 8 4n 4 n 8n 2n 2 +6n < 6n 2n 2 +6n 6n 4 6n +2n + 5 4 or 256n 7 448n 6 +288n 5 80n 4 +8n <256n 7 448n 6 +288n 5 80n 4 +2n n 2 + 2 n 5 4. It is clear that isobvious,ifn 2. So inequality 2 isalsocorrect.thisproves Lemma 2. Lemma For any integer n 2, we have the inequality 22n2n + 22n + 22n ++ < 2n + 2n +. Proof It is clear that, to prove Lemma, we only need to prove the inequality 4n + 4n 2 +6n + 5 2 4n2 2n + 2 < 6n +2n 2 +6n + 8n 8n +2n 2 +6n +. 4 The inequality 4 is equivalent to the inequality 8 4n 4 + n 8n +2n 2 +6n + < 6n +2n 2 +6n + 6n 4 +6n 2n + 5 4 or 256n 7 +448n 6 +288n 5 +80n 4 +8n <256n 7 +448n 6 +288n 5 +80n 4 +2n +n 2 + 2n + 5 4. 5 It is clear that 5 holds, so inequality 4 is correct. That means that Lemma is correct.

XinJournal of Inequalities and Applications 206 206:2 Page 5 of 6 Proof of the theorems In this section, we shall complete the proofs of our theorems. First for any integer n 2, note that we have the inequalities and n k k + k < 2 kk So we have the inequality kk + < k k n. n < < n. It is clear that this inequality also holds if n. So for all integers n, we have the identity [ ] n. This proves Theorem. Now we prove Theorem 2. First we prove the inequality 2nn + < k. 6 In fact if n 2m > is an odd number, then from Lemma 2 we have k2m k 2k + 2k 2k + 2k > 2 2k 22k + 2k2k ++ 2 2 22m 22m ++. 7 Similarly, if n 2m is an even number, then from Lemma we have k 2m k 2k + 2k + 2k + 2k + > 2 2k2k + 2k + 22k ++ 2 2 22m 2m+. 8

XinJournal of Inequalities and Applications 206 206:2 Page 6 of 6 Combining inequalities 7, 8, and Lemma we may deduce the inequality 2nn + < k < 2nn, which implies 2nn < <2nn +. 9 k For any integer n 2, from the definition of the function [x]and9 we may immediately deduce the identity [ ] 2nn. 0 k If n,then k k >,so 0< k < or k [ k ] 0. k This completes the proof of Theorem 2. Competing interests The author declares that they have no competing interests. Acknowledgements The author would like to thank the referee for very helpful and detailed comments, which have significantly improved the presentation of this paper. This work was supported by the P. S. F. C. Grant No. 20JZ00 and N. S. F. C. Grant No. 729. Received: 4 December 205 Accepted: 9 January 206 References. Apostol, TM: Introduction to Analytic Number Theory. Springer, New York 976 2. Titchmarsh, EC: The Theory of the Riemann Zeta-Function. Oxford University Press, London 95; rev. ed. 986. Ivic, A: The Riemann Zeta-Function. Wiley, New York 985 4. Fergusson, RP: An application of Stieltjes integration to the power series coefficients of the Riemann zeta-function. Am. Math. Mon. 70, 60-6 96 5. Ohtsuka, H, Nakamura, S: On the sum of reciprocal Fibonacci numbers. Fibonacci Q. 46/47, 5-59 2008/2009 6. Xu, Z, Wang, T: The infinite sum of the cubes of reciprocal Fibonacci numbers. Adv. Differ. Equ. 20, 84 20 7. Wenpeng, Z, Tingting, W: The infinite sum of reciprocal Pell numbers. Appl. Math. Comput. 28, 664-667 202 8. Zhang, H, Wu, Z: On the reciprocal sums of the generalized Fibonacci sequences. Adv. Differ. Equ. 20, 77 20 9. Wu, Z, Zhang, H: On the reciprocal sums of higher-order sequences. Adv. Differ. Equ. 20, 89 20 0. Wu, Z, Zhang, W: The sums of the reciprocals of Fibonacci polynomials and Lucas polynomials. J. Inequal. Appl. 202, 4 202. Wu, Z, Zhang, W: Several identities involving the Fibonacci polynomials and Lucas polynomials. J. Inequal. Appl. 20, 205 20 2. Mansour, T, Shattuck, M: Restricted partitions and q-pell numbers. Cent. Eur. J. Math. 9, 46-55 20. Komatsu, T: On the nearest integer of the sum of reciprocal Fibonacci numbers. In: Proceedings of the Fourteenth International Conference on Fibonacci Numbers and Their Applications. Aportaciones Matematicas Investigacion, vol. 20, pp. 7-84 20 4. Komatsu, T, Laohakosol, V: On the sum of reciprocals of numbers satisfying a recurrence relation of orders. J. Integer Seq., Article ID 0.5.8 200 5. Kilic, E, Arikan, T: More on the infinite sum of reciprocal usual Fibonacci, Pell and higher order recurrences. Appl. Math. Comput. 29, 778-7788 20