Spurious Chaotic Solutions of Dierential. Equations. Sigitas Keras. September Department of Applied Mathematics and Theoretical Physics

Similar documents
Waveform Relaxation Method with Toeplitz. Operator Splitting. Sigitas Keras. August Department of Applied Mathematics and Theoretical Physics

290 J.M. Carnicer, J.M. Pe~na basis (u 1 ; : : : ; u n ) consisting of minimally supported elements, yet also has a basis (v 1 ; : : : ; v n ) which f

ON THE ASYMPTOTIC STABILITY IN TERMS OF TWO MEASURES FOR FUNCTIONAL DIFFERENTIAL EQUATIONS. G. Makay

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space

Novel Approach to Analysis of Nonlinear Recursions. 1 Department of Physics, Bar-Ilan University, Ramat-Gan, ISRAEL

Discrete Halanay-type inequalities and applications

Applied Mathematics &Optimization

B5.6 Nonlinear Systems

4.6 Montel's Theorem. Robert Oeckl CA NOTES 7 17/11/2009 1

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition)

Analysis on Graphs. Alexander Grigoryan Lecture Notes. University of Bielefeld, WS 2011/12

Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts 1 and Stephan Matthai 2 3rd Febr

Contents. 2.1 Vectors in R n. Linear Algebra (part 2) : Vector Spaces (by Evan Dummit, 2017, v. 2.50) 2 Vector Spaces

LECTURE 15 + C+F. = A 11 x 1x1 +2A 12 x 1x2 + A 22 x 2x2 + B 1 x 1 + B 2 x 2. xi y 2 = ~y 2 (x 1 ;x 2 ) x 2 = ~x 2 (y 1 ;y 2 1

Some Results Concerning Uniqueness of Triangle Sequences

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

ADDENDUM B: CONSTRUCTION OF R AND THE COMPLETION OF A METRIC SPACE

Symbolic Representations of Iterated Maps November 4, 2000 Xin-Chu Fu, Weiping Lu 2, Peter Ashwin and Jinqiao Duan 3. School of Mathematical Sciences,

Analog Neural Nets with Gaussian or other Common. Noise Distributions cannot Recognize Arbitrary. Regular Languages.


Math 1270 Honors ODE I Fall, 2008 Class notes # 14. x 0 = F (x; y) y 0 = G (x; y) u 0 = au + bv = cu + dv

ON A HYBRID PROXIMAL POINT ALGORITHM IN BANACH SPACES

Accumulation constants of iterated function systems with Bloch target domains

ARCHIVUM MATHEMATICUM (BRNO) Tomus 32 (1996), 13 { 27. ON THE OSCILLATION OF AN mth ORDER PERTURBED NONLINEAR DIFFERENCE EQUATION

2 C. A. Gunter ackground asic Domain Theory. A poset is a set D together with a binary relation v which is reexive, transitive and anti-symmetric. A s

Note On Parikh slender context-free languages

THE LARGEST INTERSECTION LATTICE OF A CHRISTOS A. ATHANASIADIS. Abstract. We prove a conjecture of Bayer and Brandt [J. Alg. Combin.

N.G.Bean, D.A.Green and P.G.Taylor. University of Adelaide. Adelaide. Abstract. process of an MMPP/M/1 queue is not a MAP unless the queue is a

Methods for a Class of Convex. Functions. Stephen M. Robinson WP April 1996

Constrained Leja points and the numerical solution of the constrained energy problem

2 THE COMPUTABLY ENUMERABLE SUPERSETS OF AN R-MAXIMAL SET The structure of E has been the subject of much investigation over the past fty- ve years, s

Congurations of periodic orbits for equations with delayed positive feedback

Journal of Inequalities in Pure and Applied Mathematics

Institute for Advanced Computer Studies. Department of Computer Science. On the Convergence of. Multipoint Iterations. G. W. Stewart y.

ON TRIVIAL GRADIENT YOUNG MEASURES BAISHENG YAN Abstract. We give a condition on a closed set K of real nm matrices which ensures that any W 1 p -grad

AN INEQUALITY FOR THE NORM OF A POLYNOMIAL FACTOR IGOR E. PRITSKER. (Communicated by Albert Baernstein II)

Rearrangements and polar factorisation of countably degenerate functions G.R. Burton, School of Mathematical Sciences, University of Bath, Claverton D

A Chaotic Phenomenon in the Power Swing Equation Umesh G. Vaidya R. N. Banavar y N. M. Singh March 22, 2000 Abstract Existence of chaotic dynamics in

REMARKS ON THE KKM PROPERTY FOR OPEN-VALUED MULTIMAPS ON GENERALIZED CONVEX SPACES

Math Camp Notes: Everything Else

Dynamical Systems. 1.0 Ordinary Differential Equations. 2.0 Dynamical Systems

4. (10 pts) Prove or nd a counterexample: For any subsets A 1 ;A ;::: of R n, the Hausdor dimension dim ([ 1 i=1 A i) = sup dim A i : i Proof : Let s

On-line Bin-Stretching. Yossi Azar y Oded Regev z. Abstract. We are given a sequence of items that can be packed into m unit size bins.

form, but that fails as soon as one has an object greater than every natural number. Induction in the < form frequently goes under the fancy name \tra

This method is introduced by the author in [4] in the case of the single obstacle problem (zero-obstacle). In that case it is enough to consider the v

which possibility holds in an ensemble with a given a priori probability p k log 2

460 HOLGER DETTE AND WILLIAM J STUDDEN order to examine how a given design behaves in the model g` with respect to the D-optimality criterion one uses

for average case complexity 1 randomized reductions, an attempt to derive these notions from (more or less) rst

Pade approximants and noise: rational functions

(1.) For any subset P S we denote by L(P ) the abelian group of integral relations between elements of P, i.e. L(P ) := ker Z P! span Z P S S : For ea

Notes on Iterated Expectations Stephen Morris February 2002

Coins with arbitrary weights. Abstract. Given a set of m coins out of a collection of coins of k unknown distinct weights, we wish to

Strong Convergence Theorem by a Hybrid Extragradient-like Approximation Method for Variational Inequalities and Fixed Point Problems

Lecture 2: Review of Prerequisites. Table of contents

X. Hu, R. Shonkwiler, and M.C. Spruill. School of Mathematics. Georgia Institute of Technology. Atlanta, GA 30332

DYNAMICAL PROPERTIES OF MONOTONE DENDRITE MAPS

1 More concise proof of part (a) of the monotone convergence theorem.

2 JUNCHENG WEI where p; q; r > 0; s and qr > s(p? ). (For backgrounds and recent progress, please see [2], [3], [0], [4], [5], [8], [9], [2], [27], [2

Note An example of a computable absolutely normal number

t x 0.25

Stability of implicit-explicit linear multistep methods

Sequences and Series

DAMTP 999/NA22 A radial basis function method for global optimization H.-M. Gutmann Abstract: We introduce a method that aims to nd the global minimum

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Preface These notes were prepared on the occasion of giving a guest lecture in David Harel's class on Advanced Topics in Computability. David's reques

Principle of Mathematical Induction

STOCHASTIC DIFFERENTIAL EQUATIONS WITH EXTRA PROPERTIES H. JEROME KEISLER. Department of Mathematics. University of Wisconsin.

Math 42, Discrete Mathematics

MAT1000 ASSIGNMENT 1. a k 3 k. x =

Logical Connectives and Quantifiers

2 BAISHENG YAN When L =,it is easily seen that the set K = coincides with the set of conformal matrices, that is, K = = fr j 0 R 2 SO(n)g: Weakly L-qu

The Mean Value Inequality (without the Mean Value Theorem)

HAMILTONIAN PATHS IN PROJECTIVE CHECKERBOARDS Margaret H. Forbush, Elizabeth Hanson, Susan Kim, Andrew Mauer-Oats, Rhian Merris, Jennifer Oats-Sargent

Weak solutions for some quasilinear elliptic equations by the sub-supersolution method

ROYAL INSTITUTE OF TECHNOLOGY KUNGL TEKNISKA HÖGSKOLAN. Department of Signals, Sensors & Systems

Recursive definitions on surreal numbers

Economics 472. Lecture 10. where we will refer to y t as a m-vector of endogenous variables, x t as a q-vector of exogenous variables,

and P RP k = gt k (g k? g k? ) kg k? k ; (.5) where kk is the Euclidean norm. This paper deals with another conjugate gradient method, the method of s

Alternative theorems for nonlinear projection equations and applications to generalized complementarity problems

Picard s Existence and Uniqueness Theorem

Minimal enumerations of subsets of a nite set and the middle level problem

ON STATISTICAL INFERENCE UNDER ASYMMETRIC LOSS. Abstract. We introduce a wide class of asymmetric loss functions and show how to obtain

Upper and Lower Bounds on the Number of Faults. a System Can Withstand Without Repairs. Cambridge, MA 02139

Zaslavsky s Theorem. As presented by Eric Samansky May 11, 2002

Tong Sun Department of Mathematics and Statistics Bowling Green State University, Bowling Green, OH

Linear Algebra (part 1) : Matrices and Systems of Linear Equations (by Evan Dummit, 2016, v. 2.02)

Computing the acceptability semantics. London SW7 2BZ, UK, Nicosia P.O. Box 537, Cyprus,

Average Reward Parameters

INVERSE LIMITS WITH SET VALUED FUNCTIONS. 1. Introduction

Decomposition of Riesz frames and wavelets into a finite union of linearly independent sets

First-Return Integrals

Asymptotic expansion of multivariate conservative linear operators

Linear Regression and Its Applications

epub WU Institutional Repository

QUASI-UNIFORMLY POSITIVE OPERATORS IN KREIN SPACE. Denitizable operators in Krein spaces have spectral properties similar to those

Markov processes Course note 2. Martingale problems, recurrence properties of discrete time chains.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

r( = f 2 L 2 (1.2) iku)! 0 as r!1: (1.3) It was shown in book [7] that if f is assumed to be the restriction of a function in C

1. Introduction The nonlinear complementarity problem (NCP) is to nd a point x 2 IR n such that hx; F (x)i = ; x 2 IR n + ; F (x) 2 IRn + ; where F is

Transcription:

UNIVERSITY OF CAMBRIDGE Numerical Analysis Reports Spurious Chaotic Solutions of Dierential Equations Sigitas Keras DAMTP 994/NA6 September 994 Department of Applied Mathematics and Theoretical Physics Silver Street Cambridge CB3 9EW England

Spurious Chaotic Solutions of Dierential Equations Sigitas Keras In this paper we present results concerning a chaotic behaviour of dierence equations. It is proved that there exists a horseshoe for the dierence equation y n+k+ = kx i= i y n+i + mx i=l i g(y n+i ); l m < k P m whenever is suciently large, provided that i=l i 6=, the function g is continuous and changes sign at least twice. This equation is of great importance in numerical analysis, since many well known numerical methods for ODEs, in particular multistep methods, can be rendered in this form. Some results concerning the non-chaotic case are also presented.. Introduction When we solve a dierential equation numerically, the accuracy of the numerical solution is our main but not the only concern. We also want the solution to preserve important qualitative features of the initial system: the number of stable and unstable steady states, the global behaviour of the trajectories, etc. This can easily be lost even in the simplest cases, as the following example illustrates. Let us consider a nonlinear second order equation u + u(? u) = u() = ; u () = v (.) It is known (?) that the solution of this equation can exhibit three dierent types of behaviour: u is periodic if jvj < v, with period T! as jvj! v ; 2 u! if jvj = v ; 3 u! if jvj > v. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, England (email S.Keras@amtp.cam.ac.uk)

2 Spurious Chaotic Solution 6.8 5.6.4 4.2 3 2 -.2 -.4 -.6 2 4 6 8 2 4 6 8 2 4 6 8 2 Fig.. The solution of the equation :2 with h 2 = : and v = :8 (v < v h ) Fig. 2. The solution of the equation :2 with h 2 = : and v = :9 (v > v h ) Let us now consider a simple numerical scheme for the equation (??) u n+? 2u n + u n? + u h 2 n (? u n ) = (.2) u? u u = ; = v h If h 2 is small (h 2 ), the solution of the equation (??) has the same structure as the continuous solution, i.e. it is periodic for v < v h and unbounded for v > v h with a critical value in between (Figures??,??). However, when h 2, the behaviour of the solution becomes much more complicated. While there still exist periodic solutions (Figure??), the set of initial values v for which the solution is periodic does not form an interval as in the continuous case. What is even more interesting, there are bounded solutions which are not periodic and clearly do not approximate any periodic continuous solution (Figure??). A closer inspection reveals that most of the solutions sooner or later become unbounded and this happens even if the initial value v is close to. In order to investigate this we will prove the following Lemma. Then u n! as n! Let us assume that the following inequality holds u < (.3) u k > for some k > (.4) Proof. Let i be the smallest number such that u i > u i?. It is easy to verify that, under the aforementioned assumptions, u i+ > u i. It follows by induction that u n monotonically increases if n i, hence, there exists a limit u of the sequence fu n g which may be nite or innite. If it is nite then u is a solution of the equation (u? 2u + u )=h 2 + u (? u ) =

Sigitas Keras 3.8.6.4.2 -.2 2 4 6 8 2 4 6 8.9.8.7.6.5.4.3.2. -. 2 4 6 8 2 4 6 Fig. 3. The solution of the equation :2 with h 2 = and v = 9:94292244498778 Fig. 4. The solution of the equation :2 with h 2 = and v = 8:99868987285 The only solutions for the equation above are u = ;, which leads to contradiction. Thus, u =. 2 Let D n denote the set of initial values for which u i < ; i = ; : : :; n. Figure?? displays the sets D 4 ; D 5 and D 6. Since D i contracts very fast as i!, for the purpose of a better visualisation we present only a half of the set D 5 at the interval [?:2; :2] and a quarter of the set D 6 at the interval [?:2; :6]. The whole set D 5 consists of 8 disjoint intervals and the whole set D 6 consists of 6 disjoint intervals. Numerical experiments suggest that in general D n consists of 2 n?2 intervals, so that D = \ D i= i is a Cantor set. Nothing similar to the continuous case, where the set D was a single interval! The fact that the equation (??) has a dierent structure of bounded solutions is not the only reason for our studies. Let us consider equation (??) as a boundary value problem with boundary values u() = u() =. It is known (?) that, if n 2 < (n + ) 2, the aforementioned equation has 2n? steady solutions. However, if h is not suciently small, the discretization (??) has 2 N?2 dierent steady solutions where N is the number of discretization points and is independent of. Figure?? shows a bifurcation diagram to the boundary value problem. While it is known (?) that in a continuous case all steady solutions bifurcate from a zero solution, one can notice that discretization produces spurious bifurcations. Since the steady states play an important role in a global dynamical behaviour of the nonlinear parabolic equation u t = u xx + u(? u); one may expect a dierent global behaviour of the solution of the equation above whenever h 2 is large. Spurious solutions as in Figure?? are examples of chaos in dierence equations and the equation (??) can be described by what is known in the theory of dynamical systems as a Smale's horseshoe map (?). Although very simple in appearance, Smale's horseshoe maps are dicult to investigate. The theory of spurious solutions for ODEs has been discussed

4 Spurious Chaotic Solution.8 -.2.2.4.6.8 n=4.6.4 y.2 -. -.8 -.6 -.4 -.2 n=5 -.2 -.4-2 2 4 6 8 2 4 6 n=6 x -3 -.6 2 3 4 5 lambda*h^2 Fig. 5. The sets D 4, D 5 and D 6 for the equation :2 with = Fig. 6. A bifurcation diagram for the equation :2 with N = 6 in (?,?,?,?) and chaotic spurious solutions have been found by (?,?,?). In our paper we will prove the existence of a horseshoe for a wide class of dierence equations which are of great importance in numerical analysis. In the next section we will present a background material from dynamical systems theory and prove the main results of this paper. Section 3 is devoted to some cases of the non-chaotic dierence equations. 2. Smale's horseshoe and dierence equations We commence this section by introducing several denitions from the theory of nonlinear dynamical systems. The original horseshoe map as dened by Stephen Smale (?) was a map of a square, where the image was a gure vaguely reminiscent of a horseshoe (Figure??). Smale considered the set D n of the initial values, for which the nth iterate of the map remains in the square and proved that D = \ D i= i is a Cantor set. It is possible to describe this behaviour using symbolic dynamics on binary sequences. It is proved in (?) that D n consists of 2 n disjoint sets D n (i), all of them in two vertical strips (Figure??), which is in fact the set D. We can assign a nite binary sequence of length n to each set D n (i), where the kth element of the sequence is either or depending on whether the kth iterate of the set D n (i) is in the upper or lower part of the \horseshoe". It is easy to prove (?) that in this case k iterations on a set correspond to the shift by k symbols in the corresponding binary sequence which leads to the following formal denition of the horseshoe map. Denition 2. Let S be some (nite or innite) set of symbols with more than one element and let I S = fi s js 2 Sg be a set of disjoint intervals in R. We say that the map : IS k 7! R has a horseshoe if for every sequence of symbols fs ig, where s i= i 2 S, there exists a sequence fy si g, y i= s i 2 I si such that (y si?k+ ; : : :; y si ) = y si+ The simplest case occurs when S has only two elements, S = f; g say. Our numerical example, as given in the introductory part of this paper, corresponds to this case.

Sigitas Keras 5 D f(d ) Fig. 7. The horseshoe map, and sets D and f(d ) Now we are able to formulate our main results Theorem 2. Consider the dierence equation y n+k+ = kx i= i y n+i + g(y n+j ); j k; (2.) where the function g is continuous and changes sign at least twice. Then for suciently large there exist two intervals I and I such that for every innite binary sequence fs i g i= there exists a sequence fy ng such that y n 2 I sn and y n satises the equation (??) Remark. The number of points where function g changes sign corresponds to the number of elements in S from our denition. This explains why we require the function g to change sign at least twice. Proof. We prove the theorem by induction. Without loss of generality we assume that g changes sign at the points and. Let I = [?; 2]. We dene M = max y n+i 2I X k i y n+i : i= Since g is continuous and changes sign at the points and, for small enough there exist intervals I and I such that the image of I i ; i = ; under g is [?; ] and I i does not contain other zeroes of the function g. Taking = (M + 2)= we deduce that the image of intervals I i under g is [?(M + 2); M + 2] In other words, for arbitrary values of y n+ ; : : :; y n+j? ; y n+j+ ; : : :; y n+k from interval I, when y n+j spans either of the intervals I, I, y n+k+ spans both intervals I and I. Now we can formulate our inductive assumption: A n Let S n be a binary sequence of length n, S n = fs i g n i=, and s i 2 f; g. Then there exists a compact set D n = D n (S n ) of initial values for equation (??) such that y i 2 I si

6 Spurious Chaotic Solution for i = ; : : :; n + j? and when y ; : : :; y k span D n then y n+j ; : : :; y n+k span both I and I. A is obviously true, since j k and we are free to chose initial values for the y ; : : :; y k. Suppose that A n is true. Without loss of generality we may assume that the last element of S n+ is. Let D n+ be a set of initial values such that y n+j 2 I. Under the assumption A n, D n+ D n is not an empty set, and, from our denition of the interval I, when y n+j spans I, y n+k+ spans both intervals I and I. Since I is compact and g is continuous, D n+ is compact. It follows now that D = \ i= D i is nonempty. 2 Theorem 2.2 Consider the following recurrence relation y n+k+ = mx i=l kx i= i y n+i + mx i=l i g(y n+i ); l m < k; (2.2) i 6= ; (2.3) where g is continuous and changes sign at least twice. Let j l j K = P mi=l+ j i j : Then If K > ; then for suciently large there exist two intervals I and I such that for every innite binary sequence fs i g there exists a sequence fy i= ng where y n 2 I sn and y n satises the equation (??) for all n = ; ; 2; : : :; 2 If K ; then for every nite binary sequence fs i g N there exist and two intervals I i= and I such that there exists a sequence fy n g N where y n= n 2 I sn and y n satises the equation (??) for all n = ; ; 2; : : :; N. Proof. The proof is similar to the previous one. Since the sum of coecients i is nonzero and our function g changes sign at least twice at the points x ; x, it is easy to see that for suciently large equation (??) has at least two equilibrium solutions z and z : z = kx i= i z + mx i=l i g(z ); = ; ; and z! x ; = ; as!. Without loss of generality we may assume that x =,

x =. We dene and rewrite equation (??) as f(; x ; : : :; x k ) = Sigitas Keras 7 kx i= i x i + mx i=l+ i g(x i ) y n+k+ = l g(y n+l ) + f(; y n+ ; : : :; y n+k ): Since g is continuous and changes sign twice, for small enough there exist distinct intervals I ; = ; such that Function g maps I to the interval [?; ] 2 Intervals I do not contain other zeroes of the function g except for x and x Let us dene constants M and M 2 M = max x ;:::;x k 2I [I M 2 = max x2i [I jxj: X k i x i ; i= If K >, we can take > (M +M 2 )=(K?) which results in the following inequalities: max l g(x) x2i > f(; x ; : : :; x k ) + M 2? min l g(x) x2i > f(; x ; : : :; x k ) + M 2 where x ; : : :; x k 2 I [ I. Similar inequalities can be obtained for the interval I. This means that when y n+l spans either of the intervals I, I, y n+k+ spans both intervals I and I for arbitrary values of y n ; : : :; y n+l? ; y n+l+ ; : : :; y n+k from I or I. Hence we may formulate an inductive assumption similar to A n from Theorem : A n Let S n be a sequence of n s or s, S n = fs i g n i=, and s i 2 f; g. Then there exists a compact set D n = D n (S n ) of initial values for equation (??) such that y i 2 I si for i = ; : : :; n + l and when y j ; j = ; : : :; k span D n, then y n+l+ ; : : :; y n+j span both I and I A is true since we are free to choose initial values for our equation (??) and (4:4{5) shows that A n yields A n+. Since D n D n? and D n is compact, D = \D n 6= ;. Consider now the case K. Let, I, I, M, M 2 be as in the rst part of the theorem We will need the following lemma Lemma 2. Let us x N. Then, if is suciently large, there exists a sequence of intervals I (n) ; = ; ; n = ; : : :; N? ; satisfying the following conditions. I () I ; I (n+) I (n) ; I (n+) 6= ;

8 Spurious Chaotic Solution Proof. max x2i (n) min x2i (n) l g(x) > max jf(; x ; : : :; x k )j + M 2 ; x ; : : :; x k 2 I (n+) [ I (n+) ; l g(x) <? max jf(; x ; : : :; x k )j? M 2 ; x ; : : :; x k 2 I (n+) [ I (n+) : Let us choose such that We dene c n recursively as follows It is easy to prove by induction that = M + M 2 N? X i= K i X N? c = = (M + M 2 ) K i i= c n = (c n?? M? M 2 )K X N?n c n = (M + M 2 ) K ; i which means that c n M + M 2 for all n N. Choose I (n) so that l g(x) maps I (n) to the interval I cn = (?c n ; c n ). The rst two conditions are satised since c n+ < c n and c = C. Inequality i= max jf(; x ; : : :; x k )j + M 2 Kc n+ + M + M 2 = c n ; yields that the last two conditions are also satised. 2 Now we can proceed as in the rst part of the theorem. x ; : : :; x k 2 I (n+) [ I (n+) A n Let S n be a sequence of n s or s, S n = fs i g n i=, and s i 2 f; g. Then there exist a set D n = D n (S n ) of initial values for equation (??) such that y i 2 I s (i) i for i = ; : : :; n + l and when y j ; j = ; : : :; k span D n, then y n+l+ ; : : :; y n+j span both I (n+l+) and I (n+l+), where I s (i) i 2 I si A is true and A follows from n+ A n if we choose large enough and dene intervals I (i) as in Lemma 2:. 2 3. Non-chaotic case One may ask what happens when the function g has less then two real zeroes. Unfortunately, no general results for dierence equations of type (??) or (??) are available. The following two theorems address themselves to a much simpler case. Nevertheless, they are of considerable interest in numerical analysis, because of their relevance to two-step methods for second order nonlinear ODEs.

Theorem 3. Sigitas Keras 9 Let us consider the following dierence equation y n+ = 2y n? y n?? g(y n ) (3.) Suppose that g does not change sign. Then ^y = lim n! y n exists on the extended real line and, unless g(^y) =, it is true that j^yj = Proof. Indeed, from (??) we have by induction y n+? y n = y n? y n?? g(y n ) = = y? y? nx i= g(y i ) (3.2) Without loss of generality we may assume that the function g is nonpositive. Then the expression on the right hand side of (??) is monotonically increasing as n! and changes its sign at most once. This means that for suciently large n the expression y n+? y n has a constant sign, i.e. y n is monotonic and hence tends to a limit. Let ^y = lim n! y n and suppose that g(^y) 6=. Then the expression on the right hand side of (??) has an innite limit and so does y n. 2 Theorem 3.2 Suppose that g changes sign at the point x and that g(x) > for x < x and g(x) < for x > x. Then ^y = lim n! y n exists on the extended real line and, unless g(^y) =, it is true that j^yj = Proof. Without loss of generality we may assume that x = and that y < y. Let us recall equation (??). It is easy to see that if y >, then y n! +. If y < then y i+? y i is decreasing and y i is increasing, so that for some n either y n > ; y n? y n? >, with following monotonous convergence to +, or y n < ; y n? y n? < with following monotonous convergence to?, or y n+? y n! ; y n! ^y as n!. In the latter case we deduce again that the sum on the right hand side of (??) has a nite limit, hence = lim n! g(y n ) = g(^y). 2 4. Acknowledgments The author would like to thank Dr Arieh Iserles, Prof. Mike Powell and Prof. Herb Keller for many useful comments on this work. The author was supported by Leslie Wilson Scholarship from Magdalene College, Cambridge and ORS award. REFERENCES Chafee, N. & Infante, E. (974), `A bifurcation problem for a nonlinear parabolic equation', Jnl Appl. Anal. 4, 7{37. Davis, H. T. (962), Introduction to Nonlinear Dierential and Integral Equations, Dover Publications, Inc, New York. Griths, D. F. & Mitchell, A. R. (988), `Stable periodic bifurcations of an explicit discretization of a nonlinear partial dierential equation in reaction diusio', IMA J. Num. Anal. 8, 435{454. Henry, D. (98), Geometric theory of semilinear parabolic equations, Springer-Verlag, Berlin, New York.

Spurious Chaotic Solution Humphries, A. R. (993), `Spurious solutions of numerical methods for initial value problems', IMA J. Num. Anal. 3, 263{29. Iserles, A. (99), `Stability and dynamics of numerical methods for nonlinear ordinary dierential equations', IMA J. Num. Anal., {3. Iserles, A., Peplow, A. T. & Stuart, A. M. (99), `A unied approach to spurious solutions introduced by time discretisation. Part : Basic theory', SIAM J. Num. Anal. 28, 723{75. Keener, J. P. (987), `Propagation and its failure in coupled systems of discrete excitable cells', SIAM Jnl Appl. Maths 47, 556{557. Mitchell, A. R. & Bruch, J. C. (985), `A numerical study of chaos in a reaction-diusion equation', Num. Meth. PDE, 3{23. Smale, S. (967), `Dierentiable dynamical systems', Bull. Amer. Math. Soc. 73, 747{87. Stuart, A. M. & Peplow, A. T. (99), `The dynamics of the theta method', SIAM J. Sci.Stat. Comp 2, 35{372.