Transcendental Numbers and Hopf Algebras

Similar documents
The four exponentials conjecture, the six exponentials theorem and related statements.

Lecture III. Five Lie Algebras

Dependence of logarithms on commutative algebraic groups

AN EXACT SEQUENCE FOR THE BROADHURST-KREIMER CONJECTURE

PROBLEMS, MATH 214A. Affine and quasi-affine varieties

Quantum Groups. Jesse Frohlich. September 18, 2018

Polynomial Hopf algebras in Algebra & Topology

Transcendental Number Theory: Recent Results and Conjectures

Combinatorial Dyson-Schwinger equations and systems I Feynma. Feynman graphs, rooted trees and combinatorial Dyson-Schwinger equations

Renormalization and Euler-Maclaurin Formula on Cones

Multiple divisor functions, their algebraic structure and the relation to multiple zeta values

A global version of the quantum duality principle

Supported by a Royal Society professorship and by an NSF grant.

THE QUANTUM DOUBLE AS A HOPF ALGEBRA

Hopf Algebras. Zajj Daugherty. March 6, 2012

CHAPTER 1. AFFINE ALGEBRAIC VARIETIES

Galois Theory of Several Variables

1 Recall. Algebraic Groups Seminar Andrei Frimu Talk 4: Cartier Duality

Frobenius Green functors

c Copyright 2013 Guangbin Zhuang

NOTES ON POLYNOMIAL REPRESENTATIONS OF GENERAL LINEAR GROUPS

The algebra of multiple divisor functions and applications to multiple zeta values

THE CLASSICAL HOM-YANG-BAXTER EQUATION AND HOM-LIE BIALGEBRAS. Donald Yau

Elementary (super) groups

7. Baker-Campbell-Hausdorff formula

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

On the renormalization problem of multiple zeta values

Transcendence theory in positive characteristic

Quantum Groups and Link Invariants

MATH 101B: ALGEBRA II PART A: HOMOLOGICAL ALGEBRA

Math 121 Homework 5: Notes on Selected Problems

LECTURES ON THE HODGE-DE RHAM THEORY OF THE FUNDAMENTAL GROUP OF P 1 {0, 1, }

NOTES ON MODULES AND ALGEBRAS

REPRESENTATIONS OF FINITE GROUPS OF LIE TYPE: EXERCISES. Notation. 1. GL n

Hopf algebra structures in particle physics

Graded modules over generalized Weyl algebras

Since G is a compact Lie group, we can apply Schur orthogonality to see that G χ π (g) 2 dg =

Sheet 11. PD Dr. Ralf Holtkamp Prof. Dr. C. Schweigert Hopf algebras Winter term 2014/2015. Algebra and Number Theory Mathematics department

An example of generalization of the Bernoulli numbers and polynomials to any dimension

Nonassociative Lie Theory

Ringel-Hall Algebras II

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

An introduction to arithmetic groups. Lizhen Ji CMS, Zhejiang University Hangzhou , China & Dept of Math, Univ of Michigan Ann Arbor, MI 48109

UNIVERSAL DERIVED EQUIVALENCES OF POSETS

Transcendence in Positive Characteristic

LECTURE 3: REPRESENTATION THEORY OF SL 2 (C) AND sl 2 (C)

Explicit Methods in Algebraic Number Theory

ne varieties (continued)

Lie Superalgebras and Lie Supergroups, II

Combinatorial Hopf algebras in particle physics I

CATEGORICAL GROTHENDIECK RINGS AND PICARD GROUPS. Contents. 1. The ring K(R) and the group Pic(R)

13:00 13:50 poly-euler L

Thus we get. ρj. Nρj i = δ D(i),j.

Formal Groups. Niki Myrto Mavraki

Introduction to Tree Algebras in Quantum Field Theory

where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4)

ALGEBRAIC GROUPS J. WARNER

DION 2005 TIFR December 17, The role of complex conjugation in transcendental number theory

Representations and Linear Actions

Quantizations and classical non-commutative non-associative algebras

3.1. Derivations. Let A be a commutative k-algebra. Let M be a left A-module. A derivation of A in M is a linear map D : A M such that

Zero estimates for polynomials inspired by Hilbert s seventh problem

INTRO TO TENSOR PRODUCTS MATH 250B

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Toward a representation theory of the group scheme represented by the dual Steenrod algebra. Atsushi Yamaguchi

The Hopf algebraic structure of stochastic expansions and efficient simulation

Elliptic multiple zeta values

58 CHAPTER 2. COMPUTATIONAL METHODS

FUNCTORS AND ADJUNCTIONS. 1. Functors

2-DIMENSIONAL TOPOLOGICAL QUANTUM FIELD THEORIES AND FROBENIUS ALGEBRAS. Contents 1. The main theorem 1

SELF-DUAL HOPF QUIVERS

CONTINUITY. 1. Continuity 1.1. Preserving limits and colimits. Suppose that F : J C and R: C D are functors. Consider the limit diagrams.

COLOR LIE RINGS AND PBW DEFORMATIONS OF SKEW GROUP ALGEBRAS

Finite generation of the cohomology rings of some pointed Hopf algebras

ALGEBRAIC GROUPS JEROEN SIJSLING

Hirota equation and the quantum plane

Why Do Partitions Occur in Faà di Bruno s Chain Rule For Higher Derivatives?

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III

Outline of the Seminar Topics on elliptic curves Saarbrücken,

On combinatorial zeta functions

arxiv: v1 [math.ra] 11 Apr 2016

Thus, the integral closure A i of A in F i is a finitely generated (and torsion-free) A-module. It is not a priori clear if the A i s are locally

The hyperbolic Ax-Lindemann-Weierstraß conjecture

Exercises of the Algebraic Geometry course held by Prof. Ugo Bruzzo. Alex Massarenti

Solutions of exercise sheet 11

On Algebraic and Semialgebraic Groups and Semigroups

MATH 101A: ALGEBRA I PART C: TENSOR PRODUCT AND MULTILINEAR ALGEBRA. This is the title page for the notes on tensor products and multilinear algebra.

Hopf Algebras and Related Topics Conference

Real Analysis Prelim Questions Day 1 August 27, 2013

Monoidal Categories, Bialgebras, and Automata

HOPF ALGEBRAS IN COMBINATORICS

QUANTUM DOUBLE FOR QUASI-HOPF ALGEBRAS

A GLIMPSE OF ALGEBRAIC K-THEORY: Eric M. Friedlander

FILTERED RINGS AND MODULES. GRADINGS AND COMPLETIONS.

NATIONAL BOARD FOR HIGHER MATHEMATICS. Research Scholarships Screening Test. Saturday, February 2, Time Allowed: Two Hours Maximum Marks: 40

Multivariable Calculus and Matrix Algebra-Summer 2017

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2016

Notes on p-divisible Groups

EXERCISES IN MODULAR FORMS I (MATH 726) (2) Prove that a lattice L is integral if and only if its Gram matrix has integer coefficients.

Transcription:

Transcendental Numbers and Hopf Algebras Michel Waldschmidt Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 1

Algebraic groups (commutative, linear, over Q) Exponential polynomials Transcendence of values of exponential polynomials Hopf algebras (commutative, cocommutative, of finite type) Algebra of multizeta values Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 2

Commutative linear algebraic groups over Q G = G d 0 a G d 1 m d = d 0 + d 1 G(Q) = Q d0 (Q ) d 1 (β 1,..., β d0, α 1,..., α d1 ) Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 3

Commutative linear algebraic groups over Q G = G d 0 a G d 1 m d = d 0 + d 1 G(Q) = Q d0 (Q ) d 1 exp G : T e (G) = C d G(C) = C d 0 (C ) d 1 (z 1,..., z d ) (z 1,..., z d0, e z d 0 +1,..., e z d) Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 4

Commutative linear algebraic groups over Q G = G d 0 a G d 1 m d = d 0 + d 1 G(Q) = Q d0 (Q ) d 1 exp G : T e (G) = C d G(C) = C d 0 (C ) d 1 (z 1,..., z d ) (z 1,..., z d0, e z d 0 +1,..., e z d) For α j and β i in Q, exp G (β 1,..., β d0, log α 1,..., log α d1 ) G(Q) Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 5

Baker s Theorem. If β 0 + β 1 log α 1 + + β n log α n = 0 with algebraic β i and α j, then 1. β 0 = 0 2. If (β 1,..., β n ) (0,..., 0), then log α 1,..., log α n are Q- linearly dependent. 3.If (log α 1,..., log α n ) (0,..., 0), then β 1,..., β n are Q- linearly dependent. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 6

Example: (3 2 5) log 3 + 5 log 9 log 27 = 0. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 7

Example: (3 2 5) log 3 + 5 log 9 log 27 = 0. Corollaries. 1. Hermite-Lindemann (n = 1): transcendence of e, π, log 2, e 2. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 8

Example: (3 2 5) log 3 + 5 log 9 log 27 = 0. Corollaries. 1. Hermite-Lindemann (n = 1): transcendence of e, π, log 2, e 2. 2. Gel fond-schneider (n = 2, β 0 = 0): transcendence of 2 2, log 2/ log 3, e π. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 9

Example: (3 2 5) log 3 + 5 log 9 log 27 = 0. Corollaries. 1. Hermite-Lindemann (n = 1): transcendence of e, π, log 2, e 2. 2. Gel fond-schneider (n = 2, β 0 = 0): transcendence of 2 2, log 2/ log 3, e π. 3. Example with n = 2, β 0 0: transcendence of 1 0 dx 1 + x 3 = 1 3 log 2 + π 3 3 Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 10

Strong Six Exponentials Theorem. If x 1, x 2 are two complex numbers which are Q-linearly independent, if y 1, y 2, y 3 are three complex numbers which are Q-linearly independent and if β ij are six algebraic numbers such that e x iy j β ij Q for i = 1, 2, j = 1, 2, 3, then x i y j = β ij for i = 1, 2, j = 1, 2, 3. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 11

Strong Six Exponentials Theorem. If x 1, x 2 are two complex numbers which are Q-linearly independent, if y 1, y 2, y 3 are three complex numbers which are Q-linearly independent and if β ij are six algebraic numbers such that e x iy j β ij Q for i = 1, 2, j = 1, 2, 3, then x i y j = β ij for i = 1, 2, j = 1, 2, 3. Corollary 1 (Six Exponentials Theorem). the six numbers One at least of is transcendental. e x iy j (i = 1, 2, j = 1, 2, 3) Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 12

Strong Four Exponentials Conjecture. If x 1, x 2 are two complex numbers which are Q-linearly independent, if y 1, y 2, are two complex numbers which are Q-linearly independent and if β 11, β 12, β 21, β 22, are four algebraic numbers such that the four numbers e x 1y 1 β 11, e x 1y 2 β 12, e x 2y 1 β 21, e x 2y 2 β 22 are algebraic, then x i y j = β ij for i = 1, 2, j = 1, 2. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 13

Strong Four Exponentials Conjecture. If x 1, x 2 are Q- linearly independent, if y 1, y 2, are Q-linearly independent and if β 11, β 12, β 21, β 22, are four algebraic numbers such that e x 1y 1 β 11, e x 1y 2 β 12, e x 2y 1 β 21, e x 2y 2 β 22 are algebraic, then x i y j = β ij for i = 1, 2, j = 1, 2. Special case (Four Exponentials Conjecture). of the four numbers One at least e x 1y 1, e x 1y 2, e x 2y 1, e x 2y 2 is transcendental. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 14

Corollary 2 (Strong Five Exponentials Theorem). If x 1, x 2 are Q-linearly independent, if y 1, y 2 are Q-linearly independent and if α, β 11, β 12, β 21, β 22, γ are six algebraic numbers such that e x 1y 1 β 11, e x 1y 2 β 12, e x 2y 1 β 21, e x 2y 2 β 22, e (γx 2/x 1 ) α are algebraic, then x i y j = β ij for i = 1, 2, j = 1, 2 and also γx 2 = αx 1. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 15

Corollary 2 (Strong Five Exponentials Theorem). If x 1, x 2 are Q-linearly independent, if y 1, y 2 are Q-linearly independent and if α, β 11, β 12, β 21, β 22, γ are six algebraic numbers such that e x 1y 1 β 11, e x 1y 2 β 12, e x 2y 1 β 21, e x 2y 2 β 22, e (γx 2/x 1 ) α are algebraic, then x i y j = β ij for i = 1, 2, j = 1, 2 and also γx 2 = αx 1. Proof. Set y 3 = γ/x 1, β 13 = γ, β 23 = α, so that x 1 y 3 β 13 = 0 and x 2 y 3 β 23 = (γx 2 /x 1 ) α. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 16

Corollary 2 (Strong Five Exponentials Theorem). If x 1, x 2 are Q-linearly independent, y 1, y 2 are Q-linearly independent and α, β 11, β 12, β 21, β 22, γ are algebraic numbers such that e x 1y 1 β 11, e x 1y 2 β 12, e x 2y 1 β 21, e x 2y 2 β 22, e (γx 2/x 1 ) α are algebraic, then x i y j = β ij for i = 1, 2, j = 1, 2. Five Exponentials Theorem. If x 1, x 2 are Q-linearly independent, y 1, y 2 are Q-linearly independent and γ is a non zero algebraic number, then one at least of the five numbers is transcendental. e x 1y 1, e x 1y 2, e x 2y 1, e x 2y 2, e γx 2/x 1 Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 17

More general result (D. Roy). If x 1, x 2 are Q-linearly independent and if y 1, y 2, y 3 are Q-linearly independent, then one at least of the six numbers is not of the form x i y j (i = 1, 2, j = 1, 2, 3) β ij + l h=1 β ijh log α h. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 18

Very Strong Four Exponentials Conjecture. If x 1, x 2 are Q- linearly independent and if y 1, y 2, are Q-linearly independent, then one at least of the four numbers x 1 y 1, x 1 y 2, x 2 y 1, x 2 y 2 does not belong to the Q-vector space { } l β 0 + β h log α h ; α i and β j algebraic h=1 spanned by 1 and exp 1 (Q ). Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 19

Values of exponential polynomials Proof of Baker s Theorem. Assume β 0 + β 1 log α 1 + + β n 1 log α n 1 = log α n (B 1 ) (Gel fond Baker s Method) Functions: z 0, e z 1,..., e z n 1, e β 0z 0 +β 1 z 1 + +β n 1 z n 1 Points: Z(1, log α 1,..., log α n 1 ) C n Derivatives: / z i, (0 i n 1). Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 20

Values of exponential polynomials Proof of Baker s Theorem. Assume β 0 + β 1 log α 1 + + β n 1 log α n 1 = log α n (B 1 ) (Gel fond Baker s Method) Functions: z 0, e z 1,..., e z n 1, e β 0z 0 +β 1 z 1 + +β n 1 z n 1 Points: Z(1, log α 1,..., log α n 1 ) C n Derivatives: / z i, (0 i n 1). n + 1 functions, n variables, 1 point, n derivatives Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 21

Another proof of Baker s Theorem. Assume again β 0 + β 1 log α 1 + + β n 1 log α n 1 = log α n (B 2 ) (Generalization of Schneider s method) Functions: z 0, z 1,..., z n 1, e z 0 α z 1 1 αz n 1 n 1 = exp{z 0 + z 1 log α 1 + + z n 1 log α n 1} Points: {0} Z n 1 + Z(β 0,,..., β n 1 ) C n Derivative: / z 0. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 22

Another proof of Baker s Theorem. Assume again β 0 + β 1 log α 1 + + β n 1 log α n 1 = log α n (B 2 ) (Generalization of Schneider s method) Functions: z 0, z 1,..., z n 1, e z 0 α z 1 1 αz n 1 n 1 = exp{z 0 + z 1 log α 1 + + z n 1 log α n 1} Points: {0} Z n 1 + Z(β 0,,..., β n 1 ) C n Derivative: / z 0. n + 1 functions, n variables, n points, 1 derivative Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 23

Proof of the strong six exponentials Theorem Assume x 1,..., x a are Q-linearly independent, y 1,..., y b are Q-linearly independent and β ij are algebraic numbers such that with ab > a + b. e x iy j β ij Q for i = 1,..., a,, j = 1,..., b Functions: z i, e x i(z a+1 +z 1 ) z i (1 i a) Points: (β 1j,..., β aj, y j β 1j ) C a+1 (1 j b) Derivatives: / z i (2 i a) et / z a+1 / z 1. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 24

Proof of the strong six exponentials Theorem Assume x 1,..., x a are Q-linearly independent, y 1,..., y b are Q-linearly independent and β ij are algebraic numbers such that with ab > a + b. e x iy j β ij Q for i = 1,..., a,, j = 1,..., b Functions: z i, e x i(z a+1 +z 1 ) z i (1 i a) Points: (β 1j,..., β aj, y j β 1j ) C a+1 (1 j b) Derivatives: / z i (2 i a) and / z a+1 / z 1. 2a functions, a + 1 variables, b points, a derivatives Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 25

Linear Subgroup Theorem G = G d 0 a G d 1 m, d = d 0 + d 1. W T e (G) a C-subspace which is rational over Q. Let l 0 be its dimension. Y T e (G) a finitely generated subgroup with Γ = exp(y ) contained in G(Q) = Q d0 (Q ) d 1. Let l 1 be the Z-rank of Γ. V T e (G) a C-subspace containing both W and Y. Let n be the dimension of V. Hypothesis: n(l 1 + d 1 ) < l 1 d 1 + l 0 d 1 + l 1 d 0 Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 26

n(l 1 + d 1 ) < l 1 d 1 + l 0 d 1 + l 1 d 0 d 0 + d 1 is the number of functions d 0 are linear d 1 are exponential n is the number of variables l 0 is the number of derivatives l 1 is the number of points Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 27

d 0 d 1 l 0 l 1 n Baker B 1 1 n n 1 n Baker B 2 n 1 1 n n Six exponentials a a a b a + 1 Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 28

Baker: d 0 d 1 l 0 l 1 n Baker B 1 1 n n 1 n Baker B 2 n 1 1 n n Six exponentials a a a b a + 1 n(l 1 + d 1 ) = n 2 + n l 1 d 1 + l 0 d 1 + l 1 d 0 = n 2 + n + 1 Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 29

d 0 d 1 l 0 l 1 n Baker B 1 1 n n 1 n Baker B 2 n 1 1 n n Six exponentials a a a b a + 1 Baker: n(l 1 + d 1 ) = n 2 + n l 1 d 1 + l 0 d 1 + l 1 d 0 = n 2 + n + 1 Six exponentials: a + b < ab n(l 1 + d 1 ) = a 2 + ab + a + b l 1 d 1 + l 0 d 1 + l 1 d 0 = a 2 + 2ab Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 30

duality: (d 0, d 1, l 0, l 1 ) (l 0, l 1, d 0, d 1 ) ( ) s d ( z t e xz) ( ) t d dz = ( z=y z s e yz) dz. z=x Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 31

Fourier-Borel duality: (d 0, d 1, l 0, l 1 ) (l 0, l 1, d 0, d 1 ) ( ) s d ( z t e xz) ( ) t d dz = ( z=y z s e yz) dz. z=x ( ) s d L sy : f f(y). dz f ζ (z) = e zζ, L sy (f ζ ) = ζ s e yζ. ( ) t d L sy (z t f ζ ) = L sy(f ζ ). dζ Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 32

For v = (v 1,..., v n ) C n, set D v = v 1 + + v n z 1 z n Let w 1,..., w l0, u 1,..., u d0, x and y in C n, t N d 0 s N l 0. For z C n, write and Then (uz) t = (u 1 z) t1 (u d0 z) t d 0 and D s w = D s 1 w 1 D s l 0 w l0. D s w( (uz) t e xz) z=y = D t u( (wz) s e yz) z=x Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 33

Hopf Algebras (over k = C or k = Q) Algebras A k-algebra (A, m, η) is a k-vector space A with a product m : A A A and a unit η : k A which are k-linear maps such that the following diagrams commute: (Associativity) A A A Id m m Id A A A A m A m (Unit) k A η Id A A Id η A k m A = A = A Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 34

Coalgebras A k-coalgebra (A,, ɛ) is a k-vector space A with a coproduct : A A A and a counit ɛ : A k which are k-linear maps such that the following diagrams commute: (Coassociativity) A A A Id A A Id A A A (Counit) A = A = A k A A A A k ɛ Id Id ɛ Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 35

Bialgebras A bialgebra (A, m, η,, ɛ) is a k-algebra (A, m, η) together with a coalgebra structure (A,, ɛ) which is compatible: and ɛ are algebra morphisms (xy) = (x) (y), ɛ(xy) = ɛ(x)ɛ(y). Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 36

Hopf Algebras A Hopf algebra (H, m, η,, ɛ, S) is a bialgebra (H, m, η,, ɛ) with an antipode S : H H which is a k-linear map such that the following diagram commutes: H H H H H Id S η ɛ S Id H H m H m H H Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 37

In a Hopf Algebra the primitive elements (x) = x 1 + 1 x satisfy ɛ(x) = 0 and S(x) = x; they form a Lie algebra for the bracket [x, y] = xy yx. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 38

In a Hopf Algebra the primitive elements (x) = x 1 + 1 x satisfy ɛ(x) = 0 and S(x) = x; they form a Lie algebra for the bracket [x, y] = xy yx. The group-like elements (x) = x x, x 0 are invertible, they satisfy ɛ(x) = 1, S(x) = x 1 and form a multiplicative group. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 39

Example 1. Let G be a finite multiplicative group, kg the algebra of G over k which is a k vector-space with basis G. The mapping extends the product of G by linearity. The unit maps 1 to 1 G. m : kg kg kg (x, y) xy η : k kg Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 40

Define a coproduct and a counit : kg kg kg and ɛ : kg k by extending (x) = x x and ɛ(x) = 1 for x G by linearity. The antipode S : kg kg is defined by S(x) = x 1 for x G. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 41

Since (x) = x x for x G this Hopf algebra kg is cocommutative. It is a commutative algebra if and only if G is commutative. The set of group like elements is G: one recovers G from kg. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 42

Example 2. Again let G be a finite multiplicative group. Consider the k- algebra k G of mappings G k, with basis δ g (g G), where δ g (g ) = { 1 for g = g, 0 for g g. Define m by m(δ g δ g ) = δ g δ g. Hence m is commutative and m(δ g δ g ) = δ g for g G. The unit η : k k G maps 1 to g G δ g. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 43

Define a coproduct : k G k G k G and a counit ɛ : k G k by (δ g ) = δ g δ g and ɛ(δ g ) = δ g (1 G ). g g =g The coproduct is cocommutative if and only if the group G is commutative. Define an antipode S by S(δ g ) = δ g 1. Remark. One may identify k G k G and k G G with δ g δ g = δ g,g. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 44

Duality of Hopf Algebras The Hopf algebras kg from example 1 and k G from example 2 are dual from each other: kg k G k (g 1, δ g2 ) δ g2 (g 1 ) The basis G of kg is dual to the basis (δ g ) g G of k G. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 45

Example 3. Let G be a topological compact group over C. Denote by R(G) the set of continuous functions f : G C such that the translates f t : x f(tx), for t G, span a finite dimensional vector space. Define a coproduct, a counit ɛ and an antipode S on R(G) by f(x, y) = f(xy), ɛ(f) = f(1), Sf(x) = f(x 1 ) for x, y G. Hence R(G) is a commutative Hopf algebra. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 46

Example 4. Let g be a Lie algebra, U(g) its universal envelopping algebra, namely T(g)/I where T(g) is the tensor algebra of g and I the two sided ideal generated by XY Y X [X, Y ]. Define a coproduct, a counit ɛ and an antipode S on U(g) by for x g. (x) = x 1 + 1 x, ɛ(x) = 0, S(x) = x Hence U(g) is a cocommutative Hopf algebra. The set of primitive elements is g: one recovers g from U(g). Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 47

Duality of Hopf Algebras (again) Let G be a compact connected Lie group with Lie algebra g. Then the two Hopf algebras R(G) and U(g) are dual from each other. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 48

Abelian Hopf algebras of finite type 1. H = k[x], (X) = X 1 + 1 X, ɛ(x) = 0, S(X) = X. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 49

Abelian Hopf algebras of finite type 1. H = k[x], (X) = X 1 + 1 X, ɛ(x) = 0, S(X) = X. k[x] k[x] k[t 1, T 2 ], X 1 T 1, 1 X T 2 P (X) = P (T 1 + T 2 ), ɛp (X) = P (0), SP (X) = P ( X). Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 50

Abelian Hopf algebras of finite type 1. H = k[x], (X) = X 1 + 1 X, ɛ(x) = 0, S(X) = X. k[x] k[x] k[t 1, T 2 ], X 1 T 1, 1 X T 2 P (X) = P (T 1 + T 2 ), ɛp (X) = P (0), SP (X) = P ( X). G a (K) = Hom k (k[x], K), k[g a ] = k[x] k[g a ] is an abelian Hopf algebra of finite type. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 51

Abelian Hopf algebras of finite type 2. H = k[y, Y 1 ], (Y ) = Y Y, ɛ(y ) = 1, S(Y ) = Y 1. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 52

Abelian Hopf algebras of finite type 2. H = k[y, Y 1 ], (Y ) = Y Y, ɛ(y ) = 1, S(Y ) = Y 1. H H k[t 1, T 1 1, T 2, T 1 2 ], Y 1 T 1, 1 Y T 2 P (Y ) = P (T 1 T 2 ), ɛp (Y ) = P (1), SP (Y ) = P (Y 1 ). Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 53

Abelian Hopf algebras of finite type 2. H = k[y, Y 1 ], (Y ) = Y Y, ɛ(y ) = 1, S(Y ) = Y 1. H H k[t 1, T 1 1, T 2, T 1 2 ], Y 1 T 1, 1 Y T 2 P (Y ) = P (T 1 T 2 ), ɛp (Y ) = P (1), SP (Y ) = P (Y 1 ). G m (K) = Hom k (k[y, Y 1 ], K), k[g m ] = k[y, Y 1 ], k[g m ] is an abelian Hopf algebra of finite type. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 54

Abelian Hopf algebras of finite type 3. H = k[x 1,..., X d0, Y 1, Y 1 1,..., Y d1, Y 1 d 1 ] k[x] d 0 k[y, Y 1 ] d 1 Primitive elements: k-space kx 1 + + kx d0, dimension d 0. Group-like elements: multiplicative group Y 1,..., Y d1, rank d 1. G = G d 0 a G d 1 a k[g] = H, G(K) = Hom k (H, K). Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 55

Abelian Hopf algebras of finite type 3. H = k[x 1,..., X d0, Y 1, Y 1 1,..., Y d1, Y 1 d 1 ] k[x] d 0 k[y, Y 1 ] d 1 The category of commutative linear algebraic groups over k G = G d 0 a G d 1 m is anti-equivalent to the category of Hopf algebras of finite type which are abelian (commutative and cocomutative) H = k[g]. The vector space of primitive elements has dimension d 0 while the rank of the group-like elements is d 1. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 56

Other examples If W is a k-vector space of dimension l 0, Sym(W ) is an abelian Hopf algebra of finite type, anti-isomorphic to k[g l 0 a ]: For a basis 1,..., l0 of W, Sym(W ) k[ 1,..., l0 ]. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 57

Other examples If W is a k-vector space of dimension l 0, Sym(W ) is an abelian Hopf algebra of finite type, anti-isomorphic to k[g l 0 a ]. If Γ is a torsion free finitely generated Z-module of rank l 1, then the group algebra kγ is again an abelian Hopf algebra of finite type, anti-isomorphic to k[g l 1 m]: For a basis γ 1,..., γ l1 of Γ, kγ k[γ 1, γ 1 1,..., γ l 1, γ 1 l 1 ]. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 58

Other examples If W is a k-vector space of dimension l 0, Sym(W ) is an abelian Hopf algebra of finite type, anti-isomorphic to k[g l 0 a ]. If Γ is a torsion free finitely generated Z-module of rank l 1, then the group algebra kγ is again an abelian Hopf algebra of finite type, anti-isomorphic to k[g l 1 m]. The category of abelian Hopf algebras of finite type is equivalent to the category of pairs (W, Γ) where W is a k-vector space and Γ is a finitely generated Z-module: H = Sym(W ) kγ. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 59

Interpretation of the duality in terms of Hopf algebras following Stéphane Fischler Let C 1 be the category with objects: (G, W, Γ) where G = G d 0 a G d 1 m, W T e (G) is rational over Q and Γ G(Q) is finitely generated morphisms: f : (G 1, W 1, Γ 1 ) (G 2, W 2, Γ 2 ) where f : G 1 G 2 is a morphism of algebraic groups such that f(γ 1 ) Γ 2 and f induces a morphism such that df(w 1 ) W 2. df : T e (G 1 ) T e (G 2 ) Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 60

Let H be an abelian Hopf algebra over Q of finite type. Denote by d 0 the dimension of the Q-vector space of primitive elements and by d 1 the rank of the group of group-like elements. Let H be another abelian Hopf algebra over Q of finite type, l 0 the dimension of the space of primitive elements and l 1 the rank of the group-like elements. Let : H H Q be a bilinear product such that x, yy = x, y y and xx, y = x x, y. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 61

Let C 2 be the category with objects: (H, H, ) pair of Hopf algebras with a bilinear product as above. morphisms: (f, g) : (H 1, H 1, 1 ) (H 2, H 2, 2 ) where f : H 1 H 2 and g : H 2 H 1 are Hopf algebras morphisms such that x 1, g(x 2) 1 = f(x 1 ), x 2 2. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 62

Stéphane Fischler: The categories C 1 and C 2 are equivalent. Further, Fourier-Borel duality amounts to permute H and H. Consequence: estimates. interpolation lemmas are equivalent to zero Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 63

Stéphane Fischler: The categories C 1 and C 2 are equivalent. For R C[G], 1,..., k W and γ Γ, set R, γ 1... k = 1... k R(γ). Conversely, for H 1 = C[G] and H 2 = Sym(W ) kγ, consider Γ G(C) γ ( R R, γ ) and W T e (G) ( R R, ) Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 64

Stéphane Fischler: The categories C 1 and C 2 are equivalent. Further, Fourier-Borel duality amounts to permute H and H. Open Problems: Define n associated with (G, Γ, W ) in terms of (H, H, ) Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 65

Stéphane Fischler: The categories C 1 and C 2 are equivalent. Further, Fourier-Borel duality amounts to permute H and H. Open Problems: Define n associated with (G, Γ, W ) in terms of (H, H, ) Extend to non linear commutative algebraic groups (elliptic curves, abelian varieties, and generally semi-abelian varieties) Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 66

Stéphane Fischler: The categories C 1 and C 2 are equivalent. Further, Fourier-Borel duality amounts to permute H and H. Open Problems: Define n associated with (G, Γ, W ) in terms of (H, H, ) Extend to non linear commutative algebraic groups (elliptic curves, abelian varieties, and generally semi-abelian varieties) Extend to non abelian Hopf algebras (of finite type to start with) Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 67

Stéphane Fischler: The categories C 1 and C 2 are equivalent. Further, Fourier-Borel duality amounts to permute H and H. Open Problems: Define n associated with (G, Γ, W ) in terms of (H, H, ) Extend to non linear commutative algebraic groups (elliptic curves, abelian varieties, and generally semi-abelian varieties) Extend to non abelian Hopf algebras (of finite type to start with) (?) Transcendence results on non commutative algebraic groups Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 68

Algebra of multizeta values Denote by S the set of sequences s = (s 1,..., s k ) N k with k 1, s 1 2, s i 1 (2 i k). The weight s of s is s 1 + + s k, while k is the depth. For s S set ζ(s) = n 1 > >n k 1 n s 1 1 n s k k. Depth 1: values of Riemann zeta function at positive integers (Euler). Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 69

Algebra of multizeta values Denote by S the set of sequences s = (s 1,..., s k ) N k with k 1, s 1 2, s i 1 (2 i k). The weight s of s is s 1 + + s k, while k is the depth. For s S set ζ(s) = n 1 > >n k 1 n s 1 1 n s k k. Let Z denote the Q-vector space spanned in C by the numbers (2iπ) s ζ(s) (s S). Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 70

For s and s in S, the product ζ(s)ζ(s ) is in two ways a linear combination of numbers ζ(s ). The product of series is one way (quadratic relations arising from the series expansions) - for instance: ζ(s)ζ(s ) = ζ(s, s ) + ζ(s, s) + ζ(s + s ). n m = n>m + m>n + n=m Hence Z is a Q-subalgebra of C bifiltered by the weight and by the depth. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 71

For a graded Lie algebra C denote by UC its universal envelopping algebra and by UC = n 0(UC) n its graded dual, which is a commutative Hopf algebra. Conjecture (Goncharov). There exists a free graded Lie algebra C and an isomorphism of algebras Z UC filtered by the weight on the left and by the degree on the right. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 72

Reference: Goncharov A.B. Multiple polylogarithms, cyclotomy and modular complexes. Math. Research Letter 5 (1998), 497 516. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 73

Let X = {x 0, x 1 } be an alphabet with two letters. Consider the free monoid (concatenation product) X = {x ɛ1 x ɛk ; ɛ i {0, 1}, (1 i k), k 0} on X (non commutative monomials = words on the alphabet X) including the empty word e. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 74

Let X = {x 0, x 1 } be an alphabet with two letters. Consider the free monoid (concatenation product) X = {x ɛ1 x ɛk ; ɛ i {0, 1}, (1 i k), k 0} on X (non commutative monomials = words on the alphabet X) including the empty word e. For s S set Hence y s = x s 1 1 0 x 1 x s k 1 0 x 1. y s = x s 1 0 x 1, y s = y s1 y sk. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 75

Let X = {x 0, x 1 } be an alphabet with two letters. Consider the free monoid (concatenation product) X = {x ɛ1 x ɛk ; ɛ i {0, 1}, (1 i k), k 0} on X (non commutative monomials = words on the alphabet X) including the empty word e. For s S set y s = x s 1 1 0 x 1 x s k 1 0 x 1. This is a one-to-one correspondance between S and the set x 0 X x 1 of words which start with x 0 and end with x 1. The depth k is the number of x 1, the weight s is the number of letters. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 76

For s = (s 1,..., s k ) S set p = s and define (ɛ 1,..., ɛ p ) in {0, 1} p by y s = x ɛ1 x ɛp. Hence ɛ 1 = 0 and ɛ p = 1. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 77

For s = (s 1,..., s k ) S set p = s and define (ɛ 1,..., ɛ p ) in {0, 1} p by y s = x ɛ1 x ɛp. Let ω 0 (t) = dt t and ω 1 (t) = dt 1 t Integral representation of multizeta values: ζ(s) = ω ɛ1 (t 1 ) ω ɛp (t p ). 1>t 1 > >t p >0 Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 78

Examples: y 3 = x 2 0x 1 : ζ(3) = 1 0 dt 1 t 1 t1 0 dt 2 t 2 t2 0 dt 3 1 t 3 Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 79

Examples: y 3 = x 2 0x 1 : ζ(3) = 1 0 dt 1 t 1 t1 0 dt 2 t 2 t2 0 dt 3 1 t 3 y 21 = y 2 y 1 = x 0 x 2 1: ζ(2, 1) = 1 0 dt 1 t 1 t1 0 dt 2 1 t 2 t2 0 dt 3 1 t 3 Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 80

Examples: y 3 = x 2 0x 1 : ζ(3) = 1 0 dt 1 t 1 t1 0 dt 2 t 2 t2 0 dt 3 1 t 3 y 21 = y 2 y 1 = x 0 x 2 1: ζ(2, 1) = 1 0 dt 1 t 1 t1 0 dt 2 1 t 2 t2 0 dt 3 1 t 3 Remark. From (t 1, t 2, t 3 ) (1 t 3, 1 t 2, 1 t 1 ) one deduces ζ(2, 1) = ζ(3). Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 81

Quadratic relations arising from the integral representation The product of two such integrals is a linear combination of similar integrals. Indeed the integral ω ɛ1 (t 1>t 1 > >tp>0 1 ) ω ɛp (t p )ω ɛ 1 (t 1) ω ɛp (t p ) 1>t 1 > >t p >0 is the integral over 1 > u 1 > > u p+p > 0 of the shuffle of ω ɛ1 ω ɛp with ω ɛ 1 ω ɛ p. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 82

Example: From (x 0 x 1 )x(x 0 x 1 ) = 2x 0 x 1 x 0 x 1 + 4x 2 0x 2 1 one deduces ζ(2) 2 = 2ζ(2, 2) + 4ζ(3, 1). Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 83

Example: From (x 0 x 1 )x(x 0 x 1 ) = 2x 0 x 1 x 0 x 1 + 4x 2 0x 2 1 one deduces ζ(2) 2 = 2ζ(2, 2) + 4ζ(3, 1). For y s x 0 X x 1, set ˆζ(y s ) = ζ(s). This defines ˆζ : x 0 X x 1 R. Then for w and w in x 0 X x 1 we have ˆζ(w)ˆζ(w ) = ˆζ(wxw ) Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 84

Let H be the free algebra Q X over X (non commutative polynomials in x 0 and x 1, Q-vector space with basis X, concatenation product). The subalgebra H 0 = Qe + x 0 Hx 1 of H is also the free algebra Q Y over Y = {y 2, y 3,...}. The shuffle x endows both H and H 0 with commutative algebra structures H x and H 0 x: for x and y in X, u and v in X, xuxyv = x(uxyv) + v(xuxv). Extend ˆζ as a Q-linear map H 0 R. Then ˆζ : H 0 x R is a morphism of commutative algebras. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 85

A non commutative but cocommutative Hopf algebra structure on H is given by the coproduct P = P (x 0 1 + 1 x 0, x 1 1 + 1 x 1 ) the counit ɛ(p ) = P e and the antipode S(x 1 x n ) = ( 1) n x n x 1 for n 1 and x 1,..., x n in X. Concatenation (or Decomposition) Hopf algebra: (H,, e,, ɛ, S) Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 86

Writing we have P = (P u)u u X P = (P uxv)u v. u,v X Friedrichs Criterion. The set of primitive elements in H is the free Lie algebra Lie(X) on X. Hence P Lie(X) (P uxv) = 0 for all u, v in X \ {e}. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 87

Dual of the concaténation product: Φ : H H H defined by Φ(w) u v = uv w. Hence Φ(w) = u v. u,v X uv=w Shuffle (or factorization) Hopf algebra: (H, x, e, Φ, ɛ, S). Commutative, not cocommutative. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 88

Harmonic Algebra M. Hoffmann The quasi-shuffle (or stuffle) product: with : H 0 H 0 H 0 y s u y t v = y s (u y t v) + y t (y s u y t v) + y s+t (u v). endows H 0 with a commutative algebra structure H 0 and the quadratic relations arising from series expansions show that ˆζ : H 0 R is a morphism of commutative algebras. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 89

Cocommutative quasi-shuffle Hopf algebra Q Y : (y i ) = y i e + e y i, ɛ(p ) = P e, S(y s1 y sk ) = ( 1) k y sk y s1. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 90

Remark. Combining both quadratic relations yields ˆζ(wxw w w ) = 0 for w and w in x 0 X x 1. From and y 1 xy 2 = x 1 xx 0 x 1 = x 1 x 0 x 1 + 2x 0 x 2 1 = y 1 y 2 + 2y 2 y 1 one deduces y 1 y 2 = y 1 y 2 + y 2 y 1 + y 3 y 1 xy 2 y 1 y 2 = y 2 y 1 y 3. As we know ζ(2, 1) = ζ(3), hence y 1 xy 2 y 1 y 2 lies in the kernel of ˆζ. But y 1 x 0 X x 1. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 91

Conjecture (Ihara-Kaneko). The kernel of ˆζ as a Q-linear map H 0 R is spanned by the regularized double shuffle relations. Results on the formal algebra by J. Écalle. Deutsch-Französischer Diskurs, Saarland University, July 4, 2003 92