Partial Metrics and Quantale-valued Sets. by Michael Bukatin, Ralph Kopperman, Steve Matthews, and Homeira Pajoohesh

Similar documents
Topos Theory. Lectures 17-20: The interpretation of logic in categories. Olivia Caramello. Topos Theory. Olivia Caramello.

University of Oxford, Michaelis November 16, Categorical Semantics and Topos Theory Homotopy type theor

2. Introduction to commutative rings (continued)

The overlap algebra of regular opens

Fuzzy Function: Theoretical and Practical Point of View

Omitting Types in Fuzzy Predicate Logics

ACLT: Algebra, Categories, Logic in Topology - Grothendieck's generalized topological spaces (toposes)

Partial Metric Spaces

A Discrete Duality Between Nonmonotonic Consequence Relations and Convex Geometries

In case (1) 1 = 0. Then using and from the previous lecture,

Categories and functors

Binary positivity in the language of locales

A Note on Extensional PERs

Fuzzy Answer Set semantics for Residuated Logic programs

On the filter theory of residuated lattices

EQ-algebras: primary concepts and properties

Approximating models based on fuzzy transforms

arxiv: v1 [math.ct] 21 Oct 2010

Formally real local rings, and infinitesimal stability.

Silvio Valentini Dip. di Matematica - Università di Padova

1. Introduction to commutative rings and fields

Homotopy Type Theory

An adjoint construction for topological models of intuitionistic modal logic Extended abstract

Algebraic Geometry Spring 2009

Denoting computation

ON SOME BASIC CONSTRUCTIONS IN CATEGORIES OF QUANTALE-VALUED SUP-LATTICES. 1. Introduction

Domain theory and denotational semantics of functional programming

Unbounded quantifiers via 2-categorical logic

What are Iteration Theories?

Constructive version of Boolean algebra

A Non-Topological View of Dcpos as Convergence Spaces

Some glances at topos theory. Francis Borceux

Locally cartesian closed categories

1. Tarski consequence and its modelling

Constructive version of Boolean algebra

Analysis and Enriched Category Theory

A DUALITY BETWEEN FUZZY DOMAINS AND STRONGLY COMPLETELY DISTRIBUTIVE L-ORDERED SETS

In retyping the following (very minor) errors have been noticed in the original paper, and corrected in this version.

Olivia Caramello. University of Insubria - Como. Deductive systems and. Grothendieck topologies. Olivia Caramello. Introduction.

Synthetic Computability

Some properties of residuated lattices

The local triangle axiom in topology and domain theory

Boolean Algebra and Propositional Logic

An Introduction to the Theory of Lattice

Variations on Realizability. Simple examples realizing axioms of choice

by Say that A is replete (wrt ) if it is orthogonal to all f: X Y in C such that f : Y X is iso, ie for such f and all there is a unique such that the

MV-algebras and fuzzy topologies: Stone duality extended

Sup-t-norm and inf-residuum are a single type of relational equations

Seminar I Boolean and Modal Algebras

Partial inconsistency and vector semantics: sampling, animation, and program learning

Equational Logic and Term Rewriting: Lecture I

Adjunctions! Everywhere!

via Topos Theory Olivia Caramello University of Cambridge The unification of Mathematics via Topos Theory Olivia Caramello

``Residuated Structures and Many-valued Logics''

Logic of approximate entailment in quasimetric and in metric spaces

U-Sets as a probabilistic set theory

Boolean Algebra and Propositional Logic

2 C. A. Gunter ackground asic Domain Theory. A poset is a set D together with a binary relation v which is reexive, transitive and anti-symmetric. A s

Pseudo MV-Algebras Induced by Functions

A Few Questions on the Topologization of the Ring of Fermat Reals.

ABSTRACT DIFFERENTIAL GEOMETRY VIA SHEAF THEORY

The role of the overlap relation in constructive mathematics

Equational reasoning for probabilistic programming Part II: Quantitative equational logic

Recursive definitions on surreal numbers

Boolean Algebras. Chapter 2

Direct Limits. Mathematics 683, Fall 2013

Notes about Filters. Samuel Mimram. December 6, 2012

Symmetries and Polynomials

When does a semiring become a residuated lattice?

Aspects of Predicative Algebraic Set Theory I: Exact Completion (DRAFT)

On morphisms of lattice-valued formal contexts

The equivalence axiom and univalent models of type theory.

TOPOSES ARE SYMMETRIC MONOIDAL CLOSED CATEGORIES

Category Theory. Steve Awodey. Carnegie Mellon University

1. The Method of Coalgebra

Loos Symmetric Cones. Jimmie Lawson Louisiana State University. July, 2018

Notes on Ordered Sets

Synthetic Probability Theory

Formal Epistemology: Lecture Notes. Horacio Arló-Costa Carnegie Mellon University

Closure operators on sets and algebraic lattices

2. ETALE GROUPOIDS MARK V. LAWSON

Elementary (ha-ha) Aspects of Topos Theory

2 Metric Spaces Definitions Exotic Examples... 3

MODULI TOPOLOGY. 1. Grothendieck Topology

A categorical model for a quantum circuit description language

Algebraic v.s. Analytic Point of View

A topological duality for posets

Foundations of non-commutative probability theory

Observations on Category Theory. John L. Bell

Lecture 21: Crystalline cohomology and the de Rham-Witt complex

Quotient Structure of Interior-closure Texture Spaces

1. Introduction to commutative rings and fields

A New Category for Semantics

The Locale of Random Sequences

Real Analysis Prof. S.H. Kulkarni Department of Mathematics Indian Institute of Technology, Madras. Lecture - 13 Conditional Convergence

(IC)LM-FUZZY TOPOLOGICAL SPACES. 1. Introduction

Algebras. Larry Moss Indiana University, Bloomington. TACL 13 Summer School, Vanderbilt University

3. The Sheaf of Regular Functions

Chapter 2 Metric Spaces

Real-cohesion: from connectedness to continuity

Transcription:

Michael Bukatin presents: Partial Metrics and Quantale-valued Sets by Michael Bukatin, Ralph Kopperman, Steve Matthews, and Homeira Pajoohesh http://www.cs.brandeis.edu/ bukatin/distances and equalities.html Slides version: Oct.31, 2006 Corrected: Nov.7, 2006 1

1. Introduction 2. Partial Metrics 3. Quantale-valued sets 4. Some applications 2

1. Introduction (some) generalized distances = (some) generalized equalities The axioms for partial metrics with values in quantales coincide with the axioms for Q-sets (M-valued sets, sets with fuzzy equality, quantalevalued sets) for commutative quantales. Ω-sets correspond to the case of partial ultrametrics. Partial metrics usually occur in context of domains for denotational semantics, and quantalevalued sets usually occur in context of sheaves. 3

Domains for denotational semantics and sheaves are two different (but related in spirit) approaches to the theory of partially defined elements. Both approaches have applications to computability in analysis. E.g. domains were used by Edalat to handle Riemann integrals of functions defined on fractals, and then by many scientists to talk about computability of various structures in analysis. The authors of the present paper come from the domain side. Therefore, speaking about applications of sheaves to computability in analysis I should mention, for example, the connections between realizability toposes and recursive analysis without claiming to understand them at this point. 4

Common origins (in some sense). The seminal paper by Dana Scott, Continuous Lattices, which many people consider to be the official start of domain theory was published in a volume of Springer Lecture Notes in Mathematics essentially dedicated to sheaves: Toposes, Algebraic Geometry and Logic, LNM, v.274, 1972 The approach to sheaves based on Ω-sets also originated with Dana Scott (and Michael Fourman, and also Denis Higgs). 5

Nevertheless, domains and sheaves are usually treated as technically unrelated for a number of reasons. Not many articles and books mention them together. A notable exeption here is synthetic domain theory. I am not sufficiently familiar with this theory yet to elaborate. The observation I am presenting today might enable further interesting interactions between domains and sheaves. 6

To summarize the introduction The theory of generalized distances without the axiom p(x, x) = 0, known as partial metrics, is closely related to the domains approach. The theory of generalized equalities, namely non-reflexive equalities with values in complete Heyting algebras and quantales, is closely related to the sheaves approach. We observe that the axioms for partial metrics with values in quantales coincide with the axioms for quantale-valued sets for commutative quantales. In other words, generalized symmetric non-reflexive distances and generalized equalities (quantalevalued fuzzy equalities) coincide. 7

2. Partial metrics The generalized distances without the axiom p(x, x) = 0 in the context of analyzing deadlock in lazy data flow computations were studied by Steve Matthews in his Ph.D. thesis. Then certain axioms regaining some of what is lost by dropping p(x, x) = 0 were added, namely, small self-distances, p(x, x) p(x, y), and the sharpened form of triangular equality, p(x, z) p(x, y) + p(y, z) p(y, y), introduced by Steve Vickers. 8

Michael Bukatin and Joshua Scott studied generalized distances on Scott domains and noted that axiom p(x, x) = 0 is incompatible with Scott continuity (or computability) of distances in question. It should be noted that in the similar fashion the axiom x = x, which can be rewritten as Eq(x, x) = true, prevents the traditional equality from being Scott continuous (or computable). Because Bukatin and Scott were interested in Scott continuity of the resulting distances and, hence, needed monotonicity, their domain of numbers was the set of non-negative reals (with added + ) with the reverse order: 0 was the largest element, and + was the smallest. 9

However, the traditional view of 0 as the smallest possible distance remained more prevalent in the partial metrics research community, and when Ralph Kopperman, Steve Matthews, and Homeira Pajoohesh generalized partial metrics so that they would take their values in quantales rather than in non-negative reals, the axioms looked as follows. 10

The quantale V in question was a complete lattice with an associative and commutative operation +, distributed with respect to the arbitrary infima. The unit element was the bottom element 0. The right adjoint to the map b a + b was defined as the map b b a = {c V a + c b}. Certain additional conditions were imposed. The axioms for a partial pseudometric (V -pseudopmetric) p : X X V were p(x, x) p(x, y) p(x, y) = p(y, x) p(x, z) p(x, y) + (p(y, z) p(y, y)) 11

3. Quantale-valued sets Ω-sets were introduced by Michael Fourman and Dana Scott (cf. also Denis Higgs). If Ω is a complete Heyting algebra, an Ω-set A is a set equipped with an Ω-valued generalized equality, E : A A Ω, subject to axioms E(a, b) = E(b, a) and E(a, b) E(b, c) E(a, c). Fourman and Scott also introduced a mechanism of singletons, which was used to define the notion of complete Ω-set and to establish that complete Ω-sets and sheaves over complete Heyting algebra Ω are essentially the same thing. [see Fourman M. P., D. S. Scott, Sheaves and Logic, in Applications of Sheaf Theory to Algebra, Analysis, and Topology, Lecture Notes in Mathematics, 753, Springer, 1979, pp. 302 401.] 12

Returning to partial metrics, from the symmetry and the ultrametric triangle inequality, p(x, z) max(p(x, y), p(y, z)), one can obtain p(x, x) max(p(x, y), p(y, x)) = p(x, y). p(x, z) max(p(x, y), p(y, z)) means p(x, z) p(x, y) or p(x, z) p(y, z). Consider p(x, z) p(x, y). We know that p(y, y) p(y, z), so p(x, z)+p(y, y) p(x, y)+p(y, z), and we obtain the Vickers form of triangle inequality. Consider p(x, z) p(y, z). We know that p(y, y) p(x, y), and we again obtain p(x, z) + p(y, y) p(x, y) + p(y, z). So utrametrics without axiom p(x, x) = 0 obey both extra axioms of partial metrics. This justifies the term partial ultrametrics and also tells us that we should consider Ω-equality as partial ultrametric with more general values than non-negative reals. 13

This motivated our search in the literature for generalizations of Ω-equality beyond complete Heyting algebras. [Wagner, K. R., Solving Recursive Domain Equations with Enriched Categories, Ph.D. thesis, School of Computer Science, Carnegie Mellon University, Pittsburg, 1994.] [Wyler O., Lecture Notes on Topoi and Quasitopoi, World Scientific Publishing Company, 1991.] [Höhle U., M-valued sets and sheaves over integral, commutative cl-monoids, in S.E. Rodabaugh et al, editors, Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publishers, Dordrecht, Boston, London, 1992, pp. 33 72.] 14

Ulrich Höhle was motivated by the need to give solid foundation to fuzzy set theory (and, in particular, to the uses of such logical systems as Lukasiewicz logic). His definition of an M- valued set looked as follows. 15

The quantale V in question was a complete lattice with an associative and commutative operation, distributed with respect to the arbitrary suprema. The unit element was the top element 1. The right adjoint to the map b a b was defined as the map b a b = {c V a c b}. Certain additional conditions were imposed. An M-valued set was a set X equipped with a map E : X X M subject to the axioms E(x, y) E(x, x) E(x, y) E(x, y) = E(y, x) E(x, y) + (E(y, y) E(y, z)) E(x, z) 16

It is easy to see that the only difference between an M-valued set and a set with a V - pseudopmetric, besides the particular restrictions imposed on the quantale, is in notation: multiplicative vs. additive, the adjoint operation is denoted differenty and the order of its arguments is switched, and the quantale order is reversed. So the notions of an M-valued set and a set with a V -pseudopmetric coincide. This is the main observation we would like to communicate today. 17

Further observations An M-valued set is called separated iff the axiom E(x, x) E(y, y) E(x, y) implies x = y holds. It s easy to see that this is equivalent to the separation axiom, making partial pseudometric p into a partial metric (V -pmetric): x, y X. x = y iff p(x, y) = p(x, x) = p(y, y). There are further parallels, e.g. similar extra conditions on quantales are imposed and studied, such as existence of halves in V vs. existence of square roots in M, etc, etc. 18

We should also say that Höhle provides a generalization of singletons (Fourman, Scott) and and develops a comprehensive theory relating M-sets to a version of sheaves. For the current state of the quantale-valued sets, including generalizations to non-commutative quantales, see Höhle U., Sheaves and quantales, Preprint http://www.math.uni-wuppertal.de/ hoehle/publications/preprints.html and references therein. 19

4. Some applications I ll mention two small applications today, one on the sheaf side, and one on the domain side. Starting with the sheaf side: If Ω is a complete Heyting algebra, an Ω-set A is a set equipped with an Ω-valued generalized equality, E : A A Ω, subject to axioms E(a, b) = E(b, a) and E(a, b) E(b, c) E(a, c). Consider F (a, b) = (E(a, a) E(a, b)) (E(b, b) E(a, b)). This is also an Ω-equality, and moreover (A, F ) is a global Ω-set: F (a, a) is the top element of Ω for all a. Basically, F is not just a quantalevalued partial ultrametric, but a quantale-valued ultrametric. 20

Given a presheaf A of sets over a complete Heyting algebra Ω, one can define an Ω-equality E(a, b) = {p Ω a p = b p} E(a, b) = {p E(a) E(b) a p = b p} and then define a quantale-valued ultrametric F as above. Consider p q Ω. Then the restriction map from {a A E(a, a) = q} to {a A E(a, a) = p} is a non-expansive map with respect to F. So A becomes a presheaf of quantale-valued ultrametric spaces with non-expansive maps as morphisms. 21

An application on the domain side: The question often arises: what is the right notion of morphism in a given context. E.g. for metric spaces, should one consider all continuous maps, or just non-expansive maps, etc. The sheaf analogy suggests that the category of partial metrics with values in a given quantale and weight-preserving non-expansive maps is an interesting category to consider. 22