Chapter 8. Root Locus Techniques

Similar documents
Chapter 5. Root Locus Techniques

Chapter 9. Design via Root Locus

MODERN CONTROL SYSTEMS

Root locus ( )( ) The given TFs are: 1. Using Matlab: >> rlocus(g) >> Gp1=tf(1,poly([0-1 -2])) Transfer function: s^3 + 3 s^2 + 2 s

ME2142/ME2142E Feedback Control Systems

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

Chapter 7. Root Locus Analysis

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples

EE Control Systems LECTURE 14

Lecture 12: Examples of Root Locus Plots. Dr. Kalyana Veluvolu. Lecture 12: Examples of Root Locus Plots Dr. Kalyana Veluvolu

CONTROL SYSTEMS. Chapter 5 : Root Locus Diagram. GATE Objective & Numerical Type Solutions. The transfer function of a closed loop system is

Grumman F-14 Tomcat Control Design BY: Chike Uduku

Chapter #4 EEE Automatic Control

Automatic Control Systems. Part III: Root Locus Technique

Chapter 3. Electric Flux Density, Gauss s Law and Divergence

CISE302: Linear Control Systems

The Root Locus Method

Control Systems. Root locus.

Lesson #15. Section BME 373 Electronics II J.Schesser

Control Systems Analysis and Design by the Root-Locus Method

Control Systems. Root locus.

MEM 355 Performance Enhancement of Dynamical Systems Root Locus Analysis

Analysis of Stability &

Figure 1: Unity Feedback System

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes.

Stability Criterion Routh Hurwitz

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

ROOT LOCUS. Poles and Zeros

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Chapter 9 Compressible Flow 667

Copyright Paul Tobin 63

Lead/Lag Compensator Frequency Domain Properties and Design Methods

Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 )

If you need more room, use the backs of the pages and indicate that you have done so.

Dead-beat controller design

Lecture 6: Phase Space and Damped Oscillations

Feedback Control Systems (FCS)

NUMBERS, MATHEMATICS AND EQUATIONS

Introduction to Smith Charts

Review Problems 3. Four FIR Filter Types

Chapter 13. Root Locus Introduction

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Lecture 13 - Boost DC-DC Converters. Step-Up or Boost converters deliver DC power from a lower voltage DC level (V d ) to a higher load voltage V o.

Digital Control System

Function and Impulse Response

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

Chapter 6 Control Systems Design by Root-Locus Method. Lag-Lead Compensation. Lag lead Compensation Techniques Based on the Root-Locus Approach.

ECE 2100 Circuit Analysis

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor. F j. T mo Assumptions:

1. Introduction: A Mixing Problem

PLEASURE TEST SERIES (XI) - 07 By O.P. Gupta (For stuffs on Math, click at theopgupta.com)

Function notation & composite functions Factoring Dividing polynomials Remainder theorem & factor property

Lecture 7: Damped and Driven Oscillations

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

Software Engineering 3DX3. Slides 8: Root Locus Techniques

Section I5: Feedback in Operational Amplifiers

SKEE 3143 CONTROL SYSTEM DESIGN. CHAPTER 3 Compensator Design Using the Bode Plot

5 th grade Common Core Standards

NOTE ON APPELL POLYNOMIALS

Lecture 1 Root Locus

1 The limitations of Hartree Fock approximation

ENGI 4430 Parametric Vector Functions Page 2-01

Homework 12 Solution - AME30315, Spring 2013

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y )

ECE 5318/6352 Antenna Engineering. Spring 2006 Dr. Stuart Long. Chapter 6. Part 7 Schelkunoff s Polynomial

Math 273 Solutions to Review Problems for Exam 1

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems.

Support-Vector Machines

Lecture 10 Filtering: Applied Concepts

Systems Analysis. Prof. Cesar de Prada ISA-UVA

Design of Digital Filters

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE

1 Routh Array: 15 points

Thermodynamics Partial Outline of Topics

1.1 The main transmission network of Eskom The classical two generator model 11

a. Closed-loop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a

ECE 2100 Circuit Analysis

Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho Tel: Fax:

The state variable description of an LTI system is given by 3 1O. Statement for Linked Answer Questions 3 and 4 :

ECE-320: Linear Control Systems Homework 1. 1) For the following transfer functions, determine both the impulse response and the unit step response.

Computational modeling techniques

Computational modeling techniques

Chapter 8 Sections 8.4 through 8.6 Internal Flow: Heat Transfer Correlations. In fully-developed region. Neglect axial conduction

Figure 1a. A planar mechanism.

Lyapunov Stability Stability of Equilibrium Points

Exclusive Technology Feature. Eliminate The Guesswork When Selecting Primary Switch V DD Capacitors. ISSUE: May 2011

Verification of Quality Parameters of a Solar Panel and Modification in Formulae of its Series Resistance

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM

Functions. EXPLORE \g the Inverse of ao Exponential Function

Stage 6 PROMPT sheet. 2 > -2 We say 2 is bigger than -2-2 < 2 We say -2 is less than 2. 6/2 Negative numbers. l l l l l l l

Fields and Waves I. Lecture 3

ω r. Chapter 8 (c) K = 100 ω ζ M ω

ELEC 372 LECTURE NOTES, WEEK 11 Dr. Amir G. Aghdam Concordia University

ME 375 FINAL EXAM Wednesday, May 6, 2009

Conservation of Momentum

EEO 401 Digital Signal Processing Prof. Mark Fowler

Transcription:

Chapter 8 Rt Lcu Technique

Intrductin Sytem perfrmance and tability dt determined dby cled-lp l ple Typical cled-lp feedback cntrl ytem G Open-lp TF KG H Zer -, - Ple 0, -, -4 K 4 Lcatin f ple eaily fund Variatin f fgain K d nt affect the lcatin f any ple H 4 Cled-lp TF KG T KG H K 4 6 K 8 4K K Lcatin f ple need t factr the denminatr difficult variatin f gain K d change the lcatin f ple Eay way t knw the CL ple lcatin w/ lving higher-rder characteritic equatin f CLTF fr variu gain K? Rt lcu graphical repreentatin f the cled-lp ple a a functin f ytem parameter Can be ued t deign ytem parameter f the high rder ytem t yield a deired ytem pecificatin Etimating cled-lp ple lcatin when gain K i varied uing pen-lp ple Repreent the ple f T a K varie

Vectr Repreentatin f Cmplex Number Vectr repreentatin f cmplex number Cmplex number σ jω Magnitude M and angle θ, a M θ Cmplex functin F a when σ j ω Cmplex functin F ha a zer at -a F a σ a jω a cmplex number a can be repreented by a vectr drawn frm the zer f the functin t the pint Ex F 7 5 j

Cmplicated functin m zi i : prduct F n where M: number f zer pi N: number f ple j Value f F at any pint Each cmplex factr vectr magnitude & angle Magnitude f F M where zer ple length length z i p i m zi i n p j i Magnitude f the vectr drawn frm t the pint p Magnitude f the vectr drawn frm t the pint z i p i Angle f F at any pint Meaured frm the pitive real axi θ angle t zer m i z i n j p angle t i ple

Ex Find F at the pint - j4 F Magnitude M zer length ple length j4 j4 j4 5 0 7 0.7 Angle r F angle t zer θ z θ p 0 θ p 4. 6.66 angle t 6.9 90 ple tan 04.00 6.6 4 F tan 4 4 4 tan tan 4.4

Prpertie f Rt Lcu Subject tracking camera ytem Knb 에해당 Equivalent cled lp TF Cled lp ple functin f gain K P, 0 ± 0 4K

Lcatin f C.L.ple vary with gain K Sytem perfrmance varie K ple K<5 Real : verdamped Ple plt K5 Repeated real: critically damped K>5 underdamped d d Cnnecting the C.L.ple crrepnding t frm K 0 t K C.L. ple lcu fr frm K 0 t K Rt lcu Rt lcu Path f cled-lp ple a gain i varied Uing rt lcu, we can eaily analyze the characteritic f the higher-rder ytem w/ calculating cled-lp ple

Prpertie f Rt Lcu Higher-rder ytem difficult t calculate the cled-lp ple lcatin fr variu gain K. Uing rt lcu, withut lving denminatr plynmial f cled lp TF, it i pible t have rapid ketch f cled-lp ple lcatin change fr variu gain K rt lcu C.L.T.F. KG T KG H Characteritic equatin i.e. C.L. ple the value that atify the characteritic equatin KG H 0 KG H k 80 KG H k 80 k 0, ±, ±, ±, L Any cmplex number that atifie thee cnditin cled-lp ple! KG H K G H Angle cnditin determine the rt lcu Magnitude cnditin Determine the pecific pitin crrepnding t pecific value f K n the rt lcu

Ex Open-lp TF KG H K 4 Cled-lp TF T K K 4 7K K If a ple a jb i a cled-lp ple fr me value f gain K a jb mut atify KG H k 80 and KG H Cnider a the firt tet pint KG H j 70.55 angle t zer 4 θ θ θ θ 56. angle t 7.57 80 i nt a cled-lp ple j ple 90 08.4 j What abut / j KG H 80 j K G H / i a cled-lp ple fr me value f gain K ple length zer length 4 j / j j / j / /... 0. j / i a cled-lp ple i.e. i a pint n the rt lcu when K 0.

Ple and Zer at Infinity Infinite ple: if O.L.T.F. apprache, a apprache OLTF ha a ple at infinity Infinite zer: if O.L.T.F. apprache 0, a apprache OLTF ha a zer at infinity ex G G ha a ple at infinity ince ha a zer at infinity limg lim lim G lim 0 Ex KG H K Three finite ple 0, -, - N finite i zer K lim KG H 0 Fr every functin f number f finite i ple infinite i ple number f finite zer infinite zer Three zer at infinite finite ple 0 infinite ple 0 finite zer infinite zer

Shw hw lcatin f the CL ple mve a K varie frm 0 t Sketching the Rt Lcu K0~ 변할때 rt lcu가어떻게변하는지본다.. Mark pen lp ple with x and pen lp zer with. Draw rt lci n the real-axi t the left f an dd number f real ple plu zer K>0일때, 실수축상에서 Tet pint의오른쪽에있는 ple과 zer의수의합이홀수이면그점은rt luc상에있다 Satifying the angle cnditin KG H k 80. Rt lcu i.e. K 0 tart at finite and infinite pen-lp ple and end at finite and infinite pen-lp zer i.e. K 4. Draw the aymptte f rt lcu a. Real-axi intercept r center f aymptte finite ple finite zer σ a # finite ple# finite zer b. 양의실수축과이루는각도 k 80 θa k 0, ±, ±, ± # finite ple# finite zer Nte. - Number f branche f the rt lcu number f cled-lp lp ple ytem rder Branch: path that ne ple travere - The rt lcu i ymmetrical abut the real axi

Open-lp TF KG H K 4 Rt lcu tart at - and - meet between -and- - break ut int cmplex plane return t real axi mewhere between - and -4 end at -and-4

ex 8. End at zer at tinfinity it. Mark OL ple and zer. Draw lci n real axi t the left f dd number. Start at ple and end at zer 4. Draw aymptte σ a θ a 0 4 4 # π / π finite 4 k 80 ple# finite fr fr k 0 k 5 π / fr k π / zer End at zer at infinity 5π / π Check! # f aymptte # finite ple - #finite zer # f branche # f CL ple ytem rder 4 The rt lcu i ymmetrical abut the real axi # infinite zer #finite zer #finite ple 4 End at zer at infinity

Refining the Sketch breakaway frm real axi and mve int the cmplex plane A. Real-axi Breakaway and Break-in Pint σ σ : Breakaway pint : Break-in Pint 80 Break-in and Breakaway angle : n n: # f CL ple arriving at r departing frm the BA r BI n the real axi A K increae Tw ple 90 at BA Tw zer 90 at BI Determine the lcatin f BA and BI pint On the real axi between pen-lp p ple, gain K i maximum at BA pint On the real axi between pen-lp zer, gain K i minimum at BI pint dk d σ 0 where σ i an either BA r BI pint K Q KG H 0 G H Characteritic equatin

Ex 5 8 5 K K H KG 5 8 K 5 8 8 5 8 dk 6 6 5 8 8 5 8 σ σ σ σ d dk 8 45 0 5 8 6 6 σ σ σ σ A d i.8.45, σ BA and BI pint

B. j ω -Axi Cring A pint n the rt lcu that eparate the table peratin f the ytem frm the untable peratin A ple n j ω -axi at a certain gain K Hw t find the value f ω and K? Methd I Subtitute j ω directly int characteritic equatin 0 A ple n j ω -axi σ jω Methd II Ue Ruth table A rw f entire zer f Ruth table ple n j ω-axi pible

Ex find the frequency and gain K fr which the rt lcu cre the imaginary axi. C.L.T.F. T 4 7 K 4 8 K K Methd I Characteritic equatin: 4 7 4 8 K K 0 A j ω i a ple f cled-lp ytem, it mut atify characteritic equatin Subtitute t j ω int characteritic ti equatin jω 4 7 jω 4 jω 8 K jω K 0 4 ω j7ω 4ω 8 K jω K 0 Real part Imaginary part ω 4 4ω K 0 7ω 8 K ω 0 Slve fr ω and K ω ±.59 K 9.65 Rt lcu cre j ω -axi at ± j. 59 at a gain f K 9.65

Methd II Ue Ruth table K T 4 7 4 8 K K N ign change frm 4 t LHP ple remaining, but even plynmial f require ymmetric ple ple huld be n j jωω -axi Only rw can make all zer rw K 65K 70 0 Auming K>0, then K 9.65 Frm even plynmial uing rw 90 K K ± j.59 80.5 0.7 0 K 9.65 j.59 Rt lcu cre j ω-axi at ± j. 59 at a gain f K 9.65 K 0 K 0 Sytem i table fr 0 K < 9.65 K 9.65 j.59

C. Angle f Departure and Arrival Rt lcu tart at pen-lp ple ex. p and end at finite and infinite pen-lp zer ex. z Fr mre accurate rt lcu, need t knw the rt lcu departure angle frm the cmplex ple arrival angle t the cmplex zer If a cmplex number i n rt-lcu and cle ε t a cmplex ple p, i.e. i ne f the cledlp ple, it mut atify angle cnditin z p Tet pint KG H angle t zer k 80 6 4 θ θ θ θ θ θ angle t 5 ple if want t knw the departure angle frm a cmplex ple p θ θ θ6 θ θ4 θ5 k 80

C. Angle f Departure and Arrival Rt lcu tart at pen-lp ple ex. p and end at finite and infinite pen-lp zer ex. z Fr mre accurate rt lcu, need t knw the rt lcu departure angle frm the cmplex ple arrival angle t the cmplex zer If a cmplex number i n rt-lcu and cle ε t a cmplex ple p, i.e. i ne f the cledlp ple, it mut atify angle cnditin Tet pint KG H angle t zer k 80 6 4 θ θ θ θ θ θ angle t 5 ple if want t knw the departure angle frm a cmplex ple p θ θ θ6 θ θ4 θ5 k 80

z if want t knw the arrival angle frm a cmplex zer z Angle cnditin fr a cmplex number near z KG H angle t zer k 80 6 θ θ θ θ θ θ angle t θ θ θ θ θ θ k 80 6 4 5 4 5 ple Nte. and 대신각을찾고자하는 ple 이나 zer 까지의각도를직접구하면된다.

Ex find the angle f departure frm the cmplex ple and ketch the rt lcu Open lp ple at -, -±j Departure angle frm -j θ θ θ θ4 k 80 θ θ θ θ k 80 tan 08.4 4 5.6 4 90 tan 80

D. Pltting and Calibrating the Rt Lcu Hw t find exact pint at which rt lcu atifie certain cnditin and the gain at that pint? Methd I Ex Find exact pint at which rt lcu cre the 0.45 damping line and the gain at that pint K KG H 4 ζ cθ θ θ c 0.45 6.5 On the ζ 0.45 line, nly a pint with radiu r 0.747 atifie angle cnditin KG H k 80 θ θ θ θ4 θ5 zi i G H n p m j i zer length G H ple length ple length A C D E At that pint, the crrepnding gain K. 7 G H zer length B

Methd II Ex Find exact pint at which rt lcu cre the 0.58 damping line and the gain at that pint G 4 6 C R G G α 0 4 ζω ω 0.76ω α n n n α 0.76ω ω 0.76ω α ω αω n n n n n θ c 0.58 ζ 0.58 69.0 0.76ω n α 0 0.76ω nα ωn 4 αω n ω n.8 ζ 0.58 d.007 ± j.67 CL ple pair n ζ 0.58 damping line C B A θ 80-69.0 0 ζω n ± jωn ζ.007 ± j.67-6 θ θ -4-0 K ple length G H zer length A B C θ θ θ 80

Cmment T be table All C.L. ple mut be in LHP If #O.L. ple - #finite zer There i a vlue f the gain K beynd which rt rci enter the RHPi..e ytem becme untable

Nnminimum-Phae Sytem Skip! Minimum phae ytem: all the ple and zer lie in LHP Nnminimum phae ytem: at leat ne ple r zer lie in RHP G K T a T H & T > 0 a G K T a T T 80 T ±80 k Phae hift thi i why it i called nnminimum phae K T ± 80 T K a a k 0 Lcu Nt n here!

Generalized Rt Lcu S far, rt lcu a a functin f the frward-path gain K Hw t draw rt lcu fr variatin f ther parameter? Ex rt lcu fr variatin f the value f pen lp ple p? 0 KG H gain K wa a multiplying factr f the functin but P i nt. p Denminatr f C.L.T.F. fr a rt lcu fr gain K variatin KG H Fr a rt lcu fr p variatin, we need a CLTF denminatr pg H KG T KG H KG p 0 p 0 0 Ilating p 0 p 0 0 p 0 p H 0 P i nw a multiplying factr f the pen lp tranfer functin G H 0 Path f cled lp ple a p i increaed

Summary f the Step fr Cntructing Rt Lci. Cnvert int a frm in which ytem parameter i a multiplying factr. Lcate the pen-lp ple and zer n the -plane. The branche tart frm pen-lp pple and end at finite r infinite zer 4. Draw the rt lcu n the real axi 5. Determine the aymptte f rt lcu 6. Find the breakaway and break-in pint 7. Dt Determine the angle f fdeparture/arrival lf frm/t a cmplex ple/zer l/ 8. Find the pint where the rt lci may cr the imaginary axi 9. Lcate the cled-lp ple n the rt lcu and determine the crrepnding gain K by ue f the magnitude cnditin

Rt Lcu fr Pitive-Feedback Sytem KG T KG H Pitive feedback ytem A cled-lp ple exit when KG H 0 KG H 60 k k 0, ±, ±, ± Angle cnditin fr a rt lcu f pitive feedback ytem KG H 60 k Rule fr ketching rt lcu Read by yurelf