Affine invariant Fourier descriptors

Similar documents
Image Analysis. Feature extraction: corners and blobs

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true.

MATH 332: Vector Analysis Summer 2005 Homework

Exercises for Multivariable Differential Calculus XM521

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Linear Ordinary Differential Equations

Math 234. What you should know on day one. August 28, You should be able to use general principles like. x = cos t, y = sin t, 0 t π.

MATH 32A: MIDTERM 2 REVIEW. sin 2 u du z(t) = sin 2 t + cos 2 2

II. Unit Speed Curves

Surface x(u, v) and curve α(t) on it given by u(t) & v(t). Math 4140/5530: Differential Geometry

MA3D9. Geometry of curves and surfaces. T (s) = κ(s)n(s),

Salmon: Lectures on partial differential equations

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8

10.3 Parametric Equations. 1 Math 1432 Dr. Almus

MECH 576 Geometry in Mechanics November 30, 2009 Kinematics of Clavel s Delta Robot

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b.

Lectures 15: Parallel Transport. Table of contents

Contents. 1. Introduction

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

12.4. Curvature. Introduction. Prerequisites. Learning Outcomes

MATH 32A: MIDTERM 1 REVIEW. 1. Vectors. v v = 1 22

Differential Geometry of Curves

18.02 Multivariable Calculus Fall 2007

Augmented Reality VU Camera Registration. Prof. Vincent Lepetit

The common oscillating lawn sprinkler has a hollow curved sprinkler arm, with a

49. Green s Theorem. The following table will help you plan your calculation accordingly. C is a simple closed loop 0 Use Green s Theorem

Math Vector Calculus II

General Relativity ASTR 2110 Sarazin. Einstein s Equation

CHAPTER 11: REYNOLDS-STRESS AND RELATED MODELS. Turbulent Flows. Stephen B. Pope Cambridge University Press, 2000 c Stephen B. Pope y + < 1.

Created by T. Madas LINE INTEGRALS. Created by T. Madas

Figure 1: Functions Viewed Optically. Math 425 Lecture 4. The Chain Rule

Astro 596/496 PC Lecture 9 Feb. 8, 2010

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017

Lecture 13 The Fundamental Forms of a Surface

Math 461 Homework 8. Paul Hacking. November 27, 2018

Extract useful building blocks: blobs. the same image like for the corners

ENGI Parametric Vector Functions Page 5-01

SIAM Conference on Applied Algebraic Geometry Daejeon, South Korea, Irina Kogan North Carolina State University. Supported in part by the

Math 461 Homework 8 Paul Hacking November 27, 2018

Math 265H: Calculus III Practice Midterm II: Fall 2014

Hyperbolic Geometry on Geometric Surfaces

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.

Practice Final Solutions

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows

CH.4. STRESS. Continuum Mechanics Course (MMC)

1 Vectors and the Scalar Product

Differential Geometry of Curves and Surfaces, 1st Edition

10.1 Review of Parametric Equations

Math 210, Exam 1, Practice Fall 2009 Problem 1 Solution

Introduction to Algebraic and Geometric Topology Week 14

12.4. Curvature. Introduction. Prerequisites. Learning Outcomes

MATH Final Review

Lecture 4: Partial and Directional derivatives, Differentiability

Calculus Vector Principia Mathematica. Lynne Ryan Associate Professor Mathematics Blue Ridge Community College

3 Applications of partial differentiation

Exact Solutions of the Einstein Equations

( ) and then eliminate t to get y(x) or x(y). Not that the

Linear Algebra Homework and Study Guide

e 2 = e 1 = e 3 = v 1 (v 2 v 3 ) = det(v 1, v 2, v 3 ).

THE FUNDAMENTAL THEOREM OF SPACE CURVES

Dierential Geometry Curves and surfaces Local properties Geometric foundations (critical for visual modeling and computing) Quantitative analysis Algo

Dr. Allen Back. Sep. 10, 2014

Figure 10: Tangent vectors approximating a path.

mathematical objects can be described via equations, functions, graphs, parameterization in R, R, and R.

Taylor Series and stationary points

F1.9AB2 1. r 2 θ2 + sin 2 α. and. p θ = mr 2 θ. p2 θ. (d) In light of the information in part (c) above, we can express the Hamiltonian in the form

Fraunhofer Institute for Computer Graphics Research Interactive Graphics Systems Group, TU Darmstadt Fraunhoferstrasse 5, Darmstadt, Germany

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 =

Kirchhoff s Elliptical Vortex

Solutions: The Geometry of Spacetime

Half of Final Exam Name: Practice Problems October 28, 2014

Aero III/IV Conformal Mapping

Math 4263 Homework Set 1

Solutions for the Practice Final - Math 23B, 2016

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length.

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 14.1

DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES 5. The Second Fundamental Form of a Surface

= 1, where a is semi-major axis, and b is semi-minor axis, a b. This ellipse

CHAPTER 3. Gauss map. In this chapter we will study the Gauss map of surfaces in R 3.

Math 2300 Calculus II University of Colorado Final exam review problems

Introduction. Summary. Berechnung von Invarianten für diskrete Objekte

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ.

Tangent and Normal Vectors

Paradoxical Euler: Integrating by Differentiating. Andrew Fabian Hieu D. Nguyen. Department of Mathematics Rowan University, Glassboro, NJ 08028

Math 32A Review Sheet

Review Sheet for the Final

MATH H53 : Final exam

Smarandache Curves and Spherical Indicatrices in the Galilean. 3-Space

Symmetries 2 - Rotations in Space

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29

a Write down the coordinates of the point on the curve where t = 2. b Find the value of t at the point on the curve with coordinates ( 5 4, 8).

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016

DIFFERENTIAL GEOMETRY HW 5

MA 351 Fall 2007 Exam #1 Review Solutions 1

Week 3: Differential Geometry of Curves

Review problems for the final exam Calculus III Fall 2003

1 The Differential Geometry of Surfaces

Vector Calculus lecture notes

Transcription:

Affine invariant Fourier descriptors Sought: a generalization of the previously introduced similarityinvariant Fourier descriptors H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 1

Geometrical transformations central projections affine mappings similarities congruencies translations (preserves parallelisms) (preserves angles) H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 2

Real, vectorial, parametric description of a closed contour v x() t ut () = vt () x(t) t=s possible parameterization: t=s (arc length) u H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 3

Affine mapping of a contour x() t = Ax (( t t )) + b A A b A= b= A 11 12 1 with: det( ) A21 A 22 b 2 Additonally starting point translation: (, ) tt In case arc length is used for tt = tt + τ parameterization: (, ) ( ) Thus 7 degrees of freedom result for affine mapping! τ τ H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 4

Equivalent structures In the equivalence class of similar maps with equivalence relation ~ applies: circle1 ~ circle2 circle ellipse parallelogramm rectangle square In the equivalence class of affine maps though applies: circle ~ ellipse parallelogramm ~ rectangle ~ square but: circle square H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 5

Developing the contour as a periodic function into a Fourier series x() t ut () = = vt () k =+ k = X k e j2 π kt/ T with the complex valued Fourier coefficient vector: X k U = = ( ) V T k 1 j2 π kt/ T T x te k t= dt H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 6

Choosing a parameterization, which guarantees a linear (homogeneous) mapping t t with the effect of the affine map A tt (, A) = μ( A) t The arc length does not meet this requirement! H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 7

Non-linear map over arc length with shear of objects t t horizontal dilation t t vertical compression T /4 T /2 T t H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 8

Choosing an appropriate parameterization 1st possibility: Using differential invariants of second order in form of affine length. Needed are: [ xx, ] 2nd possibility: Using differential invariants of first order and additionally area centre of gravity x s (semi-differential approach). Needed are: [ xx, ] H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 9

outer product: x1 y1 [ xy, ] = det( xy, ) = = ( xy 1 2 xy 2 1) = x ysin( ϕ) x y 2 2 [ xy, ] = 2 FΔ The outer (tensor) product and its geometric meaning The outer product of two vectors [x,y] is a (signed) real number, which corresponds to the area of the included parallelogram (or: 2 times the area of the triangle) x ϕ F y F x ϕ y h h = x sin( ϕ) F = y Δ h/2 = y x sin( ϕ) 1 2 H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 1

Results from differential geometry We differentiate the parameterization t adequately from the arc length s. For an analytical curve (which is differentiable arbitrary number of times) applies by means of [x,y]: ( n) ( n+ 1) = = (2n 1) ( n) ( n 1) (2n 1) dt() s + + x, x ds + Ax, Ax ds ( n) ( n+ 1) ds (2n+ 1) (2n+ 1) = A x, x n 1 μ ( A) dt n (1) ( n) d x x = x s with: x = e.g. is n (2) ds x s n s n ( s) normal x () s = n(s)=1 ( ) tangential vector = κ()() curvature vector x() s x () s tangent dt = μ( A) dt H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 11

1st possibility: Using differential invariants of second order in form of affine length 3 3 t =, ds= κ( s) ds affine length C [ xx] dx() s with: x = ( s arc length) ds [ ] it applies: 3 3 xx, ds = 3 A, ds x x C μ ( A) C 3 and thus: t = At = μ( A) t C t t problem for polygons: the second derivative disappears along the line and the first derivative is non-continuous in the corners and therefore the 2 nd derivative is not defined! H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 12

2nd possibility: using differential invariants of first order and additionally normalization by center of gravity (COG) x s (semi-differential approach) The vector starting from the COG to the contour are used for parameterization (outer product of pointer and tangential vector) df due to: ds x s A ds x s df det( Ax, Ay) = det( A ( x, y)) = det( A)det(, x y) [ Ax, Ay] det( A) [ x, y] = df = α( A) df = det( A) df df [ x x, x ] t = F = ds C df = A x xs, x C = μ( A) F = μ( A) t s ds H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 13

The effect of the transformation is eliminated due to the normalization to the COG It applies: The affine transformation maps area COG to each other and areas to each other in a constant relation! The outer product is signed! In order to avoid ambiguities the amplitude of area increment df is chosen and therefore a monotonic increasing parameterization! H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 14

Affine invariant Fourier descriptors for polygons x 3 area element F i x N-1 =x 4 v x 1 =x N+1 x 2 x N =x u [ ] polygon: x, x,, x x 1 N i u i = v i H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 15

Affine invariant Fourier descriptors of det( xi, xi+ 1 ) [ ] polygons area center of gravity of the whole traverse: x N 1 N 1 x, x ( x + x ) ( uv u v)( x + x ) i i+ 1 i i+ 1 i i+ 1 i+ 1 i i i+ 1 1 i= 1 i= s = 3 = N 1 3 N 1 parameter: t = [ x, x ] [ x, x ] i i+ 1 i i+ 1 i= i= 1 ti+ 1 = ti + 2 uv i i+ 1 u i+ 1v i x u u us = s v = x x = v v s F i H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 16 i =,1,, N 1 T = tn

ki, Fourier coefficients U N 1 1 X = 2T ( i 1 i)( ti 1 ti) V = x + + x + i= U N 1 k ( x i 1 i) T + x Xk = 2 (2 k ) ( ek, i 1 ek, i )(1 δ ( ti 1 t π + + i )) V = k i= ( ti+ 1 ti) with: e N 1 j 2π k i= j2 π kt / T + ( x x ) e δ ( t t ) for k = e i i+ 1 i k, i i+ 1 i 1 if ti+ 1 = ti (planar increase = ) δ ( ti+ 1 ti) = if ti+ 1 ti first part transforms continuities second part transforms discontinuities (switching through δ-operator) H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 17

Fourier coefficients of affine distorted contours x() t = Ax ( t + τ ) + b X X k = F ( x( t)) = F ( x ( t )) k thus follows: X k z = k = z AXk k e j2 πτ / T (eliminates translation) H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 18

A-invariants (τ=) with: Δ = det X, X = det( A) det X, X = det( A) Δ from that result complete and minimal invariants: kp k p k p kp Δ det, kp k p det( ) Q X X A Δ k = = = Δ pp det Xp, X p det( A) Δ p= const k =± 1, ± 2, ± 3, UV VU = = UV VU * kp k p k p pp p p p p Q k for τ results though: Q = Q z = Q z k p k k k kp has to be eliminated H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 19

Additional starting point invariance (τ ) (special solution of second order) I = Q Φ Φ ( k p) λ ( k p) η k k q r with: Q = Q Φ = Q e k k k k jarg( Q ) ( λη, ) are integral solutions of the following linear diophantic equation: λ( q p) + η( r p) + 1= a solution exists for: gcd( q p, r p) = 1 (solution with extended Euclidean algorithm) These invariants are also complete and minimal! The approach realizes also a compensation of phases, which are unknown mod 2π. H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 2 k

for example: r = 7, q = 6, p= 1 q p= 5 gcd(5,6) = 1 r p = 6 λ 5+ η 6+ 1= holds for: λ = 1, η = 1 I = Q Φ Φ k k k 1 1 k 6 7 Also in this case one representative from the equivalence class results from the invariants, i.e. a contour in a certain location and view! Also a linear complexity results for a constant number of Fourier descriptors : O(N) H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 21

Properties of Fourier series Since the parametrical description of contours still contains discontinuities (polygon section in radial direction with planar increase ), the magnitude of the FC is proportional to 1/n and thus tend to, which is slower than for continuous functions. c n 1/n n H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 22

Affine invariant Fourier descriptors a b c Fourierkoeffizienten Invarianten n a b c aa b c c -5.17.4.146 -.1 -.86.284.75.94.75-4 -.6 -.34 -.47 -.58 -.86.311.57.84.57-3 -.36 -.55 -.1 -.74.126.481.29.14.29-2.283 -.477.227 -.49-1.56.392.315.29.315-1 -.263 -.779 -.178 -.733-5.37.661... --- --- --- --- --- --- --- --- --- 1-1,12-1,73-1,9-1,65,743-7,33 1, 1, 1, 2 -.24 -.375 -.64 -.467.927 -.751.229.252.229 3 -.169 -.14 -.191 -.96.72.3.14.111.14 4 -.81.182 -.63.175.476 -.385.119.126.119 5.66 -.2.57.14.46 -.21.61.59.61 F 2 2 5 5 2 2 7 7(5) 3 2 = A F mit: F =,5 = 5 5 7 7 9 9 11 11 A 1 3 H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 23

Power spectra of the difference of the invariants of both objects difference for real affine map considering the quantization error difference for real structure changes H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap. 4e 24