CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville

Similar documents
Lecture 4: DC & Transient Response

EE5780 Advanced VLSI CAD

Lecture 5: DC & Transient Response

5. CMOS Gate Characteristics CS755

Lecture 5: DC & Transient Response

Lecture 6: DC & Transient Response

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

EEE 421 VLSI Circuits

Lecture 12 CMOS Delay & Transient Response

CPE/EE 427, CPE 527 VLSI Design I Pass Transistor Logic. Review: CMOS Circuit Styles

CPE/EE 427, CPE 527 VLSI Design I L07: CMOS Logic Gates, Pass Transistor Logic. Review: CMOS Circuit Styles

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.

9/18/2008 GMU, ECE 680 Physical VLSI Design

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

COMBINATIONAL LOGIC. Combinational Logic

Delay and Power Estimation

DC & Transient Responses

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Based on slides/material by. Topic 3-4. Combinational Logic. Outline. The CMOS Inverter: A First Glance

CPE/EE 427, CPE 527 VLSI Design I L18: Circuit Families. Outline

Properties of CMOS Gates Snapshot

Topic 4. The CMOS Inverter

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1

EE141Microelettronica. CMOS Logic

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic

MOSFET and CMOS Gate. Copy Right by Wentai Liu

COMP 103. Lecture 16. Dynamic Logic

Very Large Scale Integration (VLSI)

Digital Integrated Circuits A Design Perspective

CMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: Two-Input NOR Gate (NOR2)

Static CMOS Circuits. Example 1

Digital Integrated Circuits A Design Perspective

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

THE INVERTER. Inverter

Digital Integrated Circuits

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

Digital EE141 Integrated Circuits 2nd Combinational Circuits

Integrated Circuits & Systems

DC and Transient Responses (i.e. delay) (some comments on power too!)

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ENEE 359a Digital VLSI Design

ECE 546 Lecture 10 MOS Transistors

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

CMOS Inverter (static view)

Lecture 8: Combinational Circuits

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

Lecture 6: Circuit design part 1

MOS Transistor Theory

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

EE115C Digital Electronic Circuits Homework #4

CMOS Digital Integrated Circuits Lec 10 Combinational CMOS Logic Circuits

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

ECE 342 Solid State Devices & Circuits 4. CMOS

Static CMOS Circuits

EE 434 Lecture 33. Logic Design

EECS 141 F01 Lecture 17

Chapter 9. Estimating circuit speed. 9.1 Counting gate delays

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Dynamic Combinational Circuits. Dynamic Logic

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Lecture 12 Circuits numériques (II)

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Lecture 14: Circuit Families

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002

Lecture 8: Combinational Circuits

MOS Transistor Theory

Dynamic Combinational Circuits. Dynamic Logic

ECE321 Electronics I

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Lecture 7 Circuit Delay, Area and Power

The CMOS Inverter: A First Glance

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Lecture 9: Combinational Circuit Design

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

L2: Combinational Logic Design (Construction and Boolean Algebra)

EE115C Digital Electronic Circuits Homework #6

ECE 342 Electronic Circuits. Lecture 34 CMOS Logic

Lecture 9: Combinational Circuits

CMOS Technology for Computer Architects

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

The Physical Structure (NMOS)

Integrated Circuits & Systems

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

Lecture 8: Logic Effort and Combinational Circuit Design

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EE 330 Lecture 37. Digital Circuits. Other Logic Families. Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates)

Transcription:

CPE/EE 47, CPE 57 VLSI Design I Delay Estimation Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka )

Review: CMOS Circuit Styles Static complementary CMOS - except during switching, output connected to either VDD or GND via a lowresistance path high noise margins full rail to rail swing VOH and VOL are at VDD and GND, respectively low output impedance, high input impedance no steady state path between VDD and GND (no static power consumption) delay a function of load capacitance and transistor resistance comparable rise and fall times (under the appropriate transistor sizing conditions) Dynamic CMOS - relies on temporary storage of signal values on the capacitance of high-impedance circuit nodes simpler, faster gates increased sensitivity to noise 9/0/006 VLSI Design I;. Milenkovic

Review: Static Complementary CMOS Pull-up network (PUN) and pull-down network (PDN) V DD PMOS transistors only In 1 In PUN pull-up: make a connection from V DD to F when F(In 1,In, In N ) = 1 In N F(In 1,In, In N ) In 1 In PDN pull-down: make a connection from F to GND when F(In 1,In, In N ) = 0 In N NMOS transistors only PUN and PDN are dual logic networks 9/0/006 VLSI Design I;. Milenkovic 3

Review: OI Logic Graph C X PUN D D C X =!((+) (C+D)) X V DD C D C D GND PDN 9/0/006 VLSI Design I;. Milenkovic 4

Review: OI Layout D C V DD X GND Some functions have no consistent Euler path like x =!(a + bc + de) (but x =!(bc + a + de) does!) 9/0/006 VLSI Design I;. Milenkovic 5

Review: VTC is Data-Dependent M 3 M 4 3 0.5µ/0.5µ NMOS 0.75µ /0.5µ PMOS D M S V GS = V V DS1 D M 1 S F= 1 Cint V GS1 = V 0 weaker PUN,: 0 -> 1 =1, :0 -> 1 =1, :0->1 0 1 The threshold voltage of M is higher than M 1 due to the body effect (γ) V Tn1 = V Tn0 V Tn = V Tn0 + γ( ( φ F + V int ) - φ F ) since V S of M is not zero (when V = 0) due to the presence of Cint 9/0/006 VLSI Design I;. Milenkovic 6

Static CMOS Full dder Circuit C in!c C out!sum in C in C in C in 9/0/006 VLSI Design I;. Milenkovic 7

Static CMOS Full dder Circuit!C out =!C in & (!!) (! &!)!Sum = C out & (!!!C in ) (! &! &!C in) C in!c C out!sum in C in C in C in C out = C in & ( ) ( & ) Sum =!C out & ( C in ) ( & & C in) 9/0/006 VLSI Design I;. Milenkovic 8

Transient Response DC analysis tells us V out if V in is constant Transient analysis tells us V out if V in changes Requires solving differential equations Input is usually considered to be a step or ramp From 0 to V DD or vice versa 9/0/006 VLSI Design I;. Milenkovic 9

Inverter Step Response Ex: find step response of inverter driving load cap V in ( t) = V ( t < t ) = out 0 dvout ( t) = dt V in I dsn V out C load 9/0/006 VLSI Design I;. Milenkovic 10

Inverter Step Response Ex: find step response of inverter driving load cap V V in out () t = ( t < t ) 0 dvout () t = dt ut ( t) V = 0 DD V in I dsn V out C load 9/0/006 VLSI Design I;. Milenkovic 11

Inverter Step Response Ex: find step response of inverter driving load cap V V in out ( t) ( t < = ut ( t) V t 0 dvot u ( t) = dt 0 ) = V DD DD V in I dsn V out C load 9/0/006 VLSI Design I;. Milenkovic 1

Inverter Step Response Ex: find step response of inverter driving load cap V V in out () t = ut ( ( t < t ) 0 dvo ut ( t) = dt t) V 0 = V I DD dsn C DD () t load V in I dsn V out C load t t I t V V V < V V 0 dsn () = Vout > DD t out DD t 9/0/006 VLSI Design I;. Milenkovic 13

Inverter Step Response Ex: find step response of inverter driving load cap I V V in out () t = ut ( ( t < t ) 0 dvo ut ( t) = dt t) V 0 = V I DD dsn C DD () t load 0 t t ( ) β dsn ( t) = VDD V Vout > VDD Vt Vout ( t) β VDD V t V () t V < V D V out out D t 0 V in I dsn V out C load 9/0/006 VLSI Design I;. Milenkovic 14

Inverter Step Response Ex: find step response of inverter driving load cap I V V in out () t = ut ( ( t < t ) 0 dvo ut ( t) = dt t) V 0 = V I DD dsn C DD () t load 0 t t ( ) β dsn ( t) = VDD V Vout > VDD Vt Vout ( t) β VDD V t V () t V < V D V out out D t 0 V in t 0 I dsn V in V out V out C load t 9/0/006 VLSI Design I;. Milenkovic 15

Delay Definitions t pdr : t pdf : t pd : t r : t f : fall time 9/0/006 VLSI Design I;. Milenkovic 16

Delay Definitions t pdr : rising propagation delay From input to rising output crossing V DD / t pdf : falling propagation delay From input to falling output crossing V DD / t pd : average propagation delay t pd = (t pdr + t pdf )/ t r : rise time From output crossing 0. V DD to 0.8 V DD t f : fall time From output crossing 0.8 V DD to 0. V DD 9/0/006 VLSI Design I;. Milenkovic 17

Delay Definitions t cdr : rising contamination delay From input to rising output crossing V DD / t cdf : falling contamination delay From input to falling output crossing V DD / t cd : average contamination delay t pd = (t cdr + t cdf )/ 9/0/006 VLSI Design I;. Milenkovic 18

Simulated Inverter Delay Solving differential equations by hand is too hard SPICE simulator solves the equations numerically Uses more accurate I-V models too! ut simulations take time to write.0 1.5 1.0 (V) V in t pdf = 66ps t pdr = 83ps 0.5 V out 0.0 0.0 00p 400p 600p 800p 1n t(s) 9/0/006 VLSI Design I;. Milenkovic 19

Delay Estimation We would like to be able to easily estimate delay Not as accurate as simulation ut easier to ask What if? The step response usually looks like a 1 st order RC response with a decaying exponential. Use RC delay models to estimate delay C = total capacitance on output node Use effective resistance R So that t pd = RC Characterize transistors by finding their effective R Depends on average current as gate switches 9/0/006 VLSI Design I;. Milenkovic 0

RC Delay Models Use equivalent circuits for MOS transistors Ideal switch + capacitance and ON resistance Unit nmos has resistance R, capacitance C Unit pmos has resistance R, capacitance C Capacitance proportional to width Resistance inversely proportional to width d s kc kc R/k d R/k d g k g kc g k g s kc kc s kc s d 9/0/006 VLSI Design I;. Milenkovic 1

Example: 3-input NND Sketch a 3-input NND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R). 9/0/006 VLSI Design I;. Milenkovic

Example: 3-input NND Sketch a 3-input NND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R). 9/0/006 VLSI Design I;. Milenkovic 3

Example: 3-input NND Sketch a 3-input NND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R). 3 3 3 9/0/006 VLSI Design I;. Milenkovic 4

3-input NND Caps nnotate the 3-input NND gate with gate and diffusion capacitance. 3 3 3 9/0/006 VLSI Design I;. Milenkovic 5

3-input NND Caps nnotate the 3-input NND gate with gate and diffusion capacitance. C C C C C C C C C 3C 3C 3C 3 3 3 3C 3C 3C 3C 9/0/006 VLSI Design I;. Milenkovic 6

3-input NND Caps nnotate the 3-input NND gate with gate and diffusion capacitance. 5C 5C 5C 3 3 3 9C 3C 3C 9/0/006 VLSI Design I;. Milenkovic 7

Elmore Delay ON transistors look like resistors Pullup or pulldown network modeled as RC ladder Elmore delay of RC ladder t R C pd i to source i nodes i = R C + R + R C +... + R + R +... + R C ( ) ( ) 1 1 1 1 R 1 R R 3 R N N N C 1 C C 3 C N 9/0/006 VLSI Design I;. Milenkovic 8

Example: -input NND Estimate worst-case rising and falling delay of - input NND driving h identical gates. x Y h copies 9/0/006 VLSI Design I;. Milenkovic 9

Example: -input NND Estimate rising and falling propagation delays of a -input NND driving h identical gates. x 6C C Y 4hC h copies 9/0/006 VLSI Design I;. Milenkovic 30

Example: -input NND Estimate rising and falling propagation delays of a -input NND driving h identical gates. x 6C C Y 4hC h copies R Y (6+4h)C t pdr = 9/0/006 VLSI Design I;. Milenkovic 31

Example: -input NND Estimate rising and falling propagation delays of a -input NND driving h identical gates. x 6C C Y 4hC h copies R Y ( ) (6+4h)C t pdr = 6+ 4h RC 9/0/006 VLSI Design I;. Milenkovic 3

Example: -input NND Estimate rising and falling propagation delays of a -input NND driving h identical gates. x 6C C Y 4hC h copies 9/0/006 VLSI Design I;. Milenkovic 33

Example: -input NND Estimate rising and falling propagation delays of a -input NND driving h identical gates. x 6C C Y 4hC h copies R/ x R/ C Y (6+4h)C t pdf = 9/0/006 VLSI Design I;. Milenkovic 34

Example: -input NND Estimate rising and falling propagation delays of a -input NND driving h identical gates. x 6C C Y 4hC h copies R/ x R/ C Y (6+4h)C tpdf = C + + h C + ( )( R ) ( 6 4 ) ( R R ) = 7+ 4h RC ( ) 9/0/006 VLSI Design I;. Milenkovic 35

Delay Components Delay has two parts Parasitic delay 6 or 7 RC Independent of load Effort delay 4h RC Proportional to load capacitance 9/0/006 VLSI Design I;. Milenkovic 36

Contamination Delay est-case (contamination) delay can be substantially less than propagation delay. Ex: If both inputs fall simultaneously x 6C C Y 4hC R R Y (6+4h)C tcdr = 3+ h RC ( ) 9/0/006 VLSI Design I;. Milenkovic 37

Diffusion Capacitance we assumed contacted diffusion on every s / d. Good layout minimizes diffusion area Ex: NND3 layout shares one diffusion contact Reduces output capacitance by C Merged uncontacted diffusion might help too Shared Contacted Diffusion Merged Uncontacted Diffusion C C Isolated Contacted Diffusion 3 3 7C 3C 3C 3C 3C 3 3C 9/0/006 VLSI Design I;. Milenkovic 38

Which layout is better? Layout Comparison V DD V DD Y Y GND GND 9/0/006 VLSI Design I;. Milenkovic 39