Delay and Power Estimation

Similar documents
EE5780 Advanced VLSI CAD

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response

Lecture 6: DC & Transient Response

5. CMOS Gate Characteristics CS755

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville

Lecture 4: DC & Transient Response

Lecture 12 CMOS Delay & Transient Response

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Lecture 8-1. Low Power Design

Very Large Scale Integration (VLSI)

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

EE115C Digital Electronic Circuits Homework #4

Dynamic operation 20

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

Lecture 7 Circuit Delay, Area and Power

Designing Information Devices and Systems II Fall 2017 Miki Lustig and Michel Maharbiz Homework 1. This homework is due September 5, 2017, at 11:59AM.

EECS 141: FALL 05 MIDTERM 1

MOS Transistor Theory

Static CMOS Circuits. Example 1

EE213, Spr 2017 HW#3 Due: May 17 th, in class. Figure 1

Name: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015

Lecture 4: CMOS Transistor Theory

THE INVERTER. Inverter

Digital Microelectronic Circuits ( )

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002

Power Dissipation. Where Does Power Go in CMOS?

Static CMOS Circuits

Lecture 9: Combinational Circuit Design

DC & Transient Responses

The Physical Structure (NMOS)

Lecture 6: Circuit design part 1

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

Based on slides/material by. Topic 3-4. Combinational Logic. Outline. The CMOS Inverter: A First Glance

Physical Design of Digital Integrated Circuits (EN0291 S40) Sherief Reda Division of Engineering, Brown University Fall 2006

Topic 4. The CMOS Inverter

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Restore Output. Pass Transistor Logic. How compare.

Digital Integrated Circuits A Design Perspective

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences

CMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering

CPE/EE 427, CPE 527 VLSI Design I L18: Circuit Families. Outline

CMOS Inverter (static view)

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp

Lecture 8: Combinational Circuits

CMOS Transistors, Gates, and Wires

Name: Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

VLSI Design, Fall Logical Effort. Jacob Abraham

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: Two-Input NOR Gate (NOR2)

VLSI Design I; A. Milenkovic 1

Lecture 8: Logic Effort and Combinational Circuit Design

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

EE 434 Lecture 33. Logic Design

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

EEE 421 VLSI Circuits

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Properties of CMOS Gates Snapshot

Lecture 14: Circuit Families

MOS Transistor Theory

EECS 141: SPRING 09 MIDTERM 2

Where Does Power Go in CMOS?

CMPEN 411 VLSI Digital Circuits Spring 2012

Chapter 3-7. An Exercise. Problem 1. Digital IC-Design. Problem. Problem. 1, draw the static transistor schematic for the function Q = (A+BC)D

Digital Integrated Circuits A Design Perspective

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences

Lecture 8: Combinational Circuit Design

Homework #2 10/6/2016. C int = C g, where 1 t p = t p0 (1 + C ext / C g ) = t p0 (1 + f/ ) f = C ext /C g is the effective fanout

EE115C Digital Electronic Circuits Homework #6

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

! Inverter Power. ! Dynamic Characteristics. " Delay ! P = I V. ! Tricky part: " Understanding I. " (pairing with correct V) ! Dynamic current flow:

EE141. Administrative Stuff

COMBINATIONAL LOGIC. Combinational Logic

MOS Transistor I-V Characteristics and Parasitics

! Dynamic Characteristics. " Delay

CMPEN 411 VLSI Digital Circuits Spring Lecture 14: Designing for Low Power

COMP 103. Lecture 16. Dynamic Logic

Digital Integrated Circuits EECS 312. Review. Fringe vs. parallel plate capacitance. Rent s rule. Impact of inter-wire capacitance

EE 330 Lecture 39. Digital Circuits. Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates)

Digital Integrated Circuits

Lecture 8: Combinational Circuits

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

Digital Microelectronic Circuits ( ) Ratioed Logic. Lecture 8: Presented by: Mr. Adam Teman

University of Toronto. Final Exam

EE 330 Lecture 37. Digital Circuits. Other Logic Families. Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates)

ECE321 Electronics I

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Oldham Fall 1999

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Lecture 2: CMOS technology. Energy-aware computing

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

Transcription:

EEN454 Digital Integrated ircuit Design Delay and Power Estimation EEN 454 Delay Estimation We would like to be able to easily estimate delay Not as accurate as simulation But make it easier to ask What if? he step response usually looks like a 1 st order response with a decaying eponential Use delay models to estimate delay = total capacitance on output node Use effective resistance So that t pd = haracterize transistors by finding their effective Depends on average current as gate switches EEN 475 6. 1

Delay Model Use equivalent circuits for MOS transistors Ideal switch + capacitance and ON resistance Unit nmos has resistance, capacitance Unit pmos has resistance, capacitance apacitance proportional to width esistance inversely proportional to width g d k s g d /k k s k k g d k s g s k /k k k d EEN 475 6. Effective esistance Shockley models have limited value Not accurate enough for modern transistors oo complicated for much hand analysis Simplification: treat transistor as resistor eplace I ds (V ds, V gs ) with effective resistance I ds = V ds / averaged across switching of digital gate oo inaccurate to predict current at any given time But good enough to predict delay EEN 475 6.4

apacitance Values = g = s = d = ff/m of gate width Values similar across many yprocesses esistance 6 K*m in 0.6um process Improves with shorter channel lengths Unit transistors t May refer to minimum contacted device (4/ ) Or maybe 1 m wide device Doesn t matter as long as you are consistent EEN 475 6.5 Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter 1 1 EEN 475 6.6

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter 1 1 EEN 475 6.7 Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter 1 1 EEN 475 6.8 4

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter 1 1 d = 6 EEN 475 6.9 Eample: -input NND Sketch a -input NND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (). EEN 475 6.10 5

Eample: -input NND Sketch a -input NND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (). EEN 475 6.11 Eample: -input NND Sketch a -input NND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (). EEN 475 6.1 6

-input NND aps nnotate the -input NND gate with gate and diffusion capacitance. EEN 475 6.1 -input NND aps nnotate the -input NND gate with gate and diffusion capacitance. EEN 475 6.14 7

-input NND aps nnotate the -input NND gate with gate and diffusion capacitance. 5 5 5 9 EEN 475 6.15 Elmore Delay ON transistors look like resistors Pullup or pulldown network modeled as ladder Elmore delay of ladder t pd itosource i nodes i...... 1 1 1 1 1 N N N 1 N EEN 475 6.16 8

Eample: -input NND Estimate worst-case rising and falling delay of -input NND driving h identical gates. B h copies EEN 475 6.17 Eample: -input NND Estimate rising and falling propagation delays of a - input NND driving h identical gates. B 6 4h h copies EEN 475 6.18 9

Eample: -input NND Estimate rising and falling propagation delays of a - input NND driving h identical gates. B 6 4h h copies (6+4h) t pdr EEN 475 6.19 Eample: -input NND Estimate rising and falling propagation delays of a - input NND driving h identical gates. B 6 4h h copies t 64 (6+4h) pdr h Note: he cap at node is neglected for simplicity. It shall be considered for more accurate analysis more on this later. EEN 475 6.0 10

Eample: -input NND Estimate rising and falling propagation delays of a - input NND driving h identical gates. B 6 4h h copies EEN 475 6.1 Eample: -input NND Estimate rising and falling propagation delays of a - input NND driving h identical gates. B 6 4h h copies / / (6+4h) tpdf EEN 475 6. 11

Eample: -input NND Estimate rising and falling propagation delays of a - input NND driving h identical gates. B 6 4h h copies / / (6+4h) pdf 6 4 74h t h EEN 475 6. Delay has two parts Parasitic delay 6 or 7 Delay omponents Independent of load Effort delay 4h Proportional to load capacitance EEN 475 6.4 1

ontamination Delay Best-case (contamination) delay can be substantially less than propagation delay. E: If both inputs fall simultaneously B 6 4h (6+4h) tcdr h EEN 475 6.5 Dynamic vs Static iming nalysis Dynamic timing analysis Simulation Depends on input stimulus vectors Do not report timing on false paths With large number of testing vectors ccurate Slow Static timing analysis Fast onsider all paths Pessimism by considering false paths which are never eercised EEN 475 6.6 1

Eample of Static iming nalysis 7/4/- 5//- 9/6/- 11 4/7/ 4 0/17/- 7 18/18/0 /0/- 8/8/0 11/11/0 rrival time: input -> output, take ma equired arrival time: output -> input, take min Slack = required arrival time arrival time EEN 475 6.7 Power and Energy Power is drawn from a voltage source attached to the V pin(s) of a chip. Instantaneous Power: Energy: verage Power: Pt () i () tv E P() t dt i () t V dt 0 0 0 E 1 P avg i() t Vdt EEN 475 6.8 14

Dynamic Power Dynamic power is required to charge and discharge load capacitances when transistors switch. One cycle involves a rising and falling output. On rising output, charge Q = V is required On falling output, charge is dumped to GND his repeats f sw times over an interval of V i (t) f sw EEN 475 6.9 Dynamic Power ont. 1 P dynamic i () t V dt V 0 0 i () t dt V fswv V f sw ount the number of rising transitions at the output: trigged by the falling transitions of the input with a frequency same as the input frequency. V i (t) f sw EEN 475 6.0 15

ctivity Factor Suppose the system clock frequency = f Let f sw = f, where = activity factor If the signal is a clock, = 1 If the signal switches once per cycle, = ½ Dynamic gates: Switch either 0 or times per cycle, = ½ Static gates: Depends on design, but typically = 0.1 Dynamic power: P V f dynamic EEN 475 6.1 Short ircuit urrent When transistors switch, both nmos and pmos networks may be momentarily ON at once Leads to a blip of short circuit current P s (V dd -V t ) t r f p ssume t r = t f for the input f p : frequency of the input See Weste & Eshraghian, nd edition V out Input falling V out < 10% of dynamic power if rise/fall times are comparable for input and output Input rising EEN 475 6. 16

Static Power Static power is consumed even when chip is quiescent. Leakage draws power from nominally OFF devices Ids I e e V V V nv v ds0 1 gs t ds V V V V t t0 ds s sb s EEN 475 6. 17