Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Similar documents
The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ECE 342 Electronic Circuits. 3. MOS Transistors

MOSFET: Introduction

MOS Transistor Properties Review

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

EE 3329 Electronic Devices Syllabus ( Extended Play )

Integrated Circuits & Systems

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Lecture 04 Review of MOSFET

Device Models (PN Diode, MOSFET )

Semiconductor Physics fall 2012 problems

Metal-oxide-semiconductor field effect transistors (2 lectures)

Lecture 12: MOS Capacitors, transistors. Context

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

Lecture #27. The Short Channel Effect (SCE)

Device Models (PN Diode, MOSFET )

Lecture 12: MOSFET Devices

The Devices. Jan M. Rabaey

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

EE105 - Fall 2005 Microelectronic Devices and Circuits

MOS Transistor Theory

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

The Intrinsic Silicon

MOS Capacitors ECE 2204

MOS Transistor Theory

MOS CAPACITOR AND MOSFET

N Channel MOSFET level 3

Long Channel MOS Transistors

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ECE 546 Lecture 10 MOS Transistors

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

MOS Transistor I-V Characteristics and Parasitics

The Devices: MOS Transistors

EE105 - Fall 2006 Microelectronic Devices and Circuits

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Electrical Characteristics of MOS Devices

Lecture 11: MOS Transistor

Section 12: Intro to Devices

Semiconductor Physics Problems 2015

Classification of Solids

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

Lecture 3: CMOS Transistor Theory

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Practice 3: Semiconductors

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

FIELD-EFFECT TRANSISTORS

Chapter 4 Field-Effect Transistors

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

The Gradual Channel Approximation for the MOSFET:

Section 12: Intro to Devices

Chapter 6: Field-Effect Transistors

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Field-Effect (FET) transistors

VLSI Design and Simulation

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

RFIC2017 MO2B-2. A Simplified CMOS FET Model using Surface Potential Equations For Inter-modulation Simulations of Passive-Mixer-Like Circuits

MOSFET Capacitance Model

ECE 497 JS Lecture - 12 Device Technologies

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)

Lecture 4: CMOS Transistor Theory

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

Introduction and Background

Current mechanisms Exam January 27, 2012

Appendix 1: List of symbols

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

6.012 Electronic Devices and Circuits

CMOS Devices. PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors

Week 3, Lectures 6-8, Jan 29 Feb 2, 2001

EE382M-14 CMOS Analog Integrated Circuit Design

Lecture 11: J-FET and MOSFET

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

6.012 Electronic Devices and Circuits Spring 2005

EC/EE DIGITAL ELECTRONICS

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

an introduction to Semiconductor Devices

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

6.012 Electronic Devices and Circuits

MOSFET Physics: The Long Channel Approximation

GaN based transistors

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture 8 PN Junction and MOS Electrostatics (V) Electrostatics of Metal Oxide Semiconductor Structure (cont.) October 4, 2005

ECE-305: Fall 2017 MOS Capacitors and Transistors

Extensive reading materials on reserve, including

Chapter 2 MOS Transistor theory

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

Class 05: Device Physics II

EKV MOS Transistor Modelling & RF Application

Transcription:

Operation and Modeling of The MOS Transistor Second Edition Yannis Tsividis Columbia University New York Oxford OXFORD UNIVERSITY PRESS

CONTENTS Chapter 1 l.l 1.2 1.3 1.4 1.5 1.6 1.7 Chapter 2 2.1 2.2 2.3 2.4 Semiconductors, Junctions, and MOSFET Overview Semiconductors Conduction 1.3.1 Transit Time 1.3.2 Drift 1.3.3 Diffusion Contact Potentials The pn Junction Overview of the MOS Transistor 1.6.1 Basic Structure 1.6.2 A Qualitative Description of MOS Transistor Operation 1.6.3 A Fluid Dynamical Analog 1.6.4 MOS Transistor Characteristics A Brief Overview of This Book The Two-Terminal MOS Structure The Fiat-Band Voltage Potential Balance and Charge Balance Effect of Gate-Substrate Voltage on Surface Condition 2.4.1 Fiat-Band Condition 2.4.2 Accumulation 1 1 1 8 8 9 15 18 26 34 34 39 41 44 46 48 49 50 50 51 56 58 59 59 XV

XVI CONTENTS 2.5 2.6 2.7 2.4.3 Depletion and Inversion 2.4.4 General Analysis Inversion 2.5.1 General Relations and Regions of Inversion 2.5.2 Strong Inversion 2.5.3 Weak Inversion 2.5.4 Moderate Inversion Small-Signal Capacitance Summary of Properties of the Regions of Inversion 59 62 64 64 71 74 78 79 87 87 88 Chapter 3 3.1 3.2 3.3 3.4 3.5 Chapter 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 The Three-Terminal MOS Structure Contacting the Inversion Layer The Body Effect Regions of Inversion 3.4.1 Approximate Limits 3.4.2 Strong Inversion 3.4.3 Weak Inversion 3.4.4 Moderate Inversion A "V CB Control" Point of View 3.5.1 Fundamentals 3.5.2 "Pinchoff' Voltage 3.5.3 Expressions in Terms of the "Pinchoff Voltage The Four-Terminal MOS Transistor Transistor Regions of Operation General Charge Sheet Models 4.3.1 Complete Charge Sheet Model 4.3.2 Simplified Charge Sheet Models 4.3.3 Model Based on Quasi-Fermi Potentials Regions of Inversion in Terms of Terminal Voltages Strong Inversion 4.5.1 Complete Symmetrie Strong-Inversion Model 4.5.2 Simplified Symmetrie Strong-Inversion Model 4.5.3 Simplified, Source-Referenced, Strong-Inversion Model 4.5.4 Model Origin Summary Weak Inversion Moderate Inversion 91 91 92 101 103 103 106 109 113 113 113 117 120 122 123 125 125 128 131 131 140 146 147 150 150 156 158 169 170 175

CONTENTS XVÜ 4.8 Interpolation Models 176 4.9 Source-Referenced vs. Body-Referenced Modeling 179 4.10 Effective Mobility 181 4.11 Temperature Effects 189 4.12 Breakdown 191 4.13 The /^-Channel MOS Transistor 192 4.14 Enhancement-Mode and Depletion-Mode Transistors 194 4.15 Model Parameter Values, Model Accuracy, and Model Comparison 195 197 203 Chapter 5 MOS Transistors with lon-implanted Channels 207 5.1 207 5.2 Enhancement nmos Transistors 208 5.2.1 Preliminaries 208 5.2.2 Charges and Threshold Voltages 212 5.2.3 Drain-to-Source Current Model for Strong Inversion 219 5.2.4 Simplified Model for Strong Inversion 222 5.2.5 Weak Inversion 225 5.3 Depletion nmos Transistors 225 5.3.1 The Need for an «-Type Implant 225 5.3.2 Charges and Threshold Voltage 227 5.3.3 Transistor Operation 234 5.4 Enhancement pmos Transistors 240 5.4.1 Surface-Channel Enhancement-Mode pmos 240 5.4.2 Buried-Channel Enhancement-Mode pmos 241 241 245 Chapter 6 Small-Dimension Effects 248 by D. Antoniadis, Massachusetts Institute of Technology 6.1 248 6.2 Channel Length Modulation 249 6.3 Barrier Lowering, Two-Dimensional Charge Sharing, and Threshold Voltage 257 6.3.1 257 6.3.2 Short-Channel Devices 257 6.3.3 Narrow-Channel Devices 270 6.3.4 Summary and Comments 277 6.4 Punchthrough 277 6.5 Carrier Velocity Saturation 280 6.6 Hot Carrier Effects Substrate Current, Gate Current, and Breakdown 286 6.7 Scaling 290

XV1I1 CONTENTS 6.8 Effect of Surface and Drain Series Resistances 296 6.9 Effects due to Thin Oxides and High Doping 298 301 309 Chapter 7 The MOS Transistor in Dynamic Operation Large-Signal Modeling 312 7.1 312 7.2 Quasi-Static Operation 313 7.3 Terminal Currents in Quasi-Static Operation 317 7.4 Evaluation of Charges in Quasi-Static Operation 325 7.4.1 325 7.4.2 Strong Inversion 325 7.4.3 Moderate Inversion 331 7.4.4 Weak Inversion 332 7.4.5 General Charge Sheet Model 333 7.4.6 Depletion 335 7.4.7 Accumulation 336 7.4.8 Plots of Charges versus V GS 336 7.4.9 Use of Charges in Evaluating Terminal Currents 337 7.5 Transit Time under DC Conditions 339 7.6 Limitations of the Quasi-Static Model 340 7.7 Non-Quasi-Static Modeling 347 7.7.1 347 7.7.2 The Continuity Equation 347 7.7.3 Non-Quasi-Static Analysis 348 354 358 Chapter 8 Small-Signal Modeling for Low and Medium Frequencies 359 8.1. 359 8.2 A Low-Frequency Small-Signal Model for the Intrinsic Part 360 8.2.1 A Two-Path View 360 8.2.2 A Small-Signal Model for the Channel Path 361 8.2.3 A Small-Signal Model for the Drain-to-Substrate Path 365 8.2.4 Strong Inversion 367 8.2.5 Weak Inversion 378 8.2.6 Moderate Inversion 380 8.2.7 General Models 381 8.3 A Medium-Frequency Small-Signal Model for the Intrinsic Part 384 8.3.1 384 8.3.2 Intrinsic Capacitances 385

CONTENTS XiX 8.4 8.5 8.6 Small-Signal Modeling for the Extrinsic Part Noise 8.5.1 8.5.2 White Noise 8.5.3 Flicker Noise 8.5.4 Small-Dimension Effects 8.5.5 Equivalent-Circuit Model General Models 405 410 410 414 422 424 425 426 428 438 Chapter 9 9.1 9.2 9.3 9.4 9.5 9.6 Chapter 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 High-Frequency Small-Signal Models A Complete Quasi-Static Model 9.2.1 Complete Description of Capacitance Effects 9.2.2 Small-Signal Equivalent Circuit Topologies 9.2.3 Evaluation of Capacitances 9.2.4 Frequency Region of Validity j-parameter Models Non-Quasi-Static Models 9.4.1 9.4.2 A Non-Quasi-Static Strong-Inversion Model 9.4.3 Other Approximations and Higher-Order Models 9.4.4 Model Comparison High-Frequency Noise Considerations in MOSFET Modeling for RF Applications MOSFET Modeling for Circuit Simulation Types of Models Combining Several Effects into One Physical Model Parameter Extraction Accuracy Properties of Good Models Considerations and Choices 10.7.1 General Considerations 10.7.2 Considerations Related to Computer Implementation Benchmark Tests Nontechnical Considerations 445 451 458 460 467 467 469 490 491 492 495 504 508 513 513 514 516 519 528 529 530 530 533 534 543 543 553

Appendices A Energy Bands and Related Concepts 557 B Basic Laws of Electrostatics in One Dimension 566 C Charge Density, Electric Field, and Potential in the pn Junction 572 D Energy Band Diagrams for the Two-Terminal MOS Structure 574 E Charge Density, Electric Field, and Potential in the Two- Terminal MOS Structure 578 F General Analysis of the Two-Terminal MOS Structure 580 G Careful Definitions for the Limits of Moderate Inversion 584 H Energy Band Diagrams for the Three-Terminal MOS Structure 587 I General Analysis of the Three-Terminal MOS Structure 591 J Drain Current Formulation Using Quasi-Fermi Potentials 594 K Results of a Detailed Formulation for the Drain Current and Drain Small-Signal Conductance in the Saturation Region 598 L Evaluation of the Intrinsic Transient Source and Drain Currents 600 M Charges for the Accurate Strong-Inversion Model 603 N Quantities Used in the Derivation of the Non-Quasi-Static y-parameter Model 606 Index 609