ENGR 7181 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University

Similar documents
ENGR 7181 LECTURE NOTES WEEK 5 Dr. Amir G. Aghdam Concordia University

Minimum Spanning Trees

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

AP Calculus Multiple-Choice Question Collection

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

6. Negative Feedback in Single- Transistor Circuits

AP Calculus BC AP Exam Problems Chapters 1 3

Trigonometric functions

The Matrix Exponential

Exponential Functions

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

perm4 A cnt 0 for for if A i 1 A i cnt cnt 1 cnt i j. j k. k l. i k. j l. i l

The Matrix Exponential

(1) Then we could wave our hands over this and it would become:

L 1 = L G 1 F-matrix: too many F ij s even at quadratic-only level

Physics 43 HW #9 Chapter 40 Key

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h

electron -ee mrw o center of atom CLASSICAL ELECTRON THEORY Lorentz' classical model for the dielectric function of insulators

METHOD OF DIFFERENTIATION

DISCRETE TIME FOURIER TRANSFORM (DTFT)

Calculus Revision A2 Level

Legendre Wavelets for Systems of Fredholm Integral Equations of the Second Kind

3-2-1 ANN Architecture

ELEC 372 LECTURE NOTES, WEEK 11 Dr. Amir G. Aghdam Concordia University

Dual Nature of Matter and Radiation

Solid State Device Fundamentals

Chemistry 342 Spring, The Hydrogen Atom.

Prelab Lecture Chmy 374 Thur., March 22, 2018 Edited 22mar18, 21mar18

Slovak University of Technology in Bratislava Institute of Information Engineering, Automation, and Mathematics PROCEEDINGS

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error.

Calculation of electromotive force induced by the slot harmonics and parameters of the linear generator

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2014 Lecture 20: Transition State Theory. ERD: 25.14

The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function

Thomas Whitham Sixth Form

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

GRAPHS IN SCIENCE. drawn correctly, the. other is not. Which. Best Fit Line # one is which?

Lecture Outline. Skin Depth Power Flow 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3e

Digital Signal Processing, Fall 2006

CS 491 G Combinatorial Optimization

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming

Chapter 10 Time-Domain Analysis and Design of Control Systems

MM1. Introduction to State-Space Method

Outlines: Graphs Part-4. Applications of Depth-First Search. Directed Acyclic Graph (DAG) Generic scheduling problem.

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work?

Discrete Diagonal State Estimator based Current Control for Grid Connected PWM Converter with an LCL filter

Sundials and Linear Algebra

Design and Analysis of Algorithms (Autumn 2017)

Quantitative Model of Unilluminated Diode part II. G.R. Tynan UC San Diego MAE 119 Lecture Notes

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Y 0. Standing Wave Interference between the incident & reflected waves Standing wave. A string with one end fixed on a wall

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06

Estimating the Variance in a Simulation Study of Balanced Two Stage Predictors of Realized Random Cluster Means Ed Stanek

Chapter 7. A Quantum Mechanical Model for the Vibration and Rotation of Molecules

Mobile Communications TCS 455

Lagrangian Analysis of a Class of Quadratic Liénard-Type Oscillator Equations with Exponential-Type Restoring Force function

Comparisons of the Variance of Predictors with PPS sampling (update of c04ed26.doc) Ed Stanek

First order differential equation Linear equation; Method of integrating factors

Abstract Interpretation: concrete and abstract semantics

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

Online Supplement: Advance Selling in a Supply Chain under Uncertain Supply and Demand

Fundamental Limits on Data Acquisition: Trade-offs between Sample Complexity and Query Difficulty

Thomas Whitham Sixth Form

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016

We name Functions f (x) or g(x) etc.

MAT 270 Test 3 Review (Spring 2012) Test on April 11 in PSA 21 Section 3.7 Implicit Derivative

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases.

a 1and x is any real number.

Finite Element Analysis

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac.

Hilbert-Space Integration

Linear Algebra. Definition The inverse of an n by n matrix A is an n by n matrix B where, Properties of Matrix Inverse. Minors and cofactors

Additional Math (4047) Paper 2 (100 marks) y x. 2 d. d d

where: u: input y: output x: state vector A, B, C, D are const matrices

DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Mathematics and Computer Science

Definition of Ablation testcase

Nonlinear Observers. Jaime A. Moreno. Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México

Lecture 4: Parsing. Administrivia

Southern Taiwan University

WEIGHTED LEAST SQUARES ESTIMATION FOR THE NONLINEAR OBSERVATION EQUATIONS MODELS. T m. i= observational error

Priority Search Trees - Part I

Proportional, Integral, and Derivative Controller Design Part 1

OVERFLOW IN A CYLINDRICAL PIPE BEND. 1. Introduction. Fig. 1: Overflow in a cylindrical pipe bend

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x)

( ) ( s ) Answers to Practice Test Questions 4 Electrons, Orbitals and Quantum Numbers. Student Number:

Maximum Matching Width: new characterizations and a fast algorithm for dominating set

On the irreducibility of some polynomials in two variables

1973 AP Calculus AB: Section I

Physics 6C. De Broglie Wavelength Uncertainty Principle. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

[1] (20 points) Find the general solutions of y y 2y = sin(t) + e t. Solution: y(t) = y c (t) + y p (t). Complementary Solutions: y

cycle that does not cross any edges (including its own), then it has at least

1997 AP Calculus AB: Section I, Part A

Fourth Part: The Interplay of Algebra and Logic

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,...

4e st dt. 0 e st dt. lim. f (t)e st dt. f (t) e st dt + 0. f (t) e. e (2 s)t dt + 0. e (2 s)4 1 ] = 1 = 1. te st dt + = t s e st

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

4e st dt. 0 e st dt. lim. f (t)e st dt. f (t) e st dt + 0. e (2 s)t dt + 0. e (2 s)4 1 = 1. = t s e st

Transcription:

ENGR 78 LECTURE NOTES WEEK Dr. ir G. ga Concoria Univrity DT Equivalnt Tranfr Function for SSO Syt - So far w av tui DT quivalnt tat pac ol uing tp-invariant tranforation. n t ca of SSO yt on can u t following tp to fin t tranfr function of t DT quivalnt ol irctly. Conir a CT LT yt wit t tranfr function g ˆ. Fin t invr Laplac tranfor of y t an rprnt t tp rpon of t CT yt. g ˆ. Ti ti ignal i not by Fin t z-tranfor of y k wr rprnt t apling prio. Ti function i not by Y z an rprnt t tp rpon of t DT quivalnt ol. Divi Y z by t z-tranfor of t unit tp ignal z t tranfr function of t DT quivalnt ol. - T abov tp can b iply own a follow: to fin gˆ z gˆ gˆ z z Zˆ - Eapl.: Fin t DT quivalnt ol for t yt of Eapl. irctly fro t tranfr function of t CT yt. - Solution: W will av: On t otr an: ˆ g z z z ˆ gˆ Z ˆ Z Lctur Not Prpar by ir G. ga

ˆ Z z z z Tu: ˆ g z z z wic i t a rult obtain fro t DT quivalnt tat pac ol. Controllability of Syt - Controllability: control yt i fin to b controllabl if for any arbitrary initial tat tr it an uncontrain control ignal u tat can bring t tat to t origin of t tat pac in a finit ti. - Racability: control yt i fin to b racabl if tr it an uncontrain control ignal u tat can tranfr t tat of t yt fro t origin to any arbitrary point in t tat pac in a finit ti. - T abov finition of controllability an racability ar vry gnral an can b u for any CT an DT yt. - Conir now a CT LT yt wit t following tat-pac rprntation: & t t u t y t C t Du t. wr n t R i t tat vctor u t R i t input vctor an y t R i t output vctor. atric. n n R n R C R n an D R ar contant - For CT LT yt t concpt of controllability an racability ar quivalnt. n otr wor tranfrring t tat fro any arbitrary point to t origin an tranfrring t tat fro t origin to any arbitrary point ar quivalnt. n fact if t abov yt i controllabl or racabl on can u an uncontrain control ignal to tranfr t tat of t yt fro any arbitrary point to any otr arbitrary point in t tat pac in finit ti. Lctur Not Prpar by ir G. ga

- Controllability Tt: T CT LT yt. i controllabl iff any of t following two conition ol: i T following controllability atri i full-rank: n [ L ] ii T following atri i full-rank for any copl calar : [ ] - T con tt i rfrr to a Popov-lvitc-Hautu PH tt. - Sinc t atri i alway full-rank if i not an ignvalu of t rank conition of ii uffic to b cck only for qual to t ignvalu of. - T concpt of controllability an racability for DT LT yt ar not quivalnt. Ti i own in t following apl. - Eapl.: Conir t following DT LT yt: [ k ] [ u[ [ k ] [ Cck t controllability an racability of ti yt. - Solution: To cck controllability w au tat t final tat i qual to zro t origin of t tat pac. W will av: [ k ] [ k ] [ [ u[ Ti ipli tat t tat of t yt can b tranfrr fro any arbitrary [] point [] in t tat pac to t origin in on tp by cooing t [] following control ignal u [ ] [] [] Ti an tat t yt i controllabl. u now tat t initial tat i t origin of t tat pac i.. W will av: []. Lctur Not Prpar by ir G. ga

4 [] [] [] [] u[] Ti ipli tat tarting fro t origin t con tat variabl [ ] can b tranfrr to any arbitrary point in t tat pac in on tp but [ ] will tay k k in t origin an cannot b ift to any arbitrary point in a finit nubr of tp. Ti an tat t yt i not racabl. - t can b conclu fro Eapl. tat controllability an racability of DT LT yt ar iffrnt. - Conir a DT LT yt wit t following tat pac rprntation: [ k ] y[ C [ [ D u[ u[. wr n [ R i t tat vctor u [ R i t input vctor an y[ R i t output vctor. R n n R n C R n an D R ar contant atric. For a DT LT yt wit a non-ingular tat atri controllability an racability ar quivalnt. t i to b not tat if a DT yt i obtain by icrtizing a CT yt t rultant tat atri will b noningular. - n ti cour w will rfr to a DT LT yt a controllabl if tr it an uncontrain control ignal fin ovr a finit nubr of apl uc tat tarting fro any arbitrary initial tat t tat can b tranfrr to any ir tat in finit nubr of apl ti i in fact quivalnt to racability. - Controllability tt for t DT LT yt. i iilar to tat of t CT countrpart.. T DT LT yt. i controllabl iff any of t following two conition ol: i T following controllability atri i full-rank: n [ L ] ii T following atri i full-rank for any copl calar z : [ z ] Lctur Not Prpar by ir G. ga

5 Sinc t atri z i alway full-rank if z i not an ignvalu of t rank conition of ii uffic to b cck only for z qual to t ignvalu of. Obrvability of Syt - yt i fin to b obrvabl if vry initial tat can b trin fro t obrvation itory of output in a finit ti givn t control ignal. - Obrvability Tt: T CT LT yt. i obrvabl iff any of t following two conition ol: i T following obrvability atri i full-rank: C C M n C ii T following atri i full-rank for any copl calar : - T con tt i rfrr to a Popov-lvitc-Hautu PH tt. - Obrvability tt for t DT LT yt. i iilar to tat of t CT countrpart.. T DT LT yt. i obrvabl iff any of t following two conition ol: i T following obrvability atri i full-rank: C C C M C ii T following atri i full-rank for any copl calar z : C n z Lctur Not Prpar by ir G. ga

6 - n gnral controllability tll u about t faibility to control a plant wil obrvability tll u about wtr it i poibl to know wat i appning in a givn yt by obrving it output. - yt wo uncontrollabl o ar tabl i rfrr to a a tabilizabl yt. Likwi a yt wo unobrvabl o ar tabl i rfrr to a a tctabl yt. Effct of Sapling - W will now invtigat t ffct of apling in icrtization unr tpinvariant tranforation. Can w av a controllabl/obrvabl CT yt wic a an uncontrollabl/unobrvabl DT quivalnt an vic vra? - Conir t following t-up []: u [ H ut G yt S y [ Figur.: apl-ata yt u for invtigating t apling ffct - u tat t apling frquncy in ra/c i not by : wr i t apling prio. Lt t CT yt G av t following tranfr function: gˆ - u now tat t unit tp ignal i appli at u [. W will av: u[ u[ u t u t Y y t in t t - y [ i t apl vrion of t tp-rpon y t wit t apling frquncy a follow: y[ y t in k in k ink k t kt Lctur Not Prpar by ir G. ga

Lctur Not Prpar by ir G. ga 7 - Ti an tat SGH G i a zro yt an ˆ z g. On t otr an by icrtizing a zro yt w will alo gt G. n otr wor uing t abov apling prio icrtization of t givn CT yt will not b uniqu. - n tr of tat ol w will av: ˆ D C g - t i to b not tat t ignvalu of t atri wic ar in fact t pol of t CT tranfr function too ar locat at j ±. - T DT quivalnt ol uing t tp-invariant tranforation can b obtain for ti yt a follow: co in in co } { t t t t L L t co in in co τ τ - Ti an tat altoug t pair i controllabl in t DT quivalnt ol i not. n otr wor t particular coic of apling prio for ti apl i not goo in t n tat it o not prrv controllability. Ti apling prio i call patological. - Dfinition. []: Conir a CT yt wit t following tat atric: D C

8 T apling frquncy i patological wit rpct to if a two ignvalu wit qual ral part but tir iaginary part iffr by an intgr ultipl of.g. α ± j k k K. Otrwi t apling frquncy i non-patological. - Eapl. []: Conir t CT LT yt. an au tat t ignvalu of t atri ar: ± j ± j Fin t patological apling frqunci. - Solution: W av two t of ignvalu wit qual ral part. an 4 ± j all av a ral part qual to an 5 6 ± j bot av a ral part qual to. T iffrnc btwn t iaginary part of t firt t { 4 } ar an an t iffrnc btwn t iaginary part of t con t } i 4. Tu all apling frqunci in t following t ar patological: { 5 6 4 : k K U : k K U : k K k k k Sinc 4 i iviibl by an t t of all patological apling frqunci can b iplifi a follow: 4 : k K k t i to b not tat t uppr boun for t lnt of t abov t i qual to 4. Tu t apling frquncy will b non-patological if ufficint conition it i gratr tan 4. - Patological apling can alo b icu uing pctral apping tor. t i known tat if a function f i analytic at t ignvalu of tn t ignvalu of f ar qual to f wr rprnt t ignvalu of. Ti an tat t ignvalu of ar qual to. Sinc t Lctur Not Prpar by ir G. ga

9 function i prioic wit prio j two CT o wit a itanc qual to k along t iaginary ai will b app to on point in t icrtiz ol. Ti an tat t ap i not on-to-on an t inforation about t o will b lot if t apling prio i patological. - W will now icu t ffct of apling on controllability an obrvability. - Tor. []: u tat t CT yt. i icrtiz wit a nonpatological apling frquncy to obtain t DT ol.. Tn: controllabl controllabl C obrvabl C obrvabl - Proof []: W will prov it for obrvability firt iplication. T proof for controllability i iilar. u tat t apling frquncy i non-patological an C i obrvabl. To prov tat C i obrvabl w will ow tat all t ignvalu of if tn: ar obrvabl. Uing t PH tt w ut ow tat rank n C rank n C wr an rprnt t ignvalu of an rpctivly. Dfin t following function: g Ti function i analytic for all not tat vn for t function will b analytic u to t cancllation of t pol wit a zro at tat point. Morovr zro of a follow: g will b locat at { } :. Ti can alo b writtn Lctur Not Prpar by ir G. ga

or: { : jk k ± ± ± K} { : jk k ± ± ± K} Ti ipli tat for a non-patological apling prio tr i no intrction btwn t t of zro of g an t t of ignvalu of. Sinc t ignvalu of t atri g i qual to g i i K n wr i rprnt t ignvalu of trfor i not an ignvalu of g. Ti an tat t atri g i invrtibl. On t otr an: g g Sinc tu: Sinc t atri C g C g i invrtibl an inc t invrtibility of g an g ar quivalnt on can conclu tat: rank rank C C Ti coplt t proof. - t i to b not tat non-patological apling i only a ufficint conition for controllability an obrvability of DT quivalnt ol. - T following tor ow tat w cannot gain controllability or obrvability by apling. - Tor. []: f t CT yt. i icrtiz to obtain t DT ol. tn: not controllabl not controllabl C not obrvabl C not obrvabl Lctur Not Prpar by ir G. ga

Lctur Not Prpar by ir G. ga - Proof []: W will only proof t firt iplication. T proof for unobrvability i iilar. f t pair i not controllabl w will av: [ ] n < rank for an ignvalu of. Ti an tat tr i a nonzro vctor uc tat: [ ] n otr wor: Tu: an: tc. Now fro: L!! t can b conclu tat:!!! L L Trfor: an:.

Ti ipli tat: wic i quivalnt to: t t t t fro quation. rank [ ] [ ] n < Ti an tat i an uncontrollabl ignvalu of. - T rult for tabilizability an tctability ar vry iilar to controllability an obrvability. n otr wor on can ay: - Tor.: u tat t CT yt. i icrtiz to obtain t DT ol.. Tn: not tabilizabl not tabilizabl C not tctabl C not tctabl Furtror if t apling frquncy i non-patological tn: tabilizabl tabilizabl C tctabl C tctabl Rfrnc: [] T. Cn an.. Franci Optial Sapl-Data Control Syt availabl at ttp://www.control.utoronto.ca/popl/prof/franci/_book.pf. [] G.F. Franklin J.D. Powll an M.L. Workan Digital Control of Dynaic Syt r Eition ion-wly 998. Lctur Not Prpar by ir G. ga