Intensive rearing of sea bream/bass

Similar documents
Live Feeds for Marine Fish Larvae. Aquaculture Center for Training, Education and Demonstration

Life history characteristics of Brachionus plicatilis (rotifera) fed different algae

Rotifer Production Solutions Feed, Enrichment and Greenwater Products & Solutions

Interactive effects of food and salinity on the reproductive and growth indices of two Brachionus rotifer strains from Iran

Jorge Castro M, Germán Castro M, Andrés Elías Castro C and Jennifer Ramírez N

Maricoltura di Rosignano Solvay Srl. Maricoltura di Rosignano Solvay

Aquaculture Biology Laboratory

Technology of plankton culture. Rotifer. Assist. Prof. Dr. Chalee Paibulkichakul. Assist. Prof. Dr. Chalee Paibulkichakul 1

A preliminary report of two native freshwater rotifers From Tabasco, México

Lab. No. 6. Production and Application of Rotifers in Aquaculture

NOT TO BE CITED WHTHOUT PRIOR REFERENCE TO THE AUTHORS. Developmental stage. Control. High currents. Long photophase Transport in the weaning tanks

The Effects of Microalgae as Live Food for Brachionus plicatilis (Rotifera) in Intensive Culture System

Artemia sp. Most marine fish larvae would never encounter these organisms naturally, and

Mass culture of the rotifer Brachionus plicatilis and its evaluation as a food for larval anchovies

3. ROTIFERS Philippe Dhert Laboratory of Aquaculture & Artemia Reference Center University of Gent, Belgium

The Performance of Continuous Rotifer (Brachionus Plicatilis) Culture System for Ornamental Fish Production

Effect of artificial diets on the growth and survival of rotifers

SATMINDER KAUR SUPERVISOR : DR HII YII SIANG

Existing modelling studies on shellfish

THIS PAPER NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR

Aquaculture 279 (2008) Contents lists available at ScienceDirect. Aquaculture. journal homepage:

Demographic parameters and mixis of three Brachionus angularis Gosse (Rotatoria) strains fed on different algae

Effects of Selected Commercial Diets and Yeast Substitution on the Growth and Associated Microbiota of Rotifer (Brachionus plicatilis)

THE EFFECT OF DISINFECTION ON SURVIVAL AND FEED QUALITY OF ROTIFERS (BRACHIONUS PLICATILIS) AND BRINE SHRIMP (ARTEMIA SALINA)

Live feed culture and larval rearing of marine finfishes

Probiotics as disease control in marine larviculture

Improving Larval Culture and Rearing Techniques on Common Snook (Centropomus undecimalis)

Determination of Live Prey Ingestion Capability of Blue Swimming Crab, Portunus pelagicus (Linnaeus, 1758) Larvae

Technical and economical feasibility of a rotifer recirculation system

Trophic position of Mediterranean bluefin tuna larvae estimated by different stable isotope analyses

Use of commercial probiotics for the improvement of water quality and rotifer density in outdoor mass culture tanks

Preliminary Study on Hatching of Rotifers (Brachionus plicatilis) and Copepods (Cyclopoida): Response to Flooding and Organic Fertilisation

Waste-grown phototrophic bacterium supports culture of the rotifer, Brachionus rotundiformis

Emilie CARDONA. Liet CHIM. Pierre RICHARD. Claire GEFFROY. La Rochelle University. France ; Laboratory Coastal Environment and Society 1

Design and Evaluation of Automated, Continuous Culture Techniques for Brachionus rotundiformis

Promotion of sustainable, export oriented, shrimp (Penaeus monodon) culture by disease prevention compliance to food safety regulations

Effects of sexual reproduction of the inferior competitor Brachionus calycifl orus on its fitness against Brachionus angularis *

The role of different algae in the growth and survival of turbot larvae (Scophthalmus maximus L.) in intensive rearing systems

Induction of sexual reproduction in Brachionus plicatilis (Monogononta, Rotifera) by a density-dependent chemical cue

This file is part of the following reference: Access to this file is available from:

Distribution of Brachionus species (Phylum Rotifera) in Cochin backwaters, Kerala, India

EFFECT OF BACTERIAL LOAD IN FEEDS ON INTESTINAL MICROFLORA OF SEABREAM (SPARUS AURATA) LARVAE AND JUVENILES

Population growth in planktonic rotifers. Does temperature shift the competitive advantage for different species?

Primary test on artificial spawning induction and larvae rearing of Holothuria scabra

What larval culture of Diadema antillarum

Thermal and ph tolerance of farmed, wild and first generation farmed-wild hybrid salmon (Salmo salar)

Testing for Grazer Adaptation to Toxic Algae

The research progress on food organism culture and technology utilization in crab seed production in ponds in China

Interspecific Relations between Marine Rotifer Brachionus rotundiformis and Zooplankton Species Contaminating in the Rotifer Mass Culture Tank

Population density, sexual reproduction and diapause in monogonont rotifers: new data for Brachionus and a review

Assessing the Rate and Extent of Transgenerational Acclimation and Adaptation to Ocean Warming

Ken Webb and Joan Holt

Nutritional composition of rotifer (Brachionus plicatilis Muller) cultured using selected natural diets

DNA BARCODING FRESHWATER ROTIFERA OF MEXICO

Competition-induced starvation drives large-scale population cycles in Antarctic krill

Handbook of Protocols and Guidelines for Culture and Enrichment of Live Food for Use in Larviculture

A pulse feeding strategy for rearing larval fish: an experiment with yellowtail flounder

BioMEDIA ASSOCIATES LLC HIDDEN BIODIVERSITY Series Rotifers

Effect of feeding rate and feeding frequency in mass culture of Brachionus plicatilis in semi-continuous method with a yeast-based diet

Meghan Rousseau (RSSMEG004) Supervisors: Prof John Bolton and Dr Brett Macey

ヌマエビ科両側回遊性エビ類 3 種の幼生飼育に対する飼育 餌料および塩分の影響

Management of recreational waters in relationship with harmful microalgae blooms (HAB) in the Mediterranean Sea

Reproductive rate of Brachionus calyciflorus under the influence of salinity, temperature, feed type and feed concentration

Vectoring algal toxin in marine planktonic food webs: sorting out nutritional deficiency from toxicity effects

Understanding the role of the YS Bottom Cold Water ( 10 C) on the survival strategy of Euphausia pacifica throughout the hot summer

Environment Protection Engineering THE IMPACT OF FOOD ON THE GROWTH OF CLONES OF LECANE INERMIS, A POTENTIAL BULKING CONTROL AGENT

Optimization of Flocculation of Marine Chlorella sp. by Response Surface Methodology

tational culture of the sea cucumber Holothuria scabra with the shrim

Morphological stasis of two species belonging to the L-morphotype in the Brachionus plicatilis species complex

Characterization and isolation of a rotifer-deterrent compound in the red tide dinoflagellate Karenia brevis.

The mechanisms influencing the timing, success and failure of spawning in natural populations of the sea urchin Strongylocentrotus intermedius

Population growth study of the rotifer Brachionus sp. fed with triazineexposed

The Effects of Feeds and Feeding Levels on the

Euglena! Green flagellates with elongate, ovoid or fusiform cells, varying in length from 20 to 500 μm, and with flagella originating within an anteri

Supplement of Simultaneous shifts in elemental stoichiometry and fatty acids of Emiliania huxleyi in response to environmental changes

Effect of the photoperiod on growth, survival and inflation of the swim bladder in dentex larvae (Dentex dentex L.)

Potential to use the native freshwater rotifer, Brachionus calyciflorus in feeding Acipenser persicus larvae

Effects of commercial enrichment products on fatty acid components of rotifer, Brachionus plicatilis

Buoyancy and vertical distribution of Pacific mackerel eggs and larvae and its implication to the recruitment variability.

The Effect of Varying Light Intensities and Tank Colour on the Growth, Foraging Behaviour and Survival of Atlantic Cod (Gadus morhua) Larvae

Arthrospira maxima (Spirulina maxima (Stiz.) Geitl.,1930) Acı Lake Strain Arthrospira maxima (= Spirulina maxima (Stiz.) Geitl.,1930) Acı Lake Strain

Advancement of rotifer culture and manipulation techniques in Europe

GEORGIA INSTITUTE OF TECHNOLOGY. Rotifer Ecotoxicology: Behavioral Avoidance of Toxicants. Emily G. Weigel

Ocean acidification in NZ offshore waters

RECOMMENDED STUDY PLAN 2018

Inclusion of copepod Acartia tonsa nauplii in the feeding of Centropomus undecimalis larvae increases stress resistance

ECOLOGICAL INTERACTIONS BETWEEN JUVENILE TRIPLOID AND DIPLOID ATLANTIC SALMON

Population density comparison of Daphnia pulex (Linnaeus, 1758) fed with bacteria obtained from Biofloc system

FISHERIES AND AQUACULTURE Vol. V Microzooplankton, Key Organisms in the Pelagic Food Web - Albert Calbet and Miquel Alcaraz

Aquaculture Volume 283, Issues 1 4, 1 October 2008, Pages

ANIMAL ECOLOGY (A ECL)

Induction of tetraploid gynogenesis in the European sea bass. (Dicentrarchus labrax L.) S. Peruzzi* & B. Chatain

Marine biodiversity - PBBT102

GHS S.4 BIOLOGY TEST 2 APRIL Answer all the questions in Section A and B. in the spaces provided

Management of recreational waters in relationship with harmful microalgae blooms (HAB) in the Mediterranean Sea

Nguyen Thi Ngoc Tinh, Nguyen Ngoc Phuoc, Kristof Dierckens, Patrick Sorgeloos, Peter Bossier

Monoculture of the ciliate protozoan Euplotes sp. (Ciliophora; Hypotrichia) fed with different diets

Treasure Coast Science Scope and Sequence

The relationship environment/life trajectory/physiological performance examined through the example of marine fish

Transcription:

POTENTIAL USE OF LOCAL PHYTOPLANKTON STRAINS FOR REARING THREE DIFFERENT BIOTYPES OF THE GENUS Brachionus plicatilis (Müller, 1786) CRYPTIC SPECIES COMPLEX G. Seretidou*, E. Foudoulaki, V. Kostopoulou, A. Economou-Amilli and I. Tzovenis Laboratory of Ecology and Taxonomy, Faculty of Biology, University of Athens, Zografou 15784, Athens, Greece itzoveni@biol.uoa.gr Laboratory of Fish pathology & Nutrition, Institute of Aquaculture & Genetics, Hellenic Center of Marine Research, Ag. Kosmas Ellininkon, Greece

In brief Mediterranean aquaculture still relies on live feeds during the first feeding of marine fish larvae Live food = phytoplankton + rotifers, Artemia etc. Greek hatcheries use imported phytoplanktic and rotifer strains The purpose of this research was to investigate the imported phytoplankton replacement with local phytoplanktic strains isolated from Greek coastal lagoons 12 local Tetraselmis sp. strains were fed to 3 rotifer Brachionus plicatilis complex strains Assessment: productivity and enrichment in essential fatty acids compared with 2 reference strains 2

Intensive rearing of sea bream/bass Common feeding plan Sparus aurata 3 rd -17 th day phytoplankton+ rotifers 17 th -24 th day phytoplankton+ rotifers + Artemia 34 th 45 th day Artemia Common feeding plan Dicentrarchus labrax 3 rd -24 th day phytoplankton+ rotifers + Artemia 28 th 45 th day Artemia + artificial diet 3

EFAs in hatchery food chain Microalgae ARA-EPA-DHA Rotifers (ARA-EPA-DHA) Further enrichment Larvae 4

Experimental design Rotifers: 3 strains(triplicates, 2 ml, 1 amictic female/ml, 25, 22 ) Brachionus plicatilis L3 Brachionus Tiscar SM 2 Brachionus Almenara Phytoplankton: 16 strains(log phase, in excess, 25, 2 ) Tetraselmis suecica * (incertae sedis) Nannochloropsis oculata* (N. gaditana) Selection of strains for FAME (filtration in GF/C, lyophilization, GC-FID) Reference strains Optimum yield strains (*) reference strain 5

Phytoplankton strains Tetraselmis spp 6

Phytoplankton reference strains Nannochloropsis oculata Chlorella sp 7

Rotifer strains B. plicatilis L3 B. Almenara B. Tiscar SM 2 8

Methodology-Culture Phytoplankton Cultivation photoperiod 12:12 h L: D light intensity 1 klux batch cultures Temperature 21 ± 1 C, Harvesting at the exponential phase Salinity 25 Rotifer rearing Initial density 1 ind/ml Culture volumes 2 ml Temperature(21±1 C) Photoperiod 12:12 h L:D Light intensity 1 klux Growth measurements: stereoscope, meander (amictic females, eggs) in daily basis for 25 days/triplicate The total sampling volume didn t overpass the 1 % of the starting culture volume 9

Methodology rotifers Cultures 1

Methodology assessment Specific growth rate: 16 SGR = (lnn n lnn n 1 )/ t 14 Maximum production: 12 1 N tmax = rotifer /ml 8 6 Egg ratio: 4 ER = eggs/amictic females 2 Productivity: -2 productivity (Pmax) = rotifers/ml/day Productivity expressed in terms of biovolume: V tmax = μm 3 /ml/day L3-CHUII B y =,8388x -,8179 R² =,9716 5 1 15 2 Sampling on pre-combusted GF/C filters, freeze-drying Fatty acids were determined after direct transesterification (Lepage & Roy, 1986) 11

Results - SGR 1,6 1,4 Mean Brachionus plicatilis L3 Mean±SD 1,6 1,4 Mean Brachionus "Tiscar" Mean±SD 1,2 1,2 SGR max 1,,8,6 1,,8,6,4,4,2,2,, SGR max SGR max 1,6 1,4 1,2 1,,8,6,4,2 Mean Brachionus "Almenara" Mean±SD, B. Tiscar SM 2 + N. occulata = the highest sgr (1,17 day -1 ) among all the mass cultures. 12

Results - N tmax 18 16 14 Brachionus plicatilis L3 Mean Mean±SD 18 16 14 Brachionus "Tiscar" Mean Mean±SD Nt max 12 1 8 6 4 2 Nt max 12 1 8 6 4 2 Nt max 18 16 14 12 1 8 6 4 2 Brachionus "Almenara" Β. Tiscar SM 2 Mean Mean±SD 14 > Mes 2, R 1-1, R 9-2 > 1 = N. oculata B. plicatilis L3 6 > T. chuii, T3-1, > 4 > reference strains B. Almenara T. chuii +reference strains > local strains 13

Results - P tmax 3 25 Mean Brachionus plicatilis L3 Mean±SD 3 25 Brachionus sp. "Tiscar" Mean Mean±SD rotifers/ml/day 2 15 1 5 bc c a bc bc c c c b bc rotifers/ml/day 2 15 1 5 rotifers/ml/day 3 25 2 15 1 5 Mean Brachionus sp. "Almenara" Mean±SD B. Tiscar SM 2 + Mes 2 maximum P (18 rotifer/ml /day) B. Tiscar SM 2 best performance in total 14

Results - biov tmax productivity μm 3 /ml/day 4E8 3,5E8 3E8 2,5E8 2E8 1,5E8 1E8 Brachionus plicatilis L3 Mean Mean±SD Outliers Extremes productivity μm 3 /ml/day 4E8 3,5E8 3E8 2,5E8 2E8 1,5E8 1E8 Brachionus sp. "Tiscar" Mean Mean±SD Outliers Extremes 5E7 5E7 productivity μm 3 /ml/day 4E8 3,5E8 3E8 2,5E8 2E8 1,5E8 1E8 5E7 Brachionus sp. "Almenara" Mean Mean±SD Outliers Extremes B. Tiscar SM 2 Max T.chuii - B. plicatilis L3 (2,21 1 8 μm 3 ml -1 ) B. Tiscar SM 2, 5 strains > 1 8 μm 3 ml -1 day -1 B. plicatilis L3 3 strains> 1 8 μm 3 ml -1 day -1 B. Almenara All < 1 8 μm 3 ml -1 day -1 15

Results- biov tmax Current effect: F(3, 15)=5,1192, p=, Vertical bars denote,95 confidence intervals 1,8E9 1,6E9 1,4E9 Rotifer spp B.plicatilis L3 Rotifer spp B.tiscar SM 2 Rotifer spp B.almenara 1,2E9 1E9 8E8 6E8 4E8 2E8 Vt max μm 3 /ml ANOVA 2-way rotifer x phyto interaction B. plicatilis L3 max biomass with T. chuii, T 3-1 & B. tiscar SM2 max biomass with Mes 2, R 1-2, R 9-2 B. almenara max with T. chuii, T. suesica maxima of B. plicatilis L3 & Tiscar not different, Almenara low 16

Results-Fatty acids Brachionus plicatilis L3 FAME starvation N. oculata T. suecsica V2-3 T3-1 T. chuii % avg std avg std avg std avg std avg std avg std 16: 2,93 1,36 24,5,64 17,94 4,43 19,98,75 16,76,1 14,95,99 16:1n-9 15,27,65 23,41,12 3,42 2,1 4,9,35 3,23,41 2,84,38 18:1n-9 19,48 1,81 7,61,15 11,8 2,32 1,62,19 9,37 2,98 9,5 3,38 18:2n-6 5,72,63 3,44,16 4,97,32 6,72 1,27 5,11 1,17 5,87,22 18:3n-3 3,22 1,76 1,47,28 13,19 5,41 9,17 1,64 11,55 1,15 1,39,32 2:4n-6 2,14,33 3,59,7,62,88 1,42,18 1,24,14 2,43,38 2:4n-3 1,4 1,52,, 2,71 3,83 8,41,97 7,95,54 7,94 2,27 2:5n-3 4,91,85 14,96,11 6,55,9 6,19 1,78 6,49,46 6,41,99 TFA mg/g 64,3 11,45 53,12 16,79 22,48 7,13 26,76 7,67 27,49 8,19 3,35 17,49 SFA 27,8 1,85 35,21,81 25,86 6,85 27,11,46 23,2,99 21,15,16 MUFA 51,91 3,28 38,59,5 33,7 6,85 29,81 4,17 29,42 1,48 33,18 3,87 n-9 35,54 3,16 34,8,19 21,57 6,52 2,95,49 19,17 1,81 2,31 6,82 n-6 8,44,9 7,92,62 7,7,36 8,87 1,94 7,81,8 1,5,75 n-3 11,7 5,26 17,37,17 33,33 13,13 33,79 7,16 38,84 2,98 34,73 2,88 EPA+DHA 4,91,85 14,96,11 6,55,9 6,19 1,78 6,49,46 6,41,99 Results-Fatty acids Brachionus Tiscar SM 2 FAME starvation Mes2 N. oculata T. suecica R1-2 T3-1 % avg std avg std avg std avg std avg std avg std 16: 33,33 4,26 1,31 14,58 22,81,65 23,9 1,4 22,58 4,62 2,86,2 16:1n-9 14,75,8 6,77,36 15,4,58 3,35,27 3,63 2,23 3,82,57 18:1n-9 16,4 3,94 14,4 9,74 5,32,33 15,24 3,16 15,76 5,65 1,6,84 18:2n-6 3,29 1,18 2,82 3,99 4,11,15 4,9,71 6,25,1 4,46 1,6 18:3n-3 3, 3,49 14,34 7,48 6,87,16 17,12 3,52 12,5 4,76 14,76 1,51 2:4n-6 2,58,3,34,49 3,6,1,7,1,92,55,96,27 2:5n-3 4,63 1,29 3,28 1,62 1,8 2,54 3,58,56 4,79 1,37 5,1,34 22:1n-9,54 1,89 4,68 2,54 14,16,31 3,48 4,45 4,47 2,8 6,62,7 TFA mg/g 49,84 12,82 28,89 13,37 41,43 9,69 62,85 25,98 23,82 11,14 36,47 1,72 SFA 4,84 3,36 32,55 4,9 32,9,4 31,44 6,29 29,98 5,8 27,1,19 MUFA 39,97 3,67 38,11 9,44 44,65,79 34,48,4 37,29 6,13 34,96 1,58 n-9 31,85 4,3 29,61 11,39 36,32,64 23,12 1,24 24,88 5,54 22,32 1,33 n-6 8,59 1,69 3,51 4,97 7,97,8 5,76,58 7,6 1,18 6,49 1,63 n-3 1,8 6,18 22,5 12,87 14,18,52 28,32 6,8 24,95 1,51 31,22,18 EPA+DHA 4,63, 3,28 1,62 1,8 2,54 3,58,56 4,79 1,37 5,1,34 17

Conclusions Rotifer strains showed a preference for food species and differentiated their performance accordingly The rotifer strains with the best performance were the B. "Tiscar" SM 2 and B. plicatilis L3 The phytoplankton strain which promotes growth, reproduction and enrichment in both rotifer biotypes was Tetraselmis T 3.1 B. "Tiscar" SM 2 can be reared efficiently with the local strains T 3-1 and R 1-2 while B. plicatilis L3 with V 2-3 and T 3-1 To obtain dense rotifer populations the suggested phytoplankton strains are the Mes 2, R 1-2, R 9-2 for B. 'Tiscar' SM 2 and the T 3-1 for B. plicatilis L3 & Mes 17 did not promote rotifer growth and they unfit as food for these strains. B. "Almenara" may be suitable for rearing freshwater and brackish fish species as in high salinity it failed to produce dense populations The rotifers reflect the fatty acid profile of their diet The EPA proportions improved greatly in L3 with the enrichment of microalgae especially with Nannochloropsis EPA precursors like 2:4ω3 were significantly elevated when L3 was fed with the other microalgae For producing dense populations of rotifers suitable local strains were identified For enrichment a further investigation on strains with suitable profiles including DHA must be carried out 18

thanks