Stability of Operational amplifiers

Similar documents
Systematic Design of Operational Amplifiers

Amplifiers, Source followers & Cascodes

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier II Multi-Stage Designs

Feedback Transimpedance & Current Amplifiers

Design of crystal oscillators

University of Toronto. Final Exam

ESE319 Introduction to Microelectronics. Feedback Basics

ECEN 326 Electronic Circuits

ESE319 Introduction to Microelectronics. Feedback Basics

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

Lecture 37: Frequency response. Context

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier I & Step Response

Advanced Current Mirrors and Opamps

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

Stability and Frequency Compensation

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Chapter 6 Frequency response of circuits. Stability

LECTURE 130 COMPENSATION OF OP AMPS-II (READING: GHLM , AH )

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 =

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Prof. D. Manstretta LEZIONI DI FILTRI ANALOGICI. Danilo Manstretta AA

Frequency Dependent Aspects of Op-amps

Homework Assignment 11

Homework Assignment 08

ECEN 325 Electronics

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

IFB270 Advanced Electronic Circuits

ECEN 326 Electronic Circuits

UNIVERSITÀ DEGLI STUDI DI CATANIA. Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

Lecture 4, Noise. Noise and distortion

Electronics II. Final Examination

Lecture 140 Simple Op Amps (2/11/02) Page 140-1

I. Frequency Response of Voltage Amplifiers

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

Electronics II. Final Examination

Design of Three-Stage Nested-Miller Compensated Operational Amplifiers Based on Settling Time

Philadelphia University Faculty of Engineering Communication and Electronics Engineering

Systems Analysis and Control

Analog Computing Technique

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)

Stability & Compensation

Chapter 10 Feedback. PART C: Stability and Compensation

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

The Miller Approximation

Monolithic N-Channel JFET Duals

Analysis and Design of Analog Integrated Circuits Lecture 12. Feedback

Lecture 17 Date:

Electronics II. Midterm II

FEEDBACK, STABILITY and OSCILLATORS

Monolithic N-Channel JFET Dual

ECEN 607 (ESS) Op-Amps Stability and Frequency Compensation Techniques. Analog & Mixed-Signal Center Texas A&M University

ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1

Bandwidth of op amps. R 1 R 2 1 k! 250 k!

EE 435. Lecture 16. Compensation Systematic Two-Stage Op Amp Design

OPERATIONAL AMPLIFIER APPLICATIONS

Multistage Amplifier Frequency Response

Integrated Circuit Operational Amplifiers

Electronic Circuits Summary

6.2 INTRODUCTION TO OP AMPS

Homework 7 - Solutions

A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load

Exercises for lectures 13 Design using frequency methods

Lectures on STABILITY

Guest Lectures for Dr. MacFarlane s EE3350

ECE 2100 Lecture notes Wed, 1/22/03

Op Amp Packaging. Op Amps. JFET Application Current Source

FEEDBACK AND STABILITY

MEASURING SMALL CURRENTS basic considerations Marco Sampietro

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 )

) t 0(q+ t ) dt n t( t) dt ( rre i dq t 0 u = = t l C t) t) a i( ( q tric c le E

CE/CS Amplifier Response at High Frequencies

ECEN 325 Electronics

Homework Assignment 09

55:041 Electronic Circuits The University of Iowa Fall Exam 2

Second-order filters. EE 230 second-order filters 1

Active Control? Contact : Website : Teaching

On the 1/f noise in ultra-stable quartz oscillators

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

V DD. M 1 M 2 V i2. V o2 R 1 R 2 C C

Lecture 090 Multiple Stage Frequency Response - I (1/17/02) Page 090-1

Electronic Circuits EE359A

Chapter 8: Converter Transfer Functions

D is the voltage difference = (V + - V - ).

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

6.302 Feedback Systems

Systems Analysis and Control

EE221 Circuits II. Chapter 14 Frequency Response

55:041 Electronic Circuits The University of Iowa Fall Final Exam

EE221 Circuits II. Chapter 14 Frequency Response

Master Degree in Electronic Engineering. Analog and Telecommunication Electronics course Prof. Del Corso Dante A.Y Switched Capacitor

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

R10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1

Exercise 1 (A Non-minimum Phase System)

OPERATIONAL AMPLIFIER ª Differential-input, Single-Ended (or Differential) output, DC-coupled, High-Gain amplifier

EE C128 / ME C134 Fall 2014 HW 8 - Solutions. HW 8 - Solutions

ECE3050 Assignment 7

Transcription:

Stability o Operational ampliiers Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 0-05 05

Table o contents Use o operational ampliiers Stability o 2-stage opamp Pole splitting Compensation o positive zero Stability o 3-stage opamp Willy Sansen 0-05 052

Operational ampliiers do operations v v 2 v 3 R R 2 R 3 R F - v OUT v OUT R F v - = R v 2 R2 v 3 R3 Requires High gain High speed Low noise Low power Opamp specs : Voltage gain is large Dierential input voltage 0 Input current = 0 Bandwidth is high Gainbandwidth GBW is very, very high Willy Sansen 0-05 053

Single-ended or ully dierential? Willy Sansen 0-05 054

Voltage input or current input? Voltage input Current output Current input Current output Willy Sansen 0-05 055

Classiication Opamp OTA OCA CM amp Operational ampliier Operational Transconduct. ampliier Operational Current ampliier Current Mode ampliier - - - - A v = v OUT v IN A g = i OUT v IN A i = i OUT i IN A r = v OUT i IN A v = = A g R L R = A L i = A R r S GBW R S Willy Sansen 0-05 056

Feedback conigurations v IN R - R 2 v OUT R v IN - R 2 v OUT v IN - v OUT R 2 A v = - R R 2 A v = R A v = R IN = R R IN = R IN = Willy Sansen 0-05 057

Integrator C A v -20 db/dec v IN R - v OUT φ (A v ) 90 o 0 o -90 o A v = p = j p 2π RC Willy Sansen 0-05 058

Low-pass ilter C R 2 A v A v0-20 db/dec v IN R - v OUT φ (A v ) 90 o 0 o p -90 o A v0 = - R 2 R A v0 A v = p = ( j ) p 2π R 2 C Willy Sansen 0-05 059

High-pass ilter L R 2 A v A v0 20 db/dec v IN R - v OUT φ (A v ) 90 o 0 o p A v0 = - R 2 R A v = A v0 j p ( j ) p -90 o p = R 2 2π L Willy Sansen 0-05 050

High-pass ilter v IN - v OUT A v 20 db/dec C R R 2 A v0 φ (A v ) 90 o 0 o z R 2-90 o A v0 = R A v = A V0 ( j ) z z = 2π RC R R 2 R= R //R 2 = R R 2 Willy Sansen 0-05 05

Low-pass ilter with inite attenuation v IN - v OUT A v -20 db/dec R 2 R C A v0 φ (A v ) 90 o 0 o z R 2 A v0 = R A v = A v0 ( j ) j z z -90 o z = 2π RC R= R R 2 Willy Sansen 0-05 052

Exchange o gain and bandwidth A A o A c Loop gain (T), A()=A o /(j/ ) Ao open loop gain A c closed loop gain A c φ A 0 o -90 o -80 o GBW A o = c A c c = c 45 o 45 o A c c = GBW Willy Sansen 0-05 053

Open- and closed-loop gain v IN Σ v ε G v OUT H v ε =v IN -Hv OUT v OUT = G v ε A c = v OUT v IN = G GH H i the loop gain GH = T >> P. Gray, P.Hurst, S.Lewis, R. Meyer: Design o analog integrated circuits, 4th ed., Wiley 200 Willy Sansen 0-05 054

What makes an opamp an opamp? v out C L v out v in v in Operational ampliier : Single-pole ampliier High impedance = high gain Exchange Gain-Bandwidth Stable or all gain values Wideband ampliier : Multiple-pole ampliier Low impedances at nodes Wide Bandwidth Stable or one gain only Willy Sansen 0-05 055

Single-pole system A A o -20 db/dec A o open loop gain Closed loop gain A c = loop gain A c = φ A 0 o open loop GBW closed loop phase shit -90 o -80 o PM PM phase margin Willy Sansen 0-05 056

Two-pole system A A o -20 db/dec A o open loop gain Closed loop gain A c = A c = φ A 0 o -90 o -80 o loop gain GBW -40 db/dec 2 open closed loop PM v IN - v OUT PM phase margin Willy Sansen 0-05 057

Higher loop gain gives less PM A A o A c loop gain A o open loop gain A c closed loop gain φ A 0 o open 2-90 o -80 o PM PM phase margin Willy Sansen 0-05 058

Higher loop gain gives less PM A A o A c loop gain A o open loop gain A c closed loop gain φ A 0 o open 2-90 o -80 o PM PM phase margin Willy Sansen 0-05 059

Higher loop gain gives less PM A A o loop gain A o open loop gain A c closed loop gain A c φ A 0 o open 2-90 o -80 o PM PM phase margin Willy Sansen 0-05 0520

Higher loop gain gives less PM A A o loop gain A o open loop gain A c closed loop gain A c = φ A 0 o open 2 Worst case or A c = -90 o -80 o PM PM phase margin Willy Sansen 0-05 052

Increase PM by increasing 2 : low 2 A A o Closed loop gain A c = A c = φ A 0 o open 2-90 o -80 o PM 0 o Willy Sansen 0-05 0522

Increase PM by increasing 2 A A o Closed loop gain A c = A c = φ A 0 o open 2-90 o -80 o PM 45 o Willy Sansen 0-05 0523

Set PM by setting 2 3 GBW A A o Closed loop gain A c = A c = φ A 0 o open GBW 2 2 3 GBW -90 o -80 o PM 70 o Willy Sansen 0-05 0524

Calculate PM or 2 3 GBW Open loop gain A = A o ( j )( j ) 2 v IN - A c = A v OUT H = A Closed loop gain A c = A j j 2 2 GBW GBW 2 ζ is the damping (=/2Q) r is the resonant requency j 2ζ j 2 2 r r 2 Willy Sansen 0-05 0525

Relation PM, damping and 2 /GBW r = GBW 2 PM ( o ) = 90 o GBW - arctan = arctan 2 2 GBW 2 GBW PM ( o ) ζ = 2 2 GBW P (db) P t (db) 0.5 27 0.35 3.6 2.3 45 0.5.25.3.5 56 0.6 0.28 0.73 2 63 0.7 0 0.37 3 72 0.87 0 0.04 Willy Sansen 0-05 0526

Amplitude response vs requency P ζ = Q = 0.7 P = 2 ζ - ζ 2 Willy Sansen 0-05 0527

Amplitude response vs time P t 0. 0.4 V IN 0.7 V OUT ζ = Q = 0.7 2 P t = e - π ζ - ζ 2 Willy Sansen 0-05 0528

Table o contents Use o operational ampliiers Stability o 2-stage opamp Pole splitting Compensation o positive zero Stability o 3-stage opamp Willy Sansen 0-05 0529

Generic 2-stage opamp v IN v IN2 - g m C c - g v OUT m2 A v = g m jω C c GBW R L C L g m A v = GBW = nd = g m2 2π C c 2π C L Willy Sansen 0-05 0530

Generic 2-stage opamp v IN v IN2 - g m C n C c - g v OUT m2 R L C L A v = g m jω C c GBW g m A v = GBW = nd = g m2 2π C c 2π C L Cc C n Willy Sansen 0-05 053

Elementary design o 2-stage opamp GBW = g m 2π C c nd = 3 GBW = g m2 2π C L C n Cc g m2 C L { 0.3 g m 4 Cc Larger current in 2nd stage! GBW = 00 MHz or C L = 2 pf Solution: choose C c = pf Willy Sansen 0-05 0532

Table o contents Use o operational ampliiers Stability o 2-stage opamp Pole splitting Compensation o positive zero Stability o 3-stage opamp Willy Sansen 0-05 0533

Generic 2-stage opamp : Miller OTA C c v IN v IN2 - g m C n g m (v IN2 -v IN ) - g v OUT m2 R L C L C c v OUT A v0 = - A v A v2 A v = g m R n R n v n C n - g m2 v n R L C L - A v2 = - g m2 R L Willy Sansen 0-05 0534

Generic two-stage opamp v IN v IN2 - g m R n C n C c - g v OUT m2 R L C L A v0 = - A v A v2 A v = g m R n A v2 = g m2 R L C - c s g m2 A v = A v0 (R n C n R C A n c v2 R n C c R L C L R C )s R L c n R L CCs 2 CC = C n C c C n C L C c C L Willy Sansen 0-05 0535

Approximate poles and zeros A = A 0 - cs a s b s 2 Zero s = c Pole s = - a s 2 = - i s 2 >> s a b Willy Sansen 0-05 0536

Miller OTA : pole splitting with C c C c pf 0.pF 0F A v 000 A v0 BW d z Pole splitting nd k M Hz 0F Pole splitting or high C c : d = 2π Av2 R n C c g m2 00 0 0. pf k GBW M Hz z = 2π Cc is a positive zero! Willy Sansen 0-05 0537

Eect o positive zero Negative zero Positive zero j / 2 - j / 2 A v = A v0 A v = A v0 j / j / A v A v For phase, a positive zero is like a negative pole!!! φ A 0 o 2 φ A 0 o 2-90 o -80 o -90 o -80 o 80 o Willy Sansen 0-05 0538

Miller OTA : pole splitting with g m2 g m2 0µS µs 0.µS A v 000 00 0 250 µs 0 µs µs 0. µs 250 µs 0 µs µs 0.µS Pole splitting d nd z BW k M Hz GBW Pole splitting or high g m2 : d = 2π Av2 R n C c g m2 z = 2π Cc is a positive zero! 0. k M Hz Willy Sansen 0-05 0539

Pole splitting by... g m2 C L g m 4 Cc or g m2 C c 4 g m C L both g m2 C c Willy Sansen 0-05 0540

Table o contents Use o operational ampliiers Stability o 2-stage opamp Pole splitting Compensation o positive zero Stability o 3-stage opamp Willy Sansen 0-05 054

Positive zero because eedorward v IN v IN2 - g m C n C c - g m2 R L v OUT C L Miller eect Is eedback v IN v IN2 - g m C n C c R L v OUT C L Feedorward Cut! Willy Sansen 0-05 0542

Cut eedorward through C c - - g m C n C c - g v OUT m2 R L C L C c v OUT Voltage buer Source ollower Re. Tsividis, JSSC Dec.76, 748-753 Willy Sansen 0-05 0543

Cut eedorward through C c -2 - g m C n C c - g v OUT m2 R L C L C c v OUT Current buer Cascode C c v OUT Re. Ahuja, JSSC Dec 83, 629-633 Current buer Cascode Willy Sansen 0-05 0544

Compensation with cascodes 3 C c I B v out 3 I B v out 2 C L 2 C L v in M v in M C c Willy Sansen 0-05 0545

Cut eedorward through C c -3 - g m C n C c - g v OUT m2 R L 3 C L R c C c v OUT R c C c v OUT z = 2π Cc (/g m2 -R c ) R c = /g m2 R c > /g m2 No zero Negative zero Re. Senderovics, JSSC Dec 78, 760-766 Willy Sansen 0-05 0546

Negative zero compensation R c >> /g m2 z = 3 GBW Final choice : z = - 2π Cc R c R c = 3gm < R c < g m2 3g m Willy Sansen 0-05 0547

Exercise o 2-stage opamp GBW = 50 MHz or C L = 2 pf Find I DS ; I DS2 ; C c and R c! Choose C c = pf > g m = 2π C c GBW = 35 µs I DS = 3.5 µa & /g m 3.2 kω nd = 50 MHz > g m2 = 2π C L 4GBW = 8g m = 2520 µs I DS2 = 252 µa & /g m2 400 Ω 400 Ω < R c < kω :R c 400 2.5 640 Ω ± 60% Willy Sansen 0-05 0548

Table o contents Use o operational ampliiers Stability o 2-stage opamp Pole splitting Compensation o positive zero Stability o 3-stage opamp Willy Sansen 0-05 0549

-stage CMOS OTA GBW = g m 2π C L v OUT v IN M C L g m Willy Sansen 0-05 0550

2-stage Miller CMOS OTA GBW = g m 2π C C C C v OUT nd = g m2 2π C L v IN M M2 C L g m g m2 nd = 3 GBW Willy Sansen 0-05 055

3-stage Nested Miller CMOS OTA C C GBW = g m 2π C C C D v OUT nd = g m2 2π C D v IN M M2 g m g m2 g m3 M3 C L nd2 = g m3 2π C L nd = 3 GBW nd2 = 5 GBW Willy Sansen 0-05 0552

Nested Miller with dierential pair C C C D g m g m2 g m3 Huijsing, JSSC Dec.85, pp.44-50 Willy Sansen 0-05 0553

Relation between the nd s nd GBW 0 9 PM with two nd's 8 7 6 PM60 PM65 PM70 PM = 90 o GBW - arctan( ) nd 5 4 GBW - arctan( ) nd2 3 2 2 3 4 5 6 7 8 9 0 nd2 GBW Willy Sansen 0-05 0554

Relation nd s and power nd GBW 0 9 8 7 6 5 4 3 2 Total current 2I 2I 2 I 3 PM = 60 o 0 0 2 3 4 5 6 7 8 9 0 nd2 GBW Willy Sansen 0-05 0555

Elementary design o 3-stage opamp GBW = g m 2π C C nd = 3 GBW = g m2 2π C D Choose C D C C! nd2 = 5 GBW = g m3 2π C L g m2 g m 3 g m3 C L g m 5 CC Even larger current in output stage! Willy Sansen 0-05 0556

Exercise o 3-stage opamp GBW = 50 MHz or C L = 2 pf Find I DS ; I DS2 ; I DS3 ; C C and C D! Choose C C = C D = pf > g m = 2π C C GBW = 35 µs I DS = 3 µa nd = 50 MHz > g m2 = 2π C D 3GBW = 3g m = 945 µs I DS2 = 95 µa nd2 = 250 MHz > g m3 = 2π C L 5GBW = 0g m = 350 µs I DS3 = 35 µa Willy Sansen 0-05 0557

Comparison, 2 & 3 stage designs GBW = 50 MHz or C L = 2 pf Single stage : I DS = 3 µa I TOT = 2I DS = 62 µa Two stages : Choose C C = pf I DS = 3 µa I DS2 = 252 µa I TOT = 2I DS I DS2 = 34 µa Three stages : Choose C C = C D = pf I DS = 3 µa I DS2 = 95 µa I DS3 = 35 µa I TOT = 2I DS 2I DS2 I DS3 = 567 µa Willy Sansen 0-05 0558

Table o contents Use o operational ampliiers Stability o 2-stage opamp Pole splitting Compensation o positive zero Stability o 3-stage opamp Willy Sansen 0-05 0559