MATH 566: FINAL PROJECT

Similar documents
An Internet Book on Fluid Dynamics. Joukowski Airfoils

Part A Fluid Dynamics & Waves Draft date: 17 February Conformal mapping

Math 575-Lecture Failure of ideal fluid; Vanishing viscosity. 1.1 Drawbacks of ideal fluids. 1.2 vanishing viscosity

PEMP ACD2505. M.S. Ramaiah School of Advanced Studies, Bengaluru

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering.

Exercise 9: Model of a Submarine

u = (u, v) = y The velocity field described by ψ automatically satisfies the incompressibility condition, and it should be noted that

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay

The result above is known as the Riemann mapping theorem. We will prove it using basic theory of normal families. We start this lecture with that.

All that begins... peace be upon you

1. Fluid Dynamics Around Airfoils

Some Basic Plane Potential Flows

Continuum Mechanics Lecture 7 Theory of 2D potential flows

Surface Tension Effect on a Two Dimensional. Channel Flow against an Inclined Wall

Aero III/IV Conformal Mapping

Computing potential flows around Joukowski airfoils using FFTs

Complex Analysis MATH 6300 Fall 2013 Homework 4

Rapid Design of Subcritical Airfoils. Prabir Daripa Department of Mathematics Texas A&M University

65 Fluid Flows (6/1/2018)

Module 2: External Flows Lecture 12: Flow Over Curved Surfaces. The Lecture Contains: Description of Flow past a Circular Cylinder

Exercise 9, Ex. 6.3 ( submarine )

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics

Complex functions in the theory of 2D flow

Why airplanes fly, and ships sail

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit.

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines.

Aerodynamics. High-Lift Devices

Marine Hydrodynamics Prof.TrilochanSahoo Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur

Fluid mechanics, topology, and complex analysis

Incompressible Flow Over Airfoils

Lifting Airfoils in Incompressible Irrotational Flow. AA210b Lecture 3 January 13, AA210b - Fundamentals of Compressible Flow II 1

II. Ideal fluid flow

C.-H. Liang, X.-W. Wang, and X. Chen Science and Technology on Antennas and Microwave Laboratory Xidian University Xi an , China

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13

Active Control of Separated Cascade Flow

CHAPTER 2. CONFORMAL MAPPINGS 58

Exploring the dynamics of 2P wakes with reflective symmetry using point vortices

Harbor Creek School District

NUMERICAL SIMULATION OF THE FLOW AROUND A SQUARE CYLINDER USING THE VORTEX METHOD

31th AIAA Fluid Dynamics Conference and Exhibit June 11 14, 2001/Anaheim, CA

Solution to Homework 4, Math 7651, Tanveer 1. Show that the function w(z) = 1 2

Functions and their Graphs

3.1 Definition Physical meaning Streamfunction and vorticity The Rankine vortex Circulation...

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

COMPLEX VARIABLES. Principles and Problem Sessions YJ? A K KAPOOR. University of Hyderabad, India. World Scientific NEW JERSEY LONDON

Vortex motion. Wasilij Barsukow, July 1, 2016

Given the water behaves as shown above, which direction will the cylinder rotate?

Free-surface potential flow of an ideal fluid due to a singular sink

F11AE1 1. C = ρν r r. r u z r

1. Introduction - Tutorials

Curriculum Mapper - Complete Curriculum Maps CONTENT. 1.2 Evaluate expressions (p.18 Activity 1.2).

Worked examples Conformal mappings and bilinear transformations

Grade Math (HL) Curriculum

TABLE OF CONTENTS POLYNOMIAL EQUATIONS AND INEQUALITIES

Complex Analysis Math 185A, Winter 2010 Final: Solutions

Fluid Mechanics (3) - MEP 303A For THRID YEAR MECHANICS (POWER)

Vortex shedding from slender surface mounted pyramids

Homework Two. Abstract: Liu. Solutions for Homework Problems Two: (50 points total). Collected by Junyu

MAT389 Fall 2016, Problem Set 4

General Solution of the Incompressible, Potential Flow Equations

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

Pre-Calculus Chapter 0. Solving Equations and Inequalities 0.1 Solving Equations with Absolute Value 0.2 Solving Quadratic Equations

VORTEX SHEDDING PATTERNS IN FLOW PAST INLINE OSCILLATING ELLIPTICAL CYLINDERS

Grade 12- PreCalculus

Unit 1 Linear Functions I CAN: A.1.a Solve single-step and multistep equations and inequalities in one variable

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition

ENG ME 542 Advanced Fluid Mechanics

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear.

AN INTRODUCTION TO COMPLEX ANALYSIS

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis.

Offshore Hydromechanics Module 1

Pre AP Algebra. Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Algebra

4.3 TRIGONOMETRY EXTENDED: THE CIRCULAR FUNCTIONS

AERODYNAMICS STUDY NOTES UNIT I REVIEW OF BASIC FLUID MECHANICS. Continuity, Momentum and Energy Equations. Applications of Bernouli s theorem

Contents. CHAPTER P Prerequisites 1. CHAPTER 1 Functions and Graphs 69. P.1 Real Numbers 1. P.2 Cartesian Coordinate System 14

ANALYSIS OF HORIZONTAL AXIS WIND TURBINES WITH LIFTING LINE THEORY

CHAPTER 1 Prerequisites for Calculus 2. CHAPTER 2 Limits and Continuity 58

Week 2 Notes, Math 865, Tanveer

5-3 Solving Trigonometric Equations

Numerical Investigation of the Fluid Flow around and Past a Circular Cylinder by Ansys Simulation

ANALYSIS OF CURRENT CLOSE TO THE SURFACE OF NET STRUCTURES Mathias Paschen, University of Rostock, Germany

Pre-Calculus EOC Review 2016

Numerical Study of Natural Unsteadiness Using Wall-Distance-Free Turbulence Models

Lift Enhancement on Unconventional Airfoils

BUILT YOU. ACT Pathway. for

Notes on Complex Analysis

Syllabus for AE3610, Aerodynamics I

CONFORMAL MAPPING. Some examples where this method can be used is: the electrostatic potential; heat conduction; flow of fluids.

Math Homework 1. The homework consists mostly of a selection of problems from the suggested books. 1 ± i ) 2 = 1, 2.

An alternative approach to integral equation method based on Treftz solution for inviscid incompressible flow

Find: sinθ. Name: Date:

Experimental characterization of flow field around a square prism with a small triangular prism

Detailed Outline, M E 521: Foundations of Fluid Mechanics I

Model to Evaluate the Aerodynamic Energy Requirements of Active Materials in Morphing Wings

Wings and Bodies in Compressible Flows

Stability, cyclone-anticyclone asymmetry and frequency selection in rotating shallow-water wakes

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4

Mathematics. AP Calculus. New Jersey Quality Single Accountability Continuum (NJQSAC) Course Title. Department:

Introduction to Aerospace Engineering

A comparison of velocity and potential based boundary element methods for the analysis of steady 2D flow around foils

Transcription:

MATH 566: FINAL PROJECT December, 010 JAN E.M. FEYS Complex analysis is a standard part of any math curriculum. Less known is the intense connection between the pure complex analysis and fluid dynamics. In this project we try to give an insight into some of the interesting applications that exist. 1. THE JOUKOWSKY AIRFOIL 1.1. Introduction. The theory of complex variables comes in naturally in the study of fluid phenomena. Let us define w = φ + iψ with φ the velocity potential and ψ the Lagrange stream function. Then w turns out to be analytic because the Cauchy-Riemann conditions v x = φ x = ψ y, v y = φ y = ψ x are exactly the natural flow conditions that have to be satisfied. The function w is called the complex velocity potential. Also note that dw dz = v x iv y. Basic examples of velocity potentials are the uniform stream w = Ūz where U represents flow speed and the vortex w = iγ/π) lnz) where Γ represents rotation speed counted counterclockwise. An important role is dedicated to transformations F that are anglepreserving or conformal. Because compositions of analytic functions are analytic, we can use transforms to map simple cases onto harder ones. 1.. Flow past a cylinder. Let us include circulation and look at the circular cylindrical case. We omit viscosity and other effects. One can write w = zū + a z U + iγ z ) π ln a for the velocity potential of a flow past a circular cylinder. Here a is the diameter of the cylinder, U the flow speed and Γ a vortex related parameter as discussed earlier. The latter term was added to account for lift effects. It is put in artificially here but will come naturally later on. 1

It is easy to check that waexpiθ)) is real so that ψ = 0 on the circle and that dw/dz goes to Ū for z at infinity. Stagnation points for the flow are at the point z such that dw/dz = 0. If G is sufficiently small, we can define sinβ) = G = Γ/4πa U and U = U exp iα) so that the stagnation points are located at z downstream = aexp iα + β)), z upstream = aexp iα β π)). One can prove the force on the cylinder per unit distance lengthwise is This is perpendicular to flow direction. F = iργū. A conformal map called the Joukowsky transform can be used to find the flow past an elliptical cylinder. It is defined by z = z + b z. Here b is a real number. Applying this transform to a circle radius a will get an ellipse with major axis a + b /a and minor axis a b /a. The flow problem can be solved more easily using this transform and our knowledge about the circular case. 1.3. The Joukowsky airfoil. Using a conformal mapping one can map the circle to a specific kind of airfoil shape called the Joukowsky airfoil. The general airfoil shape is round in the front and sharp in the back. At the sharp trailing edge the mapping will not be conformal. So to obtain the desired shape one has to produce a sequence of transformations. If we start off with a circle z in the complex plane we first translate it away from the origin by z c by writing. Then we transform to z = z + b z using the Joukowsky transform. The resulting effect on the derivative is dw dw = dz dz dz dz dw z dz = dz dz z b. Note that the velocity in the z coordinate system will be singular when z = ±b. The only way for this to be prevented is by guaranteeing either of these points to be a stagnation point. Let us say that z c + aexpiα β)) = b. Additionally require the other point b to lie inside the circle.

1 0.5 y 0 0.5 1 1.5 1 0.5 0 0.5 1 1.5 x a) n =, x c = 0.1, y c = 0.1 1 0.5 y 0 0.5 1 1.5 1 0.5 0 0.5 1 1.5 x b) n = 1.75, x c = 0.1, y c = 0.1 1 0.5 y 0 0.5 1 1.5 1 0.5 0 0.5 1 1.5 x c) n =, x c = 0.3, y c = 0. FIGURE 1. A Karman-Trefftz family of airfoils. 3

The general shape of the Joukowsky airfoil can now be determined. It turns out α expresses attack angle, x c thickness and y c camber 1 of the airfoil. The parameters a and U can be normalized. One can compute given these numbers and β = α + sin 1 y c), b = x c + 1 y c Γ = 4π sinβ. Plots can be found in figures 1a) and 1c). Furthermore, the behavior at the trailing edge leads to important results in fluid mechanics about circulation of which one is known as the Kutta condition. The Kutta condition is responsible for the circulation that is necessary for the wing to create lift C p = 1 U. 1.4. The Karman-Trefftz airfoil and others. The Joukowsky transform above can be rewritten by completing the square. Obtained is or equivalently z + b = z + b) U z, z b = z b) z z + b z b = z ) + b z. b Von Karman and Trefftz looked at a more general transformation satisfying z + b z b = z ) + b n z. b It has most of the characteristic of the Joukowsky but the added parameter n allows to adjust the trailing edge angle to n)π. An example with trailing edge angle 45 is found in figure 1b). The somewhat artificial trailing edge shape of the Joukowsky airfoil is resolved. Interesting other generalizations are the Jones-McWilliams airfoil and the NACA family of airfoils. 1 Camber expresses the measure of asymmetry between the upper and lower surface of the airfoil. 4

. VORTEX SHEDDING AND THE VON KARMAN STREET Let us consider the flow of a fluid around an object in the plane. In general vortices will be shed from the edges of the object into its wake. This chain of shed vortices is called a vortex street. The pattern of the vortices in the street usually starts off symmetrical but shifts to be alternating. An interesting topic of study is the mechanism behind this phenomenon..1. Von Karman vortex street. Let us model the vortex street by two rows of vortices spaced b apart in the y-direction. The vortices at y = b/ are rotating counterclockwise and located at..., a, a,0,a,a,... in the x-direction. The lower row of vortices is rotating clockwise and is offset µa from the upper one. So each core is located at..., a + µa, a + µa, µa,a + µa,a + µa,... This simple model is known as the Von Karman vortex street. The variable µ is a offset parameter. The case µ = 0 represents symmetry while µ = 1/ represents the alternating pattern. The complex velocity potential can be found from the elementary vortex potential defined in the introduction. A vortex in the upper row can be expressed as iγ π ln z na + i b )) with n Z. The lower row is expressed similarly by z w = iγ π n=1 iγ π ln The vortex street potential then equals [ ln z na + i b na + µa i b )). )) ln z na + µa i b ))]. The advantage of using complex variables is immediately clear. We can rewrite the infinite sum of logarithms as a logarithm of an infinite product. Thus we obtain [ w = iγ ln sin π z i b )) ln sin π z µa + i b ))]. π a a The associated complex conjugate velocity potential is [ V = dw dz = iγ cot π z i b ) cot π z µa + i b )] a a a = V upper + V lower. 5

The velocity in the fluid caused by the upper and lower row of vortices is denoted with V upper and V lower respectively... Evolution and stability. Because of symmetry, vortices in the upper row do not produce a net force on each other and vortices in the lower row do not produce a net force on other vortices in the lower row. However, there is an effect on the vortices in the opposite row. The effect of the lower row of vortices on the vortex at z = i b for example is described by V lower i b ) = iγ i a cotπ ba ) µ. Note that this velocity is in general not pointed purely in the horizontal direction. Consequently, the shed vortex rows will tend to drift laterally towards or away from each other. Experimentally one can observe this drifting effect to be nearly nonexistent. Therefor we will choose to kill off the drifting effect by selecting µ such that V lower i b ) R. The relevant values of µ can be computed by rewriting the cotangent as a quotient of cosine and sine and expressing these on their turn in exponentials. The outcome is that the velocity can be real only when sinµπ = 0 or equivalently when µ = 0 or µ = 1/. This means that the symmetrical and alternating patterns arise naturally. A next logical step is to look at the stability of both of these cases. The complete calculation is not done here because it is quite lengthy, but it relies heavily on complex analysis. The symmetrical arrangement is found to be unstable for at least some possible perturbations. The µ = 1/ case is more stable as long as b/a 0.8055. This defines a stable ratio for the distance between the vortex rows and the vortices per row. 3. CHRISTOFFEL TRANSFORMATION The Riemann Mapping Theorem proves existence of holomorphic maps from random domains to the unit circle. A practical construction for these maps however is not given. For polygonal domains one can explicitly construct a mapping. This mapping is known as the Schwarz-Christoffel tranformation and it maps the interior of a closed polygon to the upper or lower half plane. A classical example of a fluid mechanical problem that profits from a treatment with the Christoffel transform is the flow in a channel over a step. Assume we have some region D in the complex plane C bounded by a polygon with vertices at w 1,w,...,w n in counter clockwise direction) and respective interior angles ϕ 1 π,ϕ π,...,ϕ n π. Let f be a conformal mapping from the upper half plane to D. We call z k = f 1 w k ) the pre-vertex of w k. All z k are real. Furthermore, let us assume that z n =. 6

Note that if this is not the case, one can simply add the corresponding vertex with angle π to the list of w k It turns out that under these assumptions f z) = α z z 0 ζ z 1 ) ϕ 1 1...ζ z n ) ϕ n 1 dζ + β. Here α and β are free parameters and as a consequence z 0 is chosen at random. Evidently f z) = αz z 1 ) ϕ 1 1...z z n ) ϕ n 1. There remains an obvious problem however. Because f is not known, the pre-vertices z k are in general not known either. It turns out that in most regular cases the pre-vertices can be computed quite easily. For example for the channel with a single step one has four w k. Without loss of generality z 4 =. We can choose z 1 = 0 and z 3 = 1 as we wish. Only z then needs to be determined and the parameter α. This can be done by using what extra information is known about the geometrical properties of the region D. For the problem at hand z can be found after about a page of work. 4. REFERENCES The main sources used were Elementary fluid mechanics by Acheson, Advanced fluid mechanics by Graebel and Complex analysis in Mathematica by Shaw. Our knowledge of the theories presented has significantly improved in the last fifty years or so. For example the Von Karman model is now considered obsolete. Moreover, while reading up for this project I came across several interesting topics in complex analysis somewhat relevant to my own domain of research. So the time was very well spent. 7