Experimental and Theoretical Investigation of Gamma Attenuation of Building Materials

Similar documents
Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental data

Gamma-ray shielding of concretes including magnetite in different rate

Low-energy broad-beam photon shielding data for constituents of concrete

Studies on mass attenuation coefficients, effective atomic and electron numbers for Cd 1-x Zn x Te alloy at photon energies of 10 to 100 kev

Comparison of the Photo-peak Efficiencies between the Experimental Data of 137 Cs Radioactive Source with Monte Carlo (MC) Simulation Data

Monte Carlo simulation for the estimation of iron in human whole blood and comparison with experimental data

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

CALCULATION OF GAMMA-RAY ATTENUATION PARAMETERS FOR LOCALLY DEVELOPED ILMENITE-MAGNETITE CONCRETE

International Journal of Scientific Research and Reviews

Dependence Of Gamma Ray Attenuation On Concentration Of Manganese (II) Chloride Solution

Journal of Chemical and Pharmaceutical Research, 2012, 4(9): Research Article

DETERMINATION OF X-RAY TOTAL ATTENUATION COEFFICIENT IN Zr, Ag, In FOR ENERGY RANGE BETWEEN kev

Evaluation of gamma shielding parameters of bismuth oxide filled polymer composites

An analytic review of the different methods for evaluating the Z-effective of the series of glass [Li 2 O B 2 O 3 SiO 2 MnO]

Evaluation of Gamma-Ray Attenuation Parameters for Some Materials

Journal of Chemical and Pharmaceutical Research, 2012, 4(1): Research Article

RESULTS AND DISCUSSION ON EFFECT OF COLLIMATOR SIZE ON THE ATTENUATION OF GAMMA RAY IN PURE ELEMENTS

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

Simulation of 4π HPGe Compton-Suppression spectrometer

Attenuation Coefficient of Soil Samples by Gamma ray Energy

Mass Attenuation Coefficients of Lead Nitrate Dilute Solutions for 13.5 cm Thickness at 1173 and 1333 kev

Gamma Radiation Absorption Characteristics of Concrete with Components of Different Type Materials

Project Memorandum. N N o. = e (ρx)(µ/ρ) (1)

Measurement of linear and mass attenuation coefficient of alcohol soluble compound for gamma rays at energy MeV

International Journal of Scientific & Engineering Research Volume 9, Issue 1, January ISSN

Determination of the activity of radionuclides

A comprehensive study on energy absorption and exposure buildup factors for some Vitamins and Tissue Equivalent Materials

Linear attenuation coefficient calculation for both pure silicon (Si) and silicone supported with lead

Journal of Chemical and Pharmaceutical Research

CHAPTER 5 EFFECTIVE ATOMIC NUMBER OF SELECTED POLYMERS BY GAMMA BACKSCATTERING TECHNIQUE

JRPR. A Study of Shielding Properties of X-ray and Gamma in Barium Compounds. Original Research. Introduction

Neutron Shielding Properties Of Concrete With Boron And Boron Containing Mineral

Experimental study of some shielding parameters for composite shields

Comparison of some human tissues and some commonly used thermoluminescent dosimeters for photon energy absorption

Journal of Chemical and Pharmaceutical Research, 2012, 4(9): Research Article

Measurement of atomic number and mass attenuation coefficient in magnesium ferrite

Journal of Chemical and Pharmaceutical Research

Using Gamma-Ray to Determine the Homogeneity of Some Building Materials

CHAPTER 2 INTERACTION OF RADIATION WITH MATTER

Comparative Study of Gamma Radiation Shielding Parameters for Different Oxide Glasses

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

Study on Mass Attenuation Coefficients and Optical Properties for Boro-Tellurite Glass doped with Barium

Comparative Study of Radiation Shielding Parameters for Bismuth Borate Glasses

Comparative Study of Radiation Shielding Parameters for Binary Oxide Glasses

Scholars Research Library. Gamma Ray Photon Interaction Studies of Cu in the Energy Range 10keV to 1500keV

Measurement of Shielding Effectiveness of Building Blocks against 662 KeV Photons

Summer Student Project Report

Iranian Journal of Medical Physics

Compton suppression spectrometry

MC simulation of a PGNAA system for on-line cement analysis

Radhakrishnan B*, Kurup P G G**, Ramakrishnan G***, Chandralingam S****

SOME ASPECTS OF MONTE CARLO SIMULATION FOR EFFICIENCY CALIBRATION OF GERMANIUM DETECTORS

Journal of Chemical and Pharmaceutical Research

The Photon Attenuation Coefficients and Thermal Conductivity of Volcanic Rocks

PHYS 3650L - Modern Physics Laboratory

Preparation of Standard Source as a Petri Dish for Plant by Using

Measurements of K- shell production cross-section and fluorescence yield for Y element

THE COMPTON EFFECT Last Revised: January 5, 2007

The Attenuation of Neutrons in Barite Concrete

CALCULATION OF FAST NEUTRON REMOVAL CROSS-SECTIONS FOR DIFFERENT SHIELDING MATERIALS

Mohammed Jebur Resen AL-Dhuhaibat. Phys. Dep./Sci. Coll./Wasit Uni./Iraq/Wasit /Kut ABSTRACT

Attenuation of Radiation in Matter. Attenuation of gamma particles

5. Gamma and neutron shielding characteristics of concretes containing different colemanite proportions

Energy Absorption Buildup Factor Studies In Some Soils

Dr. Tuncay Bayram. Sinop University Department of Nuclear Energy Engineering Sinop, Turkey.

Research Article Study of Gamma Ray Exposure Buildup Factor for Some Ceramics with Photon Energy, Penetration Depth and Chemical Composition

COMPARATIVE STUDY OF PIGE, PIXE AND NAA ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MINOR ELEMENTS IN STEELS

Monte Carlo modelling of a NaI(Tl) scintillator detectors using MCNP simulation code

Estimating the natural and artificial radioactivity in soil samples from some oil sites in Kirkuk-Iraq using high resolution gamma rays spectrometry

Interactive Web Accessible Gamma-Spectrum Generator & EasyMonteCarlo Tools

DEVELOPMENT OF A METHODOLOGY FOR LOW-ENERGY X-RAY ABSORPTION CORRECTION IN BIOLOGICAL SAMPLES USING RADIATION SCATTERING TECHNIQUES

Quartz-Crystal Spectrometer for the Analysis of Plutonium K X-Rays

Evaluation of Radiation Shielding Properties for Concrete with Different Aggregate Granule Sizes

Mass attenuation coefficients of beta particles in elements

Calculation and Study of Gamma ray Attenuation Coefficients for Different Composites

Available online at ScienceDirect. Physics Procedia 69 (2015 )

Study of Photon Interaction Parameters for Some Oxide Glasses as Gamma Ray Shielding Materials

Vanadium Compounds: As Gamma Rays Shielding Material

Quantitative Assessment of Scattering Contributions in MeV-Industrial X-ray Computed Tomography

Determining the Moisture Content in Limestone Concrete by Gamma Scattering Method: A Feasibility Study

Dependence of Attenuation of Ionizing Radiation on Compression and Dimension of Geologic Material ( An Application to X-ray Shielding)

A NEW GENERATION OF GAMMA-RAY TELESCOPE

Uncertainty Quantification for Safeguards Measurements

Interaction of 662 kev Gamma-rays with Bismuth-based Glass Matrices

1 of 5 14/10/ :21

Canadian Journal of Physics. Investigations of gamma ray and fast neutron shielding properties of tellurite glasses with different oxide compositions

Review Paper Continuous Slowing Down Approximation (CS and DA) Ranges of Electrons and Positrons for Carbon, Aluminium and Copper

Multi Channel Analyzer (MCA) Analyzing a Gamma spectrum

Jazan University College of Science Physics Department. Lab Manual. Nuclear Physics (2) 462 Phys. 8 th Level. Academic Year: 1439/1440

arxiv:physics/ v1 3 Aug 2006

Effect of Gamma Ray Energies and Addition of Nano- SiO2 to Cement on mechanical properties and Mass Attenuation Coefficient.

Mass of the electron m 0

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

The GEANT Low Energy Compton Scattering (GLECS) Package for use in Simulating Advanced Compton Telescopes

Determination of the shielding power of different materials against gamma radiation

ATTENUATION STUDIES ON DRY AND HYDRATED CROSS-LINKED HYDROPHILIC COPOLYMER MATERIALS AT 8.02 TO kev USING X-RAY FLUORESCENT SOURCES

Gamma Ray Spectroscopy

DETERMINATION OF TOTAL MASS ATTENUATION COEFFICIENTS, EFFECTIVE ATOMIC NUMBERS AND EFFECTIVE ELECTRON DENSITY FOR THE MARTIAN ATMOSPHERE

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity

Experimental Studies on the Self-Shielding Effect in Fissile Fuel Breeding Measurement in Thorium Oxide Pellets Irradiated with 14 MeV Neutrons

Transcription:

Journal of Nuclear and Particle Physics 217, 7(1): 6-13 DOI: 1.5923/j.jnpp.21771.2 Experimental and Theoretical Investigation of Gamma Attenuation of Building Materials Ali H. Taqi *, Hero J. Khalil Department of Physics, College of Science, Kirkuk University, Kirkuk, Iraq Abstract In this paper, the gamma mass attenuation coefficient is investigated experimentally and theoretically for samples of building materials available in Iraq with different origins. Mass attenuation coefficients were measured using shielded NaI (Tl) spectrometer detector. Samples were irradiated by gamma-rays emitted from point sources of 241 Am, 133 Ba, 137 Cs and 6 Co and. The measured results were compared with the theoretical calculations of XCOM and Geant4 codes, and agreements have been observed especially for Monte Carlo simulations code Geant4. Keywords Mass attenuation coefficients, Genat4, XCOM 1. Introduction When radiation passes through any material, its intensity gradually reduces as a result of a series of interactions. The linear attenuation coefficient µ, which is defined as the probability of a radiation interacting with a material per unit path length (Woods, 1982). it is the important quantity characterizing the penetration and diffusion of gamma radiation in a medium. The mass attenuation coefficient μμ mm μμ ρρ is essential parameter to derive several other parameters of shielding, radiation interaction and dosimetry and etc. It a measure of γ-rays absorption or scattering. The magnitude of attenuation coefficients depends on the incident photon energy, the atomic number and the density of the materials. Recently many researchers have been studied on determination of mass attenuation coefficients theoretically and experimentally for different materials. A more detailed surveys and exhaustive list of references can be found in (Han and Demir, 29). Several experimental and theoretical studies have been conducted on the effects of different factors on the mass attenuation coefficients of building materials. For example, Medhat (29) has measured gamma-ray attenuation coefficients of some building materials available in Egypt. Singh et al. (28) have been calculated attenuation coefficients of barium-borate fly ash glasses as a shielding of radiation instead of concrete. Turkmen et al. (28) have calculated attenuation coefficients in Portland cements mixed with silica fume, blast furnace slag and natural zeolite over the range of 1-2 kev. Awadallah and Imran (27) have measured γ-ray attenuation coefficients in Jordanian * Corresponding author: alitaqi@uokirkuk.edu.iq (Ali H. Taqi) Published online at http://journal.sapub.org/jnpp Copyright 217 Scientific & Academic Publishing. All Rights Reserved building materials. Salinas et al. (26) have calculated the effective density and mass attenuation coefficients for several building materials in Brazil. Akkurt et al. (25) have studied the shielding of γ-rays by concretes produced with barite. Akkurt et al. (24) have calculated attenuation coefficients of barite, marble and limra in Turkey. Singh et al. (24) have calculated mass attenuation coefficients for building materials in India. Alam et al. (21) have measured the attenuation coefficients for soil samples and building materials in Bangladesh. Bashter (1997) has calculated the attenuation coefficient for different types of shielding concrete. Meckbach et al. (1987) have used Monte Carlo method to study shielding of γ-radiation by typical European houses. In this work, the mass attenuation coefficients of building materials samples have been investigated experimentally and theoretically by using XCOM code and Monte Carlo simulation code Geant4 for the photons of the energies 59.5, 356.5, 662, 1173, and 1332 kev. The building material samples available in Iraq with different origins. To evaluate the availability of the codes, the comparison of the simulation results with the experiments are presented. 2. Gamma Attenuation Simulation The calculations of the mass attenuation coefficients is based on the Beer-Lambert law (Davisson, 1965), II = II ee μμ mm xxxx (1) where II and II are the attenuated and incident photon intensities, respectively, xx(cm) and ρρ are the thickness and density of the material. The mass attenuation coefficient μμ mm μμ ρρ is slope of a straight line equation, ln(ii) = ln(ii ) μμ mm xx mm (2)

Journal of Nuclear and Particle Physics 217, 7(1): 6-13 7 According to mixture rule, nn μμ mm = ww ii (μμ mm ) ii (3) ii Where ww ii is the proportion by weight and (μμ mm ) ii is mass attenuation coefficient of the i th element. In XCOM code, the cross-sections and attenuation coefficients for elements, compound or mixtures can be calculated in the energy range between 1 kev and 1 GeV (Berger, 21). The Monte Carlo simulation code Geant4 is modeling of the photon attenuation through materials in computer environment provides flexibility and ease of use, instead of performing an experimental determination of μμ mm values of different composite materials or mixtures. The Geant4 code covers a wide energy range starting from 25 ev to TeV (CERN, 27; Agostinelli et al., 23). 3. Experiment The investigated building materials are available in Iraq with different origins and they are used in construction. A 5 mm mesh was used to sieve the investigated samples, and the drying temperature was set to 11 o C for 24h to ensure that any significant moisture was removed. Inductively Coupled Plasma Mass Spectrometry or ICP-MS (Greenfield, 1994) is used to obtain chemical components of the samples. A cylindrical plastic container of internal diameter 3 cm and height 4 cm was placed between detector and sources. The collimator of aperture diameter 3 mm were used to ensure that the NaI detector absorbs a narrow beam of gamma rays after passing through the test column. The whole system was enclosed in lead shielding (5 cm lead,.5 cm copper,.5 steel) to reduce background counts. The experimental arrangement is as shown in Fig. 1. The gamma rays energies were 59.5 kev, 356.5 kev, 662 kev and (1173, 1332) kev photons emitted by 241 Am, 133 Ba, 137 Cs and 6 Co radioactive point sources, respectively. The number of counts I o of gamma particles for 18 sec using multichannel analyzer (MCA) was measured and the background contribution has been subtracted from the total counts. Then by inserting the investigated samples in container 1cm, 2cm, etc. the number of counts I of gamma particles for 18 sec was measured for each path length. The graphs of intensity ln(ii) versus thickness of the sample ρρρρ are plotted, the slope of the absorption graph gives the experimental gamma-ray mass attenuation coefficient of the investigated samples in terms of cm 2 g -1. 4. Result and Discussion Some of chemical components of the investigated samples are given in Table 1. Fig. 2, shows an experimental results of mass attenuation curve of energies 59.5 kev, 356.5 kev, 662 kev, 1173 kev and 1332 kev for the investigated samples. The theroretical calculation of mass attenuation coefficients of samples are carried out by Geant4 Monte Carlo simulation code and XCOM program at the above photon energies. The mass attenuation coefficient of Geant4 and XCOM is a function of the incident photon energy and the chemical composition, therefore different chemical compounds of samples will affect the attenuation coefficients. Figure 1. Experimental setup for measuring gamma attenuation coefficients

8 Ali H. Taqi et al.: Experimental and Theoretical Investigation of Gamma Attenuation of Building Materials Table 1. Chemical components of investigated building materials samples Chemical components (%) Sample Fe Ca P Mg Ti Al Na K S Iraqi cement 2.15 >4..33 1.5.159 2.73 55.68 1.1 Turkish cement.13 >4..36 2.63 2.1.113.52 1.3 Iranian ceramic.74.18.24.6.9 9.85.4.2 Turkish ceramic 1.19 1.25.5.4.16.86.2 <.2 Turkish ceramic 2.76 3.62.16.13.3 2.21 43.6.4 Spanish ceramic.12.11.7 1.54.2 <.2 Indian ceramic.8 2.14.6.4.115.5 <.2 Chinese ceramic 2.62 2.2.75.64.154 2.38 61.61.3 Turkish Marble.5 37.84.83 7.2.7.6.2 <.2 Iraqi gypsum <.1 14.22 <.1.13 <.1 <.1 <.1 <.1 >1. Mass Attenuation Coefficients (cm 2 g -1 ).6.5.1 Experimental results of Building materials samples Iraqi cement Turkish cement Iranian ceramic Turkish ceramic 1 Turkish ceramic 2 Spanish ceramic Indian ceramic Chinese ceramic Turkish marble Iraqi gypsum 2 4 6 8 1 12 14 Energy (kev) Figure 2. Experimental mass attenuation coefficients of investigated samples vs. energy The measured results were compared with the theoretical calculations of XCOM and Geant4 codes. The comparisons are shown in Figs. 3-6. The values of the mass attenuation coefficients decrease sharply in the high-energy region. The deviation between the measured and the calculated values of Geant4 are lower than the corresponding values of XCOM for most samples at different photon energies as shown in Figs. 3-6. Fig. 7, summarize the behavior of the theoretical and experimental mass attenuation coefficients vs. energy of the investigated samples. The calculated results of Geant4 are more close to the experimental measurements than XCOM. There are differences between the mass attenuation coefficients of different materials, pronounced differences occur between cement and marble with ceramic. The ageements between the simulation values and the experimenally measured values are accepted especially that of Geant4. The overestimate of measured values at some energies is reflect the effect of the chemical composition of the samples and the mixture-rule method.

Journal of Nuclear and Particle Physics 217, 7(1): 6-13 9.7.6.5.1 Iraqi cement 16% 11% 3% 4% 2% 28% 9% 2% 4% 2% (a).7.6.5.1 Turkish cement 8% 14% 34% 38% 15% 9% 12% 34% 38% 15% (b).8.7.6.5.1 Iranian ceramic 4% 25% 4% 37% 4% 162% 24% 4% 36% % (c) Figure 3. Calculated mass attenuation coefficients by Geant4 and XCOM with respect to experiment at 59.5, 356.5, 662, 1173 and 1332 kev of building materials samples: a) Iraqi cement 1, b) Turkish cement 2 and c) Iranian ceramic

1 Ali H. Taqi et al.: Experimental and Theoretical Investigation of Gamma Attenuation of Building Materials.7.6.5.1 Turkish ceramic 1 2% 44% 11% 52% 17% 43% 43% 1% 51% 18% (a).6.5.1 Turkish ceramic 2 6% 4% 42% 18% 25% 23% 5% 42% 18% 25% (b).6.5.1 Spanish ceramic 4% 39% 21% 27% 63% 73% 38% 22% 28% 62% (c) Figure 4. Calculated mass attenuation coefficients by Geant4 and XCOM with respect to experiment at 59.5, 356.5, 662, 1173 and 1332 kev of building materials samples: a) Turkish ceramic 1, b) Turkish cement 2 and c) Spanish ceramic

Journal of Nuclear and Particle Physics 217, 7(1): 6-13 11.5.1 Indian ceramic 16% 55% 5% 49% 3% 14% 55% 5% 49% 3% (a).7.6.5.1 Chinese ceramic 27% 22% 17% 9% 24% 66% 23% 17% 11% 25% (b).7.6.5.1 Turkish Marble 22% 43% 32% 6% 325% 23% 41% 32% 59% 324% (c) Figure 5. Calculated mass attenuation coefficients by Geant4 and XCOM with respect to experiment at 59.5, 356.5, 662, 1173 and 1332 kev of building materials samples: a) Indian ceramic 1, b) Chinese ceramic 2 and c) Turkish marble

12 Ali H. Taqi et al.: Experimental and Theoretical Investigation of Gamma Attenuation of Building Materials.6.5.1 Iraqi gypsum 15% 24% 34% 22% 22% 16% 25% 37% 23% 2195% Figure 6. Calculated mass attenuation coefficients by Geant4 and XCOM with respect to experiment at 59.5, 356.5, 662, 1173 and 1332 kev of building materials sample: Iraqi gypsum Figure 7. Theoretical and experimental mass attenuation coefficients of the investigated samples 5. Conclusions The experimental measurements of mass attenuation coefficient are carried out for building materials with different origins of various chemical components. From the obtained results, we conclude that Monte Carlo simulation code Geant4 is a powerful in studying intraction of photons in materials and it is better than XCOM in comparison with the experimental results. The overestimate measured values at some energies reflect the effect of the chemical

Journal of Nuclear and Particle Physics 217, 7(1): 6-13 13 componetes persentage, a specific set of chemical components and from narrow beam geometry in the source-detector arrangements. There are differences between the mass attenuation coefficients of cement and ceramic, this clearly due to the different chemical components percentage, especially Fe, Ca, K and S. The results have shown that Iraqi cement is one of the best building materials to be used in shielding against gamma rays. The deviation between measured and calculated values in ceramic materials were higher than that of other materials as well as it is changed irregularly according to different energies, This might be because it contains compounds that we did not take into account in our theoretical calculations. RERFRENCES [1] Agostinelli, S., et al., 23, Geant4 a simulation toolkit, Nucl. Instrum. Methods Phys. Res. A 56, 25 33. [2] Alam, M.N., Miah, M.M.H., Chowdhury, M.I., Kamal, M., Ghose, S., Rumi, Rahman, 21. Attenuation coefficients of soils and some building materials of Bangladesh in the energy range 276 1332 kev. Appl. Radiat. Isot. 54, 973 976. [3] Akkurt, I., Basyigit, C., Kilincarslan, S., Mavi, B., 25. The shielding of γ-rays by concretes produced with barite. Prog. Nucl. Energy 46, 1 11. [4] Akkurt, I., Kilincarslan, S., Basyigit, C., 24. The photon attenuation coefficients of barite, marble and limra. Ann. Nucl. Energy 31, 577 582. [5] Awadallah, M.I., Imran, M.M., 27. Experimental investigation of c-ray attenuation in Jordanian building materials using HPGe-spectrometer. J. Environ. Radioactivity 94, 129 136. [6] Bashter, I.I., 1997. Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24 (17), 1389 141. [7] Berger, M.J., Hubbell JH, Seltzer, SM, Chang J, Coursey JS, et al., (21). XCOM: Photon cross sections, NIST standard reference database (XGAM). [8] CERN, 27. Geant4 Collaboration Physics Reference Manual. [9] Greenfield, S. (1994). Inductively coupled plasmas in atomic fluorescence spectrometry. A review. Journal of Analytical Atomic Spectrometry 9 (5): 565. [1] Han, I., Demir, L., 29. Determination of mass attenuation coefficients, effective atomic and electron numbers for Cr, Fe and Ni alloys at different energies. Nucl. Instrum. Methods Phys. Res. B 267, 3 8. [11] Meckbach, R., Jacob, P., Paretzke, H.G., 1987. Shielding of gamma radiation by typical European houses. Nucl. Instrum. Methods Phys. Res. A 255, 16 164. [12] Medhat, M. E., 29. Gamma-ray attenuation coefficients of some building materials available in Egypt. Ann. Nucl. Energy 36, 849-852. [13] Salinas, I.C.P., Conti, C.C., Lopes, R.T., 26. Effective density and mass attenuation coefficient for building material in Brazil. Appl. Radiat. Isot. 64, 13 18. [14] Singh, C., Singh, T., Kumar, A., Mudahar, G.S., 24. Energy and chemical composition dependence of mass attenuation coefficients of building materials. Ann. Nucl. Energy 31, 1199 125. [15] Singh, S., Kumar, A., Devinder, S., Kulwant, S.T., Mudahar, G.S., 28. Barium-borateflyash glasses: as radiation shielding materials. Nucl. Instrum. Methods Phys. Res. B 266, 14 146. [16] Turkmen, I., Ozdemir, Y., Kurudirek, M., Demir, F., Simsek, O, Demirboga, R., 28. Calculation of radiation attenuation coefficients in Portland cements mixed with silica fume, blast furnace slag and natural zeolite. Ann. Nucl. Energy 35, 1937 1943. [17] Woods, J., 1982. Computational Methods in Reactor Shielding. Pergamon Press, New York.