The Magnificent Seven: Nearby, Thermally Emitting, Isolated Neutron Stars

Similar documents
The Magnificent Seven Similarities and Differences

X-ray Properties of Rotation Powered Pulsars and Thermally Emitting Neutron Stars

X-ray Isolated Neutron Stars: The Challenge of Simplicity

arxiv:astro-ph/ v1 4 Apr 2003

Thermal Radiation from Isolated Neutron Stars

Surface emission of neutron stars

Progress in Pulsar detection

XMM-Newton Observations of the Isolated Neutron Star 1RXS J / RBS 1774

arxiv:astro-ph/ v2 12 Jan 2004

Emission from Isolated Neutron Stars. Observations and model applications

X-ray emission properties vary with spin-down age. Crab-like pulsars (< 10 4 yrs)

X-Ray Observations of Neutron Stars and the Equation of State of Nuclear Matter

New optical/uv counterparts and SEDs of Isolated NS ATISH KAMBLE, D. KAPLAN (UW-MILWAUKEE), M. VAN KERKWIJK (TORONTO) AND W.

XMM observations of three middle-aged pulsars

X-ray Observations of Rotation Powered Pulsars

Cooling Limits for the

X-ray Observations of Nearby Galaxies

INTEGRAL & Magnetars: a high energy approach to extreme neutron stars

PULSE PHASE VARIATIONS OF THE X-RAY SPECTRAL FEATURES IN THE RADIO-QUIET NEUTRON STAR 1E S. Mereghetti, A. De Luca, and P. A.

Hot-subdwarf stars: a new class of X-ray sources

Anomalous X-ray Pulsars

arxiv:astro-ph/ v2 11 Jun 2002

arxiv:astro-ph/ v2 30 Dec 2001

Nina Tetzlaff, Baha Dinçel, Ralph Neuhäuser(Jena)

Nina Tetzlaff, Ralph Neuhäuser, Markus M. Hohle Baha Dincel(AIU Jena)

Identification of seven persistent low-luminosity pulsators. Ramanpreet Kaur University of Amsterdam

ISOLATED NEUTRON STARS DISCOVERED BY ROSAT

Victoria Kaspi (McGill University, Montreal, Canada)

Radio Observations of TeV and GeV emitting Supernova Remnants

(Anomalous) X-Ray Pulsars. Vicky Kaspi. Montreal, Canada. Stanford December 16, 2004

Magnetars, the most extreme Neutron Stars. Multiwavelenght emission

arxiv:astro-ph/ v1 23 Nov 2003

Polarized (Surface) X-Rays from Highly Magnetized Neutron Stars

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars

RX J and RX J : recent results and status

Evolution with decaying and re-emerging magnetic field

SOFT X-RAY EMISSION FROM SELECTED ISOLATED PULSARS

X-ray emission and variability of young, nearby stars

The Neutron Star Zoo. Stephen C.-Y. Ng ( 吳志勇 ) HKU

arxiv:astro-ph/ v1 28 Aug 2006

arxiv: v1 [astro-ph] 30 Jan 2008

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as

XMM-Observations of Pulsars: A study of thermal- vs. non-thermal emission W. Becker & J. Tríumper Max-Planck-Institut fíur extraterr. Physik, Giessenb

H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J

Thermal Emission from Isolated Neutron Stars

EPIC OBSERVATIONS OF BRIGHT BL LAC OBJECTS: WHAT CAN WE LEARN FROM THE X-RAY SPECTRA ABOUT THE ISM

Chapter 10 The Interstellar Medium

Comets observed with XMM-Newton

Ultra Luminous X-ray sources ~one of the most curious objects in the universe~

Interstellar Medium and Star Birth

V5116 Sgr (Nova Sgr 2005b): an eclipsing supersoft postoutburst nova?

Neutron Stars. Melissa Louie

Young Neutron Stars and the Role of Magnetic Fields in their Evolution

Isolated Neutron Stars: Calvera and Beyond

arxiv:astro-ph/ v1 10 Feb 2004

Fermi Large Area Telescope:

Gas 1: Molecular clouds

Neutron Stars: Observations

Lecture 3 Pulsars and pulsar wind nebulae

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays

RGS CALIBRATION STATUS

arxiv:astro-ph/ v1 16 Oct 2003

Fermi-LAT and WMAP observations of the SNR Puppis A

Spectral Analysis of the Double Pulsar PSR J with XMM-Newton

Recent Observations of Supernova Remnants

Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/

Pulsar Observations with the Fermi Large Area Telescope

Evolution of High Mass stars

Nanda Rea. XMM-Newton reveals magnetars magnetospheric densities. University of Amsterdam Astronomical Institute Anton Pannekoek NWO Veni Fellow

Isolated And Accreting Magnetars Viewed In Hard X-rays

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

arxiv: v1 [astro-ph.he] 24 Feb 2017

Powering Anomalous X-ray Pulsars by Neutron Star Cooling

Chapter 0 Introduction X-RAY BINARIES

Mass loss from stars

The 2006 Outburst of RS Oph: What are the questions that need to be discussed --and answered?

Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars

Probing Neutron Star Physics using Thermonuclear X-ray Bursts

Pulsars. The maximum angular frequency of a spinning star can be found by equating the centripetal and gravitational acceleration M R 2 R 3 G M

Extreme optical outbursts from a magnetar-like transient source: SWIFT J

Systematic study of magnetar outbursts

Ay 1 Midterm. Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA

Probing Extreme Physics with Compact Objects

V2487 Oph 1998: a puzzling recurrent nova observed with XMM-Newton

The Magnificent Seven : Strong Toroidal Fields?

arxiv: v1 [astro-ph] 4 Jul 2007

DISCOVERY OF X-RAY CYCLOTRON ABSORPTION LINES MEASURES THE. * Centre d Etude Spatiale des Rayonnements, CNRS-UPS, 9 avenue du Colonel Roche,

Spectral Lines from Rotating Neutron Stars

Analyzing X-Ray Pulses from Stellar Cores Pencil & Paper Version

Recent NIR-optical-UV Observations. of Rotation-powered

Working Group. Vadim Burwitz. for High Energy Calibration Apr , Frascati, Italy

Thermal pressure vs. magnetic pressure

The Physics of the Interstellar Medium

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar.

The magnetic spectrum of X-ray binary pulsars

The first two transient supersoft X-ray sources in M 31 globular clusters and the connection to classical novae

Gamma-ray binaries as pulsars spectral & variability behaviour Guillaume Dubus. Laboratoire d Astrophysique de Grenoble UMR 5571 UJF / CNRS

Astr 2310 Thurs. March 23, 2017 Today s Topics

A FIRST LOOK WITH Chandra AT SGR AFTER THE GIANT FLARE: SIGNIFICANT SPECTRAL SOFTENING AND RAPID FLUX DECAY

Transcription:

The Magnificent Seven: Nearby, Thermally Emitting, Isolated Neutron Stars Frank Haberl Max-Planck-Institut für extraterrestrische Physik (MPE), Garching A legacy of ROSAT Proper motions and distances Observations with XMM-Newton and Chandra -Magneticfields Pulse timing Absorption features in the X-ray spectra - Surface temperature distributions Ages, cooling of neutron stars The case of RX J0720.4-3125 - Spectral and temporal variations on long-term time scales The Fast and the Furious: Energetic Phenomena in Isolated Neutron Stars, Pulsar Wind Nebulae and Supernova Remnants ESAC, Madrid, Spain, 22-24 May 2013

A Legacy of ROSAT: The discovery of seven radio-quiet neutron stars Soft X-ray spectrum + faint in optical Walter et al. (1996) Haberl et al. (1997) PSPC cts/s HR1 HR2 Name 0.15 ± 0.01-0.96 ± 0.03-0.45 ± 0.73 RX J0420.0-5022 0.23 ± 0.03-0.06 ± 0.12-0.60 ± 0.17 RBS1774 = 1RXS J214303.7+065419 0.29 ± 0.02-0.20 ± 0.08-0.51 ± 0.11 RBS1223 = 1RXS J130848.6+212708 0.38 ± 0.03-0.74 ± 0.02-0.66 ± 0.08 RX J0806.4-4123 0.78 ± 0.02-0.67 ± 0.02-0.68 ± 0.04 RBS1556 = RX J1605.3+3249 1.82 ± 0.02-0.82 ± 0.01-0.77 ± 0.03 RX J0720.4-3125 3.08 ± 0.02-0.96 ± 0.01-0.94 ± 0.02 RX J1856.5-3754 Blackbody-like X-ray spectra without non-thermal component! Best candidates for genuine cooling INSs with nearly undisturbed emission from stellar surface

The X-ray spectrum of RX J1856.5 3754 Chandra LETGS RX J1856.5 3754 Black-body fit n H = (9.5 ± 0.03) 10 19 cm kt = 63.5 ± 0.2 ev R = 5.5 ± 0.15 km (123pc) L bol = 4.3 10 31 erg s 1 No narrow absorption features! Burwitz et al. (2003,2004) XMM EPIC-pn Photon Energy (kev) Spectrum constant over time scales of years Haberl (2006)

RX J1856.5-3754 Proper motions, distances and velocities HST B = 25.2 Proper motion = 330 mas y 1 Parallax 8.16 +0.9/-0.8 mas (1σ) Distance = 123 +11/ 15 pc Tangential space velocity = 254 km s 1 Kinematic age from back tracing to possible birth place 5 10 5 y Walter et al. 2010 see also Walter 2001, Kaplan et al. (2002), Walter & Lattimer 2002, van Kerkwijk & Kaplan (2007) Bowshock Nebula Kerkwijk & Kulkarni (2001) Powered by magnetic dipole braking: de/dt = 4.5 10 32 erg s -1, t = 5 10 5 y B 10 13 G Braje & Romani (2002) Trümper et al. (2004) VLT

The inhomogenous Interstellar Medium (B. Posselt) Henbest & Couper 1994 ~1700 pc z=0 pc Taurus dark clouds Lallement et al. 2003 (NaI D-line) Breitschwerdt et al. 2005 Pleiades bubble Ophiuchus clouds Loop I Lupus Tunnel ~1300 pc Within one kpc around the sun Galactic center Tunnel to GSH 238+00 S.Coalsack The close solar neighbourhood Chameleon Lupus clouds Galactic center

In the direction of RX J1856.5-3754 ( l = 359, b = 17 ) Distance estimates from X-ray absorption Walter et al. 2010: 123 +11/ 15 pc towards R CrA @ 130 pc : 0.7 x 10 20 cm -2 @ 140 pc : 1.0 x 10 20 cm -2 N(H) [10 20 cm -2 ] Distance [pc] RX J1856.5-3754 0.7 (0L) 120 140 RX J0420.0-5022 1.6 (1L) 320 350 RX J0720.4-3125 1.2 (1L) 230 280 RX J0806.4-4123 1.0 (1L) 230 260 RBS 1223 4.3 (1L) >400 RX J1605.3+3249 2.0 (3L) 320 400 RBS 1774 2.4 (1L) 380 440 Posselt et al. 2007, Ap&SS 308, 171

Proper motions, distances and velocities ---------------------------------------------------------------------- Object μ distance v T mas y -1 pc km s -1 ---------------------------------------------------------------------- RX J0420.0 5022 <123 2 (300 370) 1 <200 RX J0720.4 3125 108±1 360 +172/-88 184 280 +210/-85 143 4 RX J0806.4 4123 <86 2 (210 275) 1 <96 RX J1308.8+2127 220±25 2 (400-800) 1 417-835 RX J1605.3+3249 155±3 (300 415) 1 286 RX J1856.5 3754 331±2 123 +11/-15 3 193 RX J2143.0+0654 (365 455) 1 ---------------------------------------------------------------------- 1 constraints from absorption 2 X-ray measurements (Chandra) Motch et al. 2009 (A&A 497, 423) 3 from Walter et al. 2010 4 from Eissenbeiß 2011 (PhD thesis) Radio Pulsars High transverse speeds: No significant heating due to accretion from ISM!!

X-ray pulsations 8.39 s 11% variable 11.37 s 6% 10.31 s 18% 3.45 s 13% Non-uniform temperature distribution on neutron star surface

RX J2143.0+0654 X-ray pulsations RX J1856.5-3754 RX J1605.3+3249 P = 7.055 s pulsed fraction ~1.2% Tiengo & Mereghetti 2007 P = 9.437 s pulsed fraction ~4% Zane et al. 2005 The M7 are pulsars with periods 3.39 11.37 s P = 3.388 s PF ~5% (0.5-1.7 kev) Pires et al. in prep.

Spin Period Evolution RX J0720.4-3125 RBS 1223 Models for constant dp/dt Kaplan & van Kerkwijk 2005a Kaplan & van Kerkwijk 2005b RX J1856.5-3754 van Kerkwijk & Kaplan 2008

Spin Period Evolution RX J0806.4-4123 RX J0420.0-5022 Kaplan & van Kerkwijk 2009b Kaplan & van Kerkwijk 2011 RX J2143.0+0654 Kaplan & van Kerkwijk 2009a

Magnetic fields Magnetic dipole braking B dip = 3.2 10 19 (P dp/dt) 1/2 τ char = P/2(dP/dt) Object P dp/dt τ char B dip Ref. Kinematic [s] [10 13 ss 1 ] [Myr] [10 13 G] Age [Myr] RX J0420.0 5022 3.45 0.28(3) 2.0 1.0 1 RX J0720.4 3125 8.39 0.698(2) 1.9 2.4 2 0.85 RX J0806.4 4123 11.37 0.55(30) 3.3 2.5 3 1RXS J1308.8+2127 10.31 1.120(3) 1.5 3.4 4 RX J1605.3+3249 3.39 RX J1856.5 3754 7.06 0.297(7) 3.8 1.5 5 0.46 1RXS J2143.0+0654 9.43 0.4(2) 3.7 2.0 6 1 Kaplan & van Kerkwijk 2011, ApJ 740, L30 2 Kaplan & van Kerkwijk 2005a, ApJ 628, L45; van Kerkwijk et al. 2007, ApJ 659, L149 3 Kaplan & van Kerkwijk 2009b, ApJ 705, 798 4 Kaplan & van Kerkwijk 2005b, ApJ 635, L65 5 van Kerkwijk & Kaplan 2008, ApJ 673, L163 6 Kaplan & van Kerkwijk 2009a, ApJ 692, L62

XMM-Newton observations of the M7: absorption features RBS 1223 EW = 150 ev Pulse phase variations Haberl et al. (2003) XMM-Newton EPIC-pn XMM-Newton RGS RX J0720.4 3125 variable with pulse phase and over years Haberl et al. (2004), Hohle et al. (2012) RX J1605.3+3249 kt = 95 ev, N H = 0.8 10 20 cm 2 E line = 450 480 ev Van Kerkwijk et al. (2004) EPIC-pn: evidence for multiple lines

RX J1605.3+3249: Evidence for multiple lines black-body: χ 2 =4.38 +1 Gaussian: χ 2 =2.39 +2 Gaussian: χ 2 =1.75 +3 Gaussian: χ 2 =1.39

The origin of the absorption features Proton cyclotron absorption line? In the case of proton scattering harmonics should be greatly suppressed. Atomic line transitions? Hydrogen? Mixture? van Kerkwijk & Kaplan 2007, Ap&SS 308, 191 In any case B 10 13 10 14 G

Magnetic fields II Unique opportunity to estimate B in two independent ways: Magnetic dipole braking (P, dp/dt) Proton cyclotron absorption B = 1.6 10 11 E(eV)/(1 2GM/c 2 R) 1/2 Object P B dip E cyc B cyc B cyc /B dip [s] [10 13 G] [ev] [10 13 G] RX J0420.0 5022 3.45 1.0? RX J0720.4 3125 8.39 2.4 280 5.6 2.3 RX J0806.4 4123 11.37 2.5 430/306 a) 8.6/6.1 2.4-3.4 1RXS J1308.8+2127 10.31 3.4 300/230 a) 6.0/4.6 1.4-1.8 RX J1605.3+3249 3.39 450/400 b) 9/8 RX J1856.5 3754 7.06 1.5 1RXS J2143.0+0654 9.43 2.0 750 15 7.5 a) Spectral fit with single line / two lines b) With single line / three lines at 400 ev, 600 ev and 800 ev

Pulsars high-energy detections (incomplete).. AXPs / SGRs (magnetars). Magnificent Seven: circles: P/P diamonds: cyclotron lines.. magnetic dipole braking: age = P / 2P, B = 3.2 10 19 (PP) 1/2

Neutron star birth places kinematic ages Motch et al. 2007, Ap&SS 308, 217: Blue lines indicate possible INS positions assuming distances (unless better known) between 100 and 400 pc. Red boxes show positions of OB associations. RXJ1856: Upper Sco OB2 RXJ0720: Tr 10 + Vela OB2 RXJ1605: Upper Sco OB2 Projected view on Galactic Plane Tetzlaff et al. 2011: RXJ1856: Upper Sco 0.46 ± 0.05 Myr RXJ0720: Trumpler 10 0.85 ± 0.15 Myr runaway star HIP 43158 current distance 286 +27/-23 pc

Cooling of magnetized neutron stars Aguilera et al. 2008 (A&A 486, 255) Spin-down age P/(2dP/dt) Geminga PSR B1055 PSR B0656 RX J0720 RBS 1223 RX J1856 RX J1856, RX J0720: kinematic age shorter Dipole braking model not suitable? Magnetic field decay? Strong magnetic fields: effects on the surface temperature distribution the thermal evolution More information on magnetic fields is needed!

Spectral variations with pulse phase RX J0720.4-3125 RX J0420.0-5022 RX J0806.4-4123 Cropper et al. (2001) Haberl et al. (2005)

RX J0720.4 3125 pulse phase spectral variations

Long-term spectral changes from RX J0720.4 3125 Increase at short wavelength: temperature increase Decrease at long wavelength: deeper absorption line Increase in pulsed fraction Phase shift in hardness ratios varying phase lag between soft and hard emission? XMM-Newton RGS XMM-Newton EPIC-pn Precession of the neutron star? de Vries et al. (2004)

RX J0720.4 3125: Spectral variations, the first 5.5 years with XMM-Newton XMM-Newton EPIC-pn Rev. kt(ev) EW(eV) 0078 86.6 ± 0.4 5.02 ± 4.5 0175 86.5 ± 0.5 +8.68 ± 7.7 0533/534 88.3 ± 0.3 21.5 ± 2.6 0711/711 91.3 ± 0.6 73.7 ± 4.9 0815 93.8 ± 0.4 72.4 ± 4.7 0986 93.5 ± 0.4 68.3 ± 5.2 1060 93.2 ± 0.4 67.4 ± 4.3 1086 92.6 ± 0.4 67.5 ± 3.5 FF mode + thin filter common line energy: 280 ± 6 ev common line width: σ = 90 ± 5 ev Long-term variations: Temperature by ~7 ev Absorption line equivalent width by ~70 ev Radius of emission area from 4.4 km to 4.8 km (d=300pc) But flux is constant within ±2%

RX J0720.4 3125 longterm spectral variations Sinusoidal variations in spectral parameters Period 7.1 ± 0.5 years Haberl et al. 2006 A&A 451, L17 Sinusoidal variations in pulse timing Period 7.7 ± 0.6 years Free precession of an isolated neutron star with period 7 8 years? ε = (I 3 I 1 ) / I 1 = P spin / P prec 4 10 8 (moments of inertia for a rigid body) between that reported from of radio pulsars and Her X-1

The continued spectral and temporal evolution of RX J0720.4 3125 constant spin-down constant spin-down Hohle et al. 2012, MNRAS 423, 1194 No cyclic variations in spectral parameters with period < 12 years kt approaches constant value higher than before event The event is not sudden Phase residuals are energy dependent. Phase lag between soft and hard X-ray emission varies on long term time scale. Soft and hard emission originates from different locations. Two hot spots with somewhat different emission characteristics (kt, size, B?). Non-cyclic movement of spots? change in f by ~10-8 f add. change in f by ~0.01f..

Thermal, radio-quiet isolated neutron stars Soft X-ray sources in ROSAT survey + optically faint isolated neutron stars Blackbody-like X-ray spectra, NO non-thermal hard emission Low absorption ~10 20 H cm 2 nearby (2 cases with measured parallax) Luminosity ~10 31 32 erg s -1 Constant X-ray flux on time scales of years No obvious association with SNR No (faint?) radio emission (RBS1223, RBS1774) All are X-ray pulsars (3.39 11.37 s) Proper Motion is inconsistent with heating by accretion from ISM Object T/10 6 K kt/ev P/s Optical distance/pc F x /cgs L x /cgs RX J0420.0 5022 0.51 44 3.45 B = 26.6 (300 370) 3.3 10-13 4.4 10 30 RX J0720.4 3125 0.99 1.10 85 95 8.39 B = 26.6 280 +210/ 85 9.7 10-12 7.9 10 31 RX J0806.4 4123 1.11 96 11.37 B > 24 (210 275) 2.4 10-12 1.7 10 31 RX J1308.8+2127* 1.00 86 10.31 m 50ccd = 28.6 3.2 10-12 9.6 10 31 RX J1605.3+3249 1.11 96 3.39 B = 27.2 (300 415) 6.1 10-12 9.4 10 31 RX J1856.5 3754 0.73 62 7.06 B = 25.2 123 +11/-15 1.3 10-11 2.3 10 31 RX J2143.0+0654** 1.17 102 9.44 B = 27.4 (365 455) 2.8 10-12 5.6 10 31 *1RXS J130848.6+212708 = RBS1223 (assumed d=500 pc) ** 1RXS J214303.7+065419 = RBS 1774 Flux and Luminosity for 0.1-2.4 kev

Conclusions The idealized picture of a neutron star with uniform surface temperature and dipolar magnetic field is too simple. Strong magnetic fields influence surface temperature distribution (hot poles assymetries) change thermal evolution (cooling models) field decay? We need to better understand our systematic errors ages, distances We need to better understand the thermal emission from neutron stars neutron star atmosphere (condensation?)