Searching for Supersymmetric Higgs Bosons at the LHC

Similar documents
m H tanβ 30 LHC(40fb -1 ): LEP2: e + e Zh m A (GeV)

Channels and Challenges: Higgs Search at the LHC

Associated Higgs Production with Bottom Quarks at Hadron Colliders

HIGGS BOSONS AT THE LHC

Precision Calculations for Collider Physics

Higgs Production at LHC

ATLAS Discovery Potential of the Standard Model Higgs Boson

HIGGS + 2 JET PRODUCTION AT THE LHC

arxiv:hep-ph/ v1 13 Mar 2002

HIGGS Bosons at the LHC

δm W = 15 MeV δm top = 1 GeV

Higgs physics at the LHC

BSM Higgs Searches at ATLAS

The study of the extended Higgs boson sector within 2HDM model

Higgs Searches - Overview. Kétévi A. Assamagan BNL

Beyond the Standard Model Higgs boson searches using the ATLAS etector

HIGGS BOSON PHYSICS AT THE LHC

Higgs Searches at CMS

The study of the properties of the extended Higgs boson sector within hmssm model

Higgs Signals and Implications for MSSM

4. Search for the SM Higgs Boson

Two Higgs Doublets Model

Physics at LHC. lecture seven. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Finding the Higgs boson

Higgs in the light of Hadron Collider limits: impact on a 4th generation

VBF SM Higgs boson searches with ATLAS

Light Higgs Discovery Potential with ATLAS, Measurements of Couplings and

Higgs Theory. Heather Logan (Carleton University) The LHC Early Phase for the ILC Fermilab April 12, 2007

sin(2θ ) t 1 χ o o o

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor

New physics effects in Higgs cross sections

Discovery potential of the SM Higgs with ATLAS

SUPERSYMMETRY AT THE LHC

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki

Introduction: from W W -scattering to the Higgs boson

Search for the Higgs Boson at the LHC. Karl Jakobs Physikalisches Institut Universität Freiburg

Pseudoscalar Higgs boson signatures at the LHC

News from Top/QCD. André H. Hoang. Max-Planck-Institute Munich. ECFA Durham 2004 André Hoang p.1

BSM Higgs searches with the ATLAS experiment

Basics of Higgs Physics

THE SEARCH FOR THE HIGGS BOSON AT THE LHC

Light Higgs Production in Two Higgs Doublets Models type III

Non-Standard Higgs Decays

Search for BSM Higgs bosons in fermion decay modes with ATLAS

Associated production of the charged Higgs boson and single top quark at the LHC

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

Higgs Searches at Hadron Colliders

Higgs Searches beyond SM

ttbar Background Estimation in the Search for b-associated MSSM Higgs Bosons Decaying to Tau-Pairs with ATLAS DPG Bonn, T 45. Higgs

Higgs + 2 Jet Production: Loops and CP properties

Sven Heinemeyer, gg H and q q H at the LHC, Wuppertal,

Searching for the Higgs at the LHC

Weak boson scattering at the LHC

Heavy MSSM Higgses at the LHC

Higgs search prospects at LHC

Complementarity of the CERN LEP collider, the Fermilab Tevatron, and the CERN LHC in the search for a light MSSM Higgs boson

Koji TSUMURA (NTU Nagoya U.) KEK 16-18/2/2012

Good News for LHC Analyses

Search for HIGGS Bosons in ATLAS

Review of Higgs results at LHC (ATLAS and CMS results)

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Flavor Changing Heavy Higgs Interac,ons at the LHC

Highlights of Higgs Physics at LEP

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Searching for additional Higgs bosons at the CERN Large Hadron Collider

Properties of the Higgs Boson, and its interpretation in Supersymmetry

LHC More than just Discoveries. Tilman Plehn. SUSY parameters. Markov chains. SUSY maps. MPI für Physik & University of Edinburgh.

Higgs Search with the CMS detector at LHC. Satyaki Bhattacharya

Title Text. ATLAS Higgs Boson Discovery Potential

Higgs Boson in Lepton Decay Modes at the CMS Experiment

National Accelerator Laboratory

Koji TSUMURA (NTU à Nagoya U.)

IX. Electroweak unification

Search for the exotic decays of the Higgs boson

Higgs physics at the ILC

Higgs Self-Coupling in γγ Collisions

arxiv: v1 [hep-ph] 7 Apr 2014

Higgs Boson Production at the LHC

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014

Theoretical Predictions For Top Quark Pair Production At NLO QCD

Sven Heinemeyer WIN (Heidelberg),

Electroweak Baryogenesis and Higgs Signatures

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Enhanced Three-Body Decay of the Charged Higgs Boson. Abstract

arxiv:hep-ph/ v1 17 Apr 2000

Zinonas Zinonos Georg-August-Universität Göttingen

Higgs search in WW * and ZZ *

arxiv: v2 [hep-ph] 22 Jun 2015

Pedro Teixeira-Dias. Higgs Overview

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

BSM Higgs in ATLAS and CMS

Mass degenerate Higgs Hunters explore the 2HDM. Howard E. Haber West Coast LHC Theory UC Riverside December 7, 2012

The search for the (SM) Higgs Boson

Higgs Prospects at the Upgraded Tevatron: Fermilab Study Results

Resonant H/A Mixing in CP Noninvariant 2HDM and MSSM

Higgs + Jet angular and p T distributions : MSSM versus SM

arxiv: v2 [hep-ph] 25 Sep 2014

Prospects of CMS Higgs boson search

Transcription:

Searching for Supersymmetric Higgs Bosons at the LHC Tilman Plehn CERN Light neutral Higgs: no-lose-theorem Charged Higgs: bottom induced processes Heavy neutral Higgs: decay to two light Higgses

MSSM Higgs Bosons at the LHC ± ± ± = TeV/c MSSM Higgs Sector Softly broken supersymmetric anomaly free theory two doublets, coupling to up and down type fermions five physical states h o, H o, A o, H ± mixing of scalars to mass eigenstates (mixing angle α) more predictive than Standard Model (upper h o mass limit) conveniently expressed as function of m A and tan β v /v Yukawa couplings to H, A, H ± : m b tan β, m t / tan β (large m A ) typically one light, many heavy scalars [Heinemeyer, Weiglein] M Higgs 5 max 45 m h scen., = 5 h 4 H A 35 H +- 3 5 5 FeynHiggs. 5 5 5 5 3 35 4 45 5 M A Find first Higgs boson complete coverage by WBF h τ τ [TP, Rainwater, Zeppenfeld] problem: mass degeneracy [Boos, Djouadi, Mühlleitner, Nikitenko] m h /m h σ/ N (σ.5 GeV for µµ, γγ and σ 5 GeV for ττ) m h 6 5 4 3 9 4 4 4 4 m A m A ( -m h ) 5 5 4 4 3 3 4 4 ( -m h )=3,5, GeV m A 4 m A Tell it is HDM (MSSM?) look for heavy Higgs bosons H, A ττ, µµ inclusive gg H and gg b bh H ± ντ, tb in pp th, W + H, H + H (n.b. SUSY loops) [Hollik et al, Kniehl et al] 5 4 τν qq H th, H ± tb ± th, H τν appearance in SUSY cascades [Datta, Djouadi, Guchait, Moortgat] 3 ± tt, H τν µ A t = - GeV/c = 6 CMS, 3 fb, M TeV/c, M SUSY - = GeV/c no other conclusive way but to find these particles Excluded by LEP 5 5 3 35 4 45 5 55 m A (GeV/c )

5 45 4 35 max m h scen., = 5 h H A H +- M Higgs 3 5 5 FeynHiggs. 5 5 5 5 3 35 4 45 5 M A

MSSM Higgs Bosons at the LHC ± ± ± = TeV/c MSSM Higgs Sector Softly broken supersymmetric anomaly free theory two doublets, coupling to up and down type fermions five physical states h o, H o, A o, H ± mixing of scalars to mass eigenstates (mixing angle α) more predictive than Standard Model (upper h o mass limit) conveniently expressed as function of m A and tan β v /v Yukawa couplings to H, A, H ± : m b tan β, m t / tan β (large m A ) typically one light, many heavy scalars [Heinemeyer, Weiglein] M Higgs 5 max 45 m h scen., = 5 h 4 H A 35 H +- 3 5 5 FeynHiggs. 5 5 5 5 3 35 4 45 5 M A Find first Higgs boson complete coverage by WBF h τ τ [TP, Rainwater, Zeppenfeld] problem: mass degeneracy [Boos, Djouadi, Mühlleitner, Nikitenko] m h /m h σ/ N (σ.5 GeV for µµ, γγ and σ 5 GeV for ττ) m h 6 5 4 3 9 4 4 4 4 m A m A ( -m h ) 5 5 4 4 3 3 4 4 ( -m h )=3,5, GeV m A 4 m A Tell it is HDM (MSSM?) look for heavy Higgs bosons H, A ττ, µµ inclusive gg H and gg b bh H ± ντ, tb in pp th, W + H, H + H (n.b. SUSY loops) [Hollik et al, Kniehl et al] 5 4 τν qq H th, H ± tb ± th, H τν appearance in SUSY cascades [Datta, Djouadi, Guchait, Moortgat] 3 ± tt, H τν µ A t = - GeV/c = 6 CMS, 3 fb, M TeV/c, M SUSY - = GeV/c no other conclusive way but to find these particles Excluded by LEP 5 5 3 35 4 45 5 55 m A (GeV/c )

5 4 τν ± qq H ±, H ± th th tb ± ±, H τν 3 τν ± tt, H CMS, 3 fb µ = - GeV/c, M - = GeV/c A t = 6 TeV/c, M SUSY = TeV/c Excluded by LEP 5 5 3 35 4 45 5 55 m A (GeV/c )

. Light Neutral Higgs MSSM Higgs bosons in weak boson fusion [TP, Rainwater, Zeppenfeld] SM cross section > 3 pb for light Higgs in qq qqh (tagging jet signature, central decay products, minijet veto) approximate GeV ττ mass reconstruction at high p T,h [K.Ellis] MSSM decoupling region: (a) Higgs mass range after LEP: m Z m h < 35 GeV (b) production cross section: g W W h = sin(β α) (c) branching fraction: BR(h ττ) > BR(H SM ττ) enhancement of rate: pp qqh qqττ h o m h 8 3 6 4 m 8 A sin (β-α).8.6.4. 3 6 4 m 8 A (σ.b) h [fb].4. 3 6 4 m 8 A 3 H o 6 4 3 6 4 m 8 A cos (β-α).8.6.4. 3 6 4 m 8 A (σ.b) H [fb].4. 3 6 4 m 8 A M SUSY = TeV, maximal mixing heavy Higgs production at low m A 5 5 LHC(4fb - ): VV H ττ VV h ττ no lose theorem for MSSM Higgs scalars 5 LEP: e + e Zh 8 4 6 M A Attempts to escape this channel low tan β: forbidden by LEP m A = 9 GeV and m h = 95 GeV: wide open channel for H super large mixing A t > 6 TeV: enhanced WBF W W and γγ rate CP phases in A t : coverage solid [Carena, Ellis, Wagner,...] funny couplings of all kind: again solid [Schumacher] many multiplets: go for WBF W W channel [Alves, Eboli, TP, Rainwater]

h o H o m h 8 6 4 3 8 6 4 m A 3 8 6 4 m A sin (β-α) cos (β-α).8.6.4..8.6.4. 3 8 6 4 m A 3 8 6 4 m A (σ.b) h [fb] (σ.b) H [fb].4..4. 3 8 6 4 m A 3 8 6 4 m A M SUSY = TeV, maximal mixing

. Light Neutral Higgs MSSM Higgs bosons in weak boson fusion [TP, Rainwater, Zeppenfeld] SM cross section > 3 pb for light Higgs in qq qqh (tagging jet signature, central decay products, minijet veto) approximate GeV ττ mass reconstruction at high p T,h [K.Ellis] MSSM decoupling region: (a) Higgs mass range after LEP: m Z m h < 35 GeV (b) production cross section: g W W h = sin(β α) (c) branching fraction: BR(h ττ) > BR(H SM ττ) enhancement of rate: pp qqh qqττ h o m h 8 3 6 4 m 8 A sin (β-α).8.6.4. 3 6 4 m 8 A (σ.b) h [fb].4. 3 6 4 m 8 A 3 H o 6 4 3 6 4 m 8 A cos (β-α).8.6.4. 3 6 4 m 8 A (σ.b) H [fb].4. 3 6 4 m 8 A M SUSY = TeV, maximal mixing heavy Higgs production at low m A 5 5 LHC(4fb - ): VV H ττ VV h ττ no lose theorem for MSSM Higgs scalars 5 LEP: e + e Zh 8 4 6 M A Attempts to escape this channel low tan β: forbidden by LEP m A = 9 GeV and m h = 95 GeV: wide open channel for H super large mixing A t > 6 TeV: enhanced WBF W W and γγ rate CP phases in A t : coverage solid [Carena, Ellis, Wagner,...] funny couplings of all kind: again solid [Schumacher] many multiplets: go for WBF W W channel [Alves, Eboli, TP, Rainwater]

3 5 5 LHC(4fb - ): VV H ττ VV h ττ 5 LEP: e + e Zh 8 4 6 M A

. Light Neutral Higgs MSSM Higgs bosons in weak boson fusion [TP, Rainwater, Zeppenfeld] SM cross section > 3 pb for light Higgs in qq qqh (tagging jet signature, central decay products, minijet veto) approximate GeV ττ mass reconstruction at high p T,h [K.Ellis] MSSM decoupling region: (a) Higgs mass range after LEP: m Z m h < 35 GeV (b) production cross section: g W W h = sin(β α) (c) branching fraction: BR(h ττ) > BR(H SM ττ) enhancement of rate: pp qqh qqττ h o m h 8 3 6 4 m 8 A sin (β-α).8.6.4. 3 6 4 m 8 A (σ.b) h [fb].4. 3 6 4 m 8 A 3 H o 6 4 3 6 4 m 8 A cos (β-α).8.6.4. 3 6 4 m 8 A (σ.b) H [fb].4. 3 6 4 m 8 A M SUSY = TeV, maximal mixing heavy Higgs production at low m A 5 5 LHC(4fb - ): VV H ττ VV h ττ no lose theorem for MSSM Higgs scalars 5 LEP: e + e Zh 8 4 6 M A Attempts to escape this channel low tan β: forbidden by LEP m A = 9 GeV and m h = 95 GeV: wide open channel for H super large mixing A t > 6 TeV: enhanced WBF W W and γγ rate CP phases in A t : coverage solid [Carena, Ellis, Wagner,...] funny couplings of all kind: again solid [Schumacher] many multiplets: go for WBF W W channel [Alves, Eboli, TP, Rainwater]

. (Heavy) Charged Higgs Most promising channel associated production pp th + X for large tan β decay H ± ντ most promising [Assamagan, Coadou] m b =4.6 GeV /σ tot dσ/d y b (gg b th ). m b =.46 GeV Exclusive production gg bth.5 = GeV = 5 GeV = 5 GeV 3 4 5 6 7 y b.4 /σ tot dσ/dp T,b (gg b th ) collinear bottom jets from gluon splitting, regularized by m b.3.. m b =4.6 GeV = GeV = 5 GeV = 5 GeV experiment: forward jets, p T,b peaked at m b (factor /6 for each tagged b) use bottom inclusive cross section 3 4 5 p T,b check asymptotic cross section behavior dσ/dp T,b p T,b /m T,b inclusive total rate σ log(p max T,b /pmin T,b ) = log(pmax T,b /m b) p T,b dσ/dp T,b (gg b th ) how large logarithms? resum? 3 = GeV =5 GeV m b =4.6 GeV m b =.46 GeV Inclusive process bg th =5 GeV 3 p T,b resum large logarithms log(p T,b /m b ) in exclusive process gg bth equivalent to bottom parton density and inclusive process bg th µ F,b transverse momentum size of bottom parton (µ F,b p max T,b ; usually hard scale µ F,b = M) numerical improvement or overestimate? () check bottom inclusive total rate () check bottom inclusive t, H distributions

m b =4.6 GeV /σ tot dσ/d y b (gg b th ). m b =.46 GeV.5 = GeV = 5 GeV = 5 GeV 3 4 5 6 7 y b.4.3. /σ tot dσ/dp T,b (gg b th ) m b =4.6 GeV = GeV = 5 GeV = 5 GeV. 3 4 5 p T,b

. (Heavy) Charged Higgs Most promising channel associated production pp th + X for large tan β decay H ± ντ most promising [Assamagan, Coadou] m b =4.6 GeV /σ tot dσ/d y b (gg b th ). m b =.46 GeV Exclusive production gg bth.5 = GeV = 5 GeV = 5 GeV 3 4 5 6 7 y b.4 /σ tot dσ/dp T,b (gg b th ) collinear bottom jets from gluon splitting, regularized by m b.3.. m b =4.6 GeV = GeV = 5 GeV = 5 GeV experiment: forward jets, p T,b peaked at m b (factor /6 for each tagged b) use bottom inclusive cross section 3 4 5 p T,b check asymptotic cross section behavior dσ/dp T,b p T,b /m T,b inclusive total rate σ log(p max T,b /pmin T,b ) = log(pmax T,b /m b) p T,b dσ/dp T,b (gg b th ) how large logarithms? resum? 3 = GeV =5 GeV m b =4.6 GeV m b =.46 GeV Inclusive process bg th =5 GeV 3 p T,b resum large logarithms log(p T,b /m b ) in exclusive process gg bth equivalent to bottom parton density and inclusive process bg th µ F,b transverse momentum size of bottom parton (µ F,b p max T,b ; usually hard scale µ F,b = M) numerical improvement or overestimate? () check bottom inclusive total rate () check bottom inclusive t, H distributions

p T,b dσ/dp T,b (gg b th ) = GeV 3 =5 GeV m b =4.6 GeV m b =.46 GeV =5 GeV 3 p T,b

. (Heavy) Charged Higgs Most promising channel associated production pp th + X for large tan β decay H ± ντ most promising [Assamagan, Coadou] m b =4.6 GeV /σ tot dσ/d y b (gg b th ). m b =.46 GeV Exclusive production gg bth.5 = GeV = 5 GeV = 5 GeV 3 4 5 6 7 y b.4 /σ tot dσ/dp T,b (gg b th ) collinear bottom jets from gluon splitting, regularized by m b.3.. m b =4.6 GeV = GeV = 5 GeV = 5 GeV experiment: forward jets, p T,b peaked at m b (factor /6 for each tagged b) use bottom inclusive cross section 3 4 5 p T,b check asymptotic cross section behavior dσ/dp T,b p T,b /m T,b inclusive total rate σ log(p max T,b /pmin T,b ) = log(pmax T,b /m b) p T,b dσ/dp T,b (gg b th ) how large logarithms? resum? 3 = GeV =5 GeV m b =4.6 GeV m b =.46 GeV Inclusive process bg th =5 GeV 3 p T,b resum large logarithms log(p T,b /m b ) in exclusive process gg bth equivalent to bottom parton density and inclusive process bg th µ F,b transverse momentum size of bottom parton (µ F,b p max T,b ; usually hard scale µ F,b = M) numerical improvement or overestimate? () check bottom inclusive total rate () check bottom inclusive t, H distributions

Total Rate: Bottom Factorization Scale... - LHC: gg b th - with P g (x)= - - Q b /(m t + ) Q b /(m t + ) Q b /(m t + )... - - - =5,5, GeV =5 GeV =5 GeV = GeV p T,b /(m t + ) p T,b /(m t + ) p T,b /(m t + ) Perturbative bottom factorization scale from exclusive process two steps: first bottom virtuality Q max b general exclusive process: gg bx M approximate gluon density L = L /x asymptotic behavior M = S σ /Q b σ = σ L 6π S M dq b Q b F (Q b ) F (Q b ) known correction to asymptotic behavior [Boos, TP] dσ/dq b /Q b define Q max b at turning point d F (Q b )/d(log Q b ) = Q max b M/ (hard scale argument Q max b M, not more than that!) x n P (p) (x) Q F = GeV Q F = GeV - - x Second step: transverse momentum p max T,b check explicitly: Q b Q max b also yields p T,b p max T,b translate Q b into p T,b point by point LHC: gg b th - Q b dσ/dq b p T,b dσ/dp T,b p max T,b /Qmax b Q max b /M yields p max T,b Q max b / M/4 LHC: gg b th - with P g (x)=x - Q b dσ/dq b p T,b dσ/dp T,b (numerical study of gg bth : µ F,b M/5) Q b dσ/dq b p T,b dσ/dp T,b So what did we learn from exclusive process? log(p T,b /m b ) after integrating over bottom jet but large logs at maximum log(m/(5m b )) [TP; Maltoni, Willenbrock] hard scale for inclusive process: µ F,b M gg and bg processes: µ F,b M/5 from partonic phase space Total cross section with bottom partons understood

LHC: gg b th - =5,5, GeV Q b dσ/dq b p T,b dσ/dp T,b.. =5 GeV =5 GeV = GeV - Q b /(m t + ) - p T,b /(m t + ) LHC: gg b th - with P g (x)=. Q b dσ/dq b. p T,b dσ/dp T,b - Q b /(m t + ) - p T,b /(m t + ) LHC: gg b th - with P g (x)=x -. Q b dσ/dq b. p T,b dσ/dp T,b - Q b /(m t + ) - p T,b /(m t + )

Total Rate: Bottom Factorization Scale... - LHC: gg b th - with P g (x)= - - Q b /(m t + ) Q b /(m t + ) Q b /(m t + )... - - - =5,5, GeV =5 GeV =5 GeV = GeV p T,b /(m t + ) p T,b /(m t + ) p T,b /(m t + ) Perturbative bottom factorization scale from exclusive process two steps: first bottom virtuality Q max b general exclusive process: gg bx M approximate gluon density L = L /x asymptotic behavior M = S σ /Q b σ = σ L 6π S M dq b Q b F (Q b ) F (Q b ) known correction to asymptotic behavior [Boos, TP] dσ/dq b /Q b define Q max b at turning point d F (Q b )/d(log Q b ) = Q max b M/ (hard scale argument Q max b M, not more than that!) x n P (p) (x) Q F = GeV Q F = GeV - - x Second step: transverse momentum p max T,b check explicitly: Q b Q max b also yields p T,b p max T,b translate Q b into p T,b point by point LHC: gg b th - Q b dσ/dq b p T,b dσ/dp T,b p max T,b /Qmax b Q max b /M yields p max T,b Q max b / M/4 LHC: gg b th - with P g (x)=x - Q b dσ/dq b p T,b dσ/dp T,b (numerical study of gg bth : µ F,b M/5) Q b dσ/dq b p T,b dσ/dp T,b So what did we learn from exclusive process? log(p T,b /m b ) after integrating over bottom jet but large logs at maximum log(m/(5m b )) [TP; Maltoni, Willenbrock] hard scale for inclusive process: µ F,b M gg and bg processes: µ F,b M/5 from partonic phase space Total cross section with bottom partons understood

Total Rate: QCD Corrections Next-to-leading Order QCD Calculation [TP] leading order uncertainty large for bg th complete set of virtual and real SUSY corrections running Yukawa couplings, everything else misleading N correction +3% 4% perturbatively stable [Zhu] - -.8.6.4..8 N: gb th : gb th : gg b th σ tot (pp th +X) [pb] (m b running mass) m b pole mass 4 6 8 K (pp th +X) = 3 5 µ = 4m av µ = m av µ = m av /4 3 3 4 6 8 Scale Dependence renormalization scale dependence numerically dominant µ R (m t + )/ natural choice [c.f. Higgs decays, Melnikov].8.6.4. µ F =µ R µ R =m av σ tot (pp th +X) [pb] =5 GeV N factorization scale dependene critical only for small µ F µ F (m t + )/5 from exclusive process problem at small scales: bottom induced process not dominant N scale dependence ±% well defined limit µ F m b returns exclusive process gg bth µ F =m av µ/m av Matching at threshold < m t m b : top pair production and Breit Wigner propagator > m t m b : resummed off-shell process double counting of pp t t t( bh ) subtract on-shell top pairs from N bg th process (unique in small width approximation, see SUSY-pairs) - σ sum σ off-shell σ BW σ tot (pp th +X) [pb] = 3 σ incl,n σ incl, consistent matching by simply adding channels 5 t t m = +m b ±Γ 3 4 5

- σ tot (pp th +X) [pb] (m b running mass) m b pole mass - N: gb th : gb th : gg b th 4 6 8.8.6.4..8 K (pp th +X) = 3 5 µ = 4m av µ = m av µ = m av /4 3 3 4 6 8

Total Rate: QCD Corrections Next-to-leading Order QCD Calculation [TP] leading order uncertainty large for bg th complete set of virtual and real SUSY corrections running Yukawa couplings, everything else misleading N correction +3% 4% perturbatively stable [Zhu] - -.8.6.4..8 N: gb th : gb th : gg b th σ tot (pp th +X) [pb] (m b running mass) m b pole mass 4 6 8 K (pp th +X) = 3 5 µ = 4m av µ = m av µ = m av /4 3 3 4 6 8 Scale Dependence renormalization scale dependence numerically dominant µ R (m t + )/ natural choice [c.f. Higgs decays, Melnikov].8.6.4. µ F =µ R µ R =m av σ tot (pp th +X) [pb] =5 GeV N factorization scale dependene critical only for small µ F µ F (m t + )/5 from exclusive process problem at small scales: bottom induced process not dominant N scale dependence ±% well defined limit µ F m b returns exclusive process gg bth µ F =m av µ/m av Matching at threshold < m t m b : top pair production and Breit Wigner propagator > m t m b : resummed off-shell process double counting of pp t t t( bh ) subtract on-shell top pairs from N bg th process (unique in small width approximation, see SUSY-pairs) - σ sum σ off-shell σ BW σ tot (pp th +X) [pb] = 3 σ incl,n σ incl, consistent matching by simply adding channels 5 t t m = +m b ±Γ 3 4 5

σ sum σ tot (pp th +X) [pb] = 3 σ off-shell σ incl,n - σ BW σ incl, 5 m t = +m b ±Γ t 3 4 5

.5.5.4. N: µ F =M/5 N: µ F =,GeV.4..6.4. N: µ F =M/5 N: µ F =GeV =5GeV =3 - N: µ F =M/5 N: µ F =,GeV p T,H /σ dσ/dy H =5GeV =3 =5GeV =3 =5GeV =3 3 p T,t.5.5.4. N: µ F =M/5 N: µ F =,GeV.4..4.3.. N: µ F =M/5 N: µ F =GeV - p T,t /σ dσ/dy t /σ dσ/dm th P g (µ F ) /P g (M/5) µ F =M/5 µ F =,GeV 4 5 6 7 m th Distributions for Inclusive Process On to the distributions [Berger, Han, Jiang, TP] bottom parton description appropriate for total rate Higgs and top distributions? bottom partons established for exclusive cross sections? () Test zero transverse momentum approximation bottom partons assuming small p T,b p z,b compare inclusive process and (massless) exclusive ( 3) process (as it is part of N rate) /σ dσ/dp T,H /σ dσ/dp T,t run bottom factorization scale µ F m b switch on/off incoming bottoms, left with gg bth /σ dσ/dm th 4 5 6 7 mth y H x PDF =m th /E coll 4 5 6 7 mth y t slightly harder distributions (due to x dependence of bottom PDF) () Test zero bottom mass approximation agreement exclusive vs. inclusive cross section established check with bottom mass dependent pp bth perfect agreement with exclusive process for small m b very good agreement with physical bottom mass case bottom parton picture altogether appropriate σ incl,n σ excl,.46 σ excl /σ dσ/dp T,t σ excl,qq σ excl,.46 σ excl /σ dσ/dm th σ incl,n σ excl,qq

/σ dσ/dp T,H.5 =5GeV =3.5 N: µ F =M/5 N: µ F =,GeV p T,H.5.5 N: µ F =M/5 N: µ F =,GeV /σ dσ/dp T,t p T,t.4.4. /σ dσ/dy H =5GeV =3. /σ dσ/dy t N: µ F =M/5 N: µ F =GeV - y H N: µ F =M/5 N: µ F =GeV - y t.4 /σ dσ/dm th.4 /σ dσ/dm th P g (µ F ) /P g (M/5). N: µ F =M/5 =5GeV =3 N: µ F =,GeV 4 5 6 7 mth. µ F =M/5 x PDF =m th /E coll µ F =,GeV 4 5 6 7 mth

.5.5.4. N: µ F =M/5 N: µ F =,GeV.4..6.4. N: µ F =M/5 N: µ F =GeV =5GeV =3 - N: µ F =M/5 N: µ F =,GeV p T,H /σ dσ/dy H =5GeV =3 =5GeV =3 =5GeV =3 3 p T,t.5.5.4. N: µ F =M/5 N: µ F =,GeV.4..4.3.. N: µ F =M/5 N: µ F =GeV - p T,t /σ dσ/dy t /σ dσ/dm th P g (µ F ) /P g (M/5) µ F =M/5 µ F =,GeV 4 5 6 7 m th Distributions for Inclusive Process On to the distributions [Berger, Han, Jiang, TP] bottom parton description appropriate for total rate Higgs and top distributions? bottom partons established for exclusive cross sections? () Test zero transverse momentum approximation bottom partons assuming small p T,b p z,b compare inclusive process and (massless) exclusive ( 3) process (as it is part of N rate) /σ dσ/dp T,H /σ dσ/dp T,t run bottom factorization scale µ F m b switch on/off incoming bottoms, left with gg bth /σ dσ/dm th 4 5 6 7 mth y H x PDF =m th /E coll 4 5 6 7 mth y t slightly harder distributions (due to x dependence of bottom PDF) () Test zero bottom mass approximation agreement exclusive vs. inclusive cross section established check with bottom mass dependent pp bth perfect agreement with exclusive process for small m b very good agreement with physical bottom mass case bottom parton picture altogether appropriate σ incl,n σ excl,.46 σ excl /σ dσ/dp T,t σ excl,qq σ excl,.46 σ excl /σ dσ/dm th σ incl,n σ excl,qq

.6 σ incl,n /σ dσ/dp T,t.4 σ excl,.46 σ excl /σ dσ/dm th.4 σ excl,.46 σ excl =5GeV =3.3. σ incl,n σ excl,qq. σ excl,qq. 3 p T,t 4 5 6 7 m th

.5.5.4. N: µ F =M/5 N: µ F =,GeV.4..6.4. N: µ F =M/5 N: µ F =GeV =5GeV =3 - N: µ F =M/5 N: µ F =,GeV p T,H /σ dσ/dy H =5GeV =3 =5GeV =3 =5GeV =3 3 p T,t.5.5.4. N: µ F =M/5 N: µ F =,GeV.4..4.3.. N: µ F =M/5 N: µ F =GeV - p T,t /σ dσ/dy t /σ dσ/dm th P g (µ F ) /P g (M/5) µ F =M/5 µ F =,GeV 4 5 6 7 m th Distributions for Inclusive Process On to the distributions [Berger, Han, Jiang, TP] bottom parton description appropriate for total rate Higgs and top distributions? bottom partons established for exclusive cross sections? () Test zero transverse momentum approximation bottom partons assuming small p T,b p z,b compare inclusive process and (massless) exclusive ( 3) process (as it is part of N rate) /σ dσ/dp T,H /σ dσ/dp T,t run bottom factorization scale µ F m b switch on/off incoming bottoms, left with gg bth /σ dσ/dm th 4 5 6 7 mth y H x PDF =m th /E coll 4 5 6 7 mth y t slightly harder distributions (due to x dependence of bottom PDF) () Test zero bottom mass approximation agreement exclusive vs. inclusive cross section established check with bottom mass dependent pp bth perfect agreement with exclusive process for small m b very good agreement with physical bottom mass case bottom parton picture altogether appropriate σ incl,n σ excl,.46 σ excl /σ dσ/dp T,t σ excl,qq σ excl,.46 σ excl /σ dσ/dm th σ incl,n σ excl,qq

SUSY-QCD Corrections SUSY-QCD Loop Contributions [TP; Berger, Han, Jiang, TP] infrared finite but ultraviolet divergent SUSY loop contributions () universal corrections y b /( + b ) [Carena, Garcia, Nierste, Wagner; Guasch, Häflinger, Spira] () remaining explicit SUSY loop diagrams m m / tan β µ ( b ) resum non b a 5 4 477-9.5% 3.% b 4 3 5 535-3.% -.% 45 3 45 53-3.% -.% 3 9 4 633 79-8.8% 3.% 4 4 3 5 389 357-3.% -.4% 5 5 3 5 637 697-7.7%.% m m / tan β µ M M,3 6 5 3 4 476 48 3-9.% 3.% Λ M mes N mes tan β µ 7 4 3 8 3 3 5 36 476-7.8%.5% 8 3 3 5 4 538-7.5%.5% m b corrections dominant for tan β (dependent on sign of µ) explicit loop corrections negligible % for generic msugra

3. (Heavy) Neutral Higgs... LHC: gg bb H - LHC: ug b td - -... =3,5,5, GeV - - - m b =.46 GeV m t =75,5, GeV m t =75,5, GeV Bottom induced production of neutral Higgses rate enhanced by tan β gg b bh exclusive versus bg bh inclusive bg bh exclusive versus b b H inclusive appropriate factorization scale µ F,b M/5 = m h /5 check: b b H NN scale dependence [Harlander & Kilgore] µ R,b variation for fixed µ F,b m h /4 well under control µ F,b variation for fixed µ R,b m h almost fixed point..8.6 σ(pp (bb )H+X) LHC M H = GeV.4 N. NN µ R =M H - µ F /M H check: exclusive vs. inclusive total rate [Dittmaier, Spira, Krämer] σ(q q, gg b bh + X) [fb] σ(b b H + X) [fb] M H N NN Tevatron LHC 3.9.7 +3.5 8..4 +3. 8.6 5. +4.7.5 +.3...9 +.9.56.8 +.3.69.6 +..79.3 +. (5.3 +.7.7 ) (7.3 +..6 ) (4.8 +4.3 3. ) (7. +.4.6 ) 4 4.3.4 +.4 8..9 +. 7.4.5 +.4 9.8.4 +. Side remark: single top production qg btq [Willenbrock et al] less steep quark densities, x x Q b dσ/dq b p T,b dσ/dp T,b production above threshold Q max b m t generally p max T,b Q max b / µ F,b m t / covered by quoted theoretical uncertainty Q b dσ/dq b LHC: d g b tu Q b dσ/dq b Q b /m h Q b /m t Q b /m t p T,b /m h p T,b dσ/dp T,b p T,b /m t p T,b dσ/dp T,b p T,b /m t

. σ(pp (bb )H+X) LHC M H = GeV.8.6.4 N. NN µ R =M H - µ F /M H Harlander, Kilgore

Heavy Higgs Decay to Light Higgses SM Higgs pair production at the LHC [Baur, TP, Rainwater] HH 4W : believable detector simulation needed, not hopeless (use m vis to determine λ HHH ) HH b bττ: miracle required HH 4b: several major miracles mandatory TESLA in better shape [Castanier, Gay,... ; Lafaye, Mühlleitner,...] HH b bµµ: at least small miracle would be helpful (might come out of µµ mass resolution) HH b bγγ: some enhancement needed MSSM pair production gg hh [Djouadi, Haber, Zerwas] only way to access tan β < beyond no-lose theorem factor enhancement of cross section HH b bγγ best shot backgrounds hard to compute but under control σ σ(pp hh bb γγ) [fb] =3 - σ SM BR BR(h bb ) - - BR(h γγ) 5σ with 3 fb possible for tan β = 3 - -3 m h =7.5 GeV= / 5 5 3 35 4 45 5 m A

Heavy Higgs Decay to Light Higgses SM Higgs pair production at the LHC [Baur, TP, Rainwater] HH 4W : believable detector simulation needed, not hopeless (use m vis to determine λ HHH ) HH b bττ: miracle required HH 4b: several major miracles mandatory TESLA in better shape [Castanier, Gay,... ; Lafaye, Mühlleitner,...] HH b bµµ: at least small miracle would be helpful (might come out of µµ mass resolution) HH b bγγ: some enhancement needed MSSM pair production gg hh [Djouadi, Haber, Zerwas] only way to access tan β < beyond no-lose theorem factor enhancement of cross section HH b bγγ best shot backgrounds hard to compute but under control σ σ(pp hh bb γγ) [fb] =3 - σ SM BR BR(h bb ) - - BR(h γγ) 5σ with 3 fb possible for tan β = 3 - -3 m h =7.5 GeV= / 5 5 3 35 4 45 5 m A

σ BR σ(pp hh bb γγ) [fb] BR(h bb ) =3 - - σ SM BR(h γγ) - - m h =7.5 GeV= / -3 5 5 3 35 4 45 5 m A

Conclusions () One MSSM Higgs guaranteed to be seen stable to variations of MSSM () heavy Higgs bosons necessary to tell it might be the MSSM charged Higgs production with bottom jets understood ( ) N rate for charged Higgs production known: N : inclusive process well defined N : remaining scale uncertainty % N 3 : m b corrections dominant in MSSM for large tan β N 4 : non-factorizable corrections negligible in MSSM (3) neutral Higgs production with b b H understood (4) signal H hh b bγγ for small tan β

m h 6 5 4 9 3 4 4 4 m A 4 m A ( -m h ) 5 4 3 5 4 3 4 4 m A ( -m h )=3,5, GeV 4 m A

x n P (p) (x) Q F = GeV Q F = GeV - - x

.5 σ tot (pp th +X) [pb] =5 GeV N µ F /µ F, =µ R /µ R, µ R =µ R, µ F =µ F, - µ/µ.5. σ tot (pp th +X) [pb] =5 GeV N.5 µ F /µ F, =µ R /µ R, µ R =µ R, µ F =µ F, - µ/µ

LHC: gg bb H =3,5,5, GeV Q b dσ/dq b p T,b dσ/dp T,b.. m b =.46 GeV - Q b /m h - p T,b /m h LHC: ug b td m t =75,5, GeV. Q b dσ/dq b. p T,b dσ/dp T,b - Q b /m t - p T,b /m t LHC: d g b tu m t =75,5, GeV. Q b dσ/dq b. p T,b dσ/dp T,b - Q b /m t - p T,b /m t