On the effective cone of P n blown-up at n + 3 points (and other positivity properties)

Similar documents
Cones of effective divisors on the blown-up P3 in general lines

Minimal model program and moduli spaces

MORI DREAM SPACES. Contents. 1. Hilbert s 14th Problem

7. Classification of Surfaces The key to the classification of surfaces is the behaviour of the canonical

On Strassen s Conjecture

Cones of effective two-cycles on toric manifolds

Geometric aspects of polynomial interpolation in more variables

locus such that Γ + F = 0. Then (Y, Γ = Γ + F ) is kawamata log terminal, and K Y + Γ = π (K X + ) + E + F. Pick H ample such that K Y + Γ + H is nef

h : P 2[n] P 2(n). The morphism h is birational and gives a crepant desingularization of the symmetric product P 2(n).

PROJECTIVIZED RANK TWO TORIC VECTOR BUNDLES ARE MORI DREAM SPACES

EFFECTIVE CONES OF CYCLES ON BLOW-UPS OF PROJECTIVE SPACE

BOUNDEDNESS OF MODULI OF VARIETIES OF GENERAL TYPE

ON THE MODULI B-DIVISORS OF LC-TRIVIAL FIBRATIONS

Finite generation of pluricanonical rings

arxiv: v4 [math.ag] 25 Jan 2018

ON MAXIMAL ALBANESE DIMENSIONAL VARIETIES. Contents 1. Introduction 1 2. Preliminaries 1 3. Main results 3 References 6

BIRATIONAL GEOMETRY OF THE MODULI SPACE OF RANK 2 PARABOLIC VECTOR BUNDLES ON A RATIONAL CURVE 1. INTRODUCTION

TWO LECTURES ON APOLARITY AND THE VARIETY OF SUMS OF POWERS

FANO MANIFOLDS AND BLOW-UPS OF LOW-DIMENSIONAL SUBVARIETIES. 1. Introduction

OKOUNKOV BODIES OF FINITELY GENERATED DIVISORS

SESHADRI CONSTANTS ON SURFACES

The Pythagoras numbers of projective varieties.

FINITE GENERATION OF THE ALGEBRA OF TYPE A CONFORMAL BLOCKS VIA BIRATIONAL GEOMETRY 1. INTRODUCTION

ON SHOKUROV S RATIONAL CONNECTEDNESS CONJECTURE

arxiv: v1 [math.ag] 27 Mar 2014

AARON BERTRAM AND IZZET COSKUN. To Jim Simons, with gratitude

The Grothendieck Ring of Varieties

STABLE BASE LOCUS DECOMPOSITIONS OF KONTSEVICH MODULI SPACES

STABLE BASE LOCUS DECOMPOSITIONS OF KONTSEVICH MODULI SPACES

Rigidity properties of Fano varieties

Normality of secant varieties

The cone conjecture for Calabi-Yau pairs in dimension two

Ordinary Flops. CHIN-LUNG WANG (NCU and NCTS) (Joint work with H.-W. Lin)

IMAGES OF MANIFOLDS WITH SEMI-AMPLE ANTI-CANONICAL DIVISOR

BIRATIONAL GEOMETRY OF THE MODULI SPACE OF RANK 2 PARABOLIC VECTOR BUNDLES ON A RATIONAL CURVE 1. INTRODUCTION

Birational geometry and deformations of nilpotent orbits

On the Birational Geometry of Schubert Varieties

ACC FOR LOG CANONICAL THRESHOLDS

arxiv:math/ v1 [math.ag] 29 Nov 2003

On a connectedness principle of Shokurov-Kollár type

Balancing in relative canonical resolutions and a unirational moduli space of K3 surfaces

Some Remarks on the Minimal Model Program

SEMIAMPLENESS CRITERIA FOR DIVISORS ON M 0,n MAKSYM FEDORCHUK

Birational geometry of algebraic varieties

COX RINGS AND PSEUDOEFFECTIVE CONES OF PROJECTIVIZED TORIC VECTOR BUNDLES

Higher secant varieties of classical projective varieties

ALGEBRAIC GEOMETRY I, FALL 2016.

Algebra & Number Theory

Problems on Minkowski sums of convex lattice polytopes

arxiv: v1 [math.ag] 2 Sep 2017

arxiv: v1 [math.ag] 31 Jul 2016

NEF DIVISORS ON M 0,n FROM GIT

arxiv: v3 [math.ag] 25 Mar 2013

On the anti-canonical ring and varieties of Fano type

ON SINGULAR CUBIC SURFACES

arxiv: v1 [math.ag] 14 Mar 2019

A CONE THEOREM FOR NEF CURVES

arxiv:math/ v1 [math.ag] 11 Apr 2003 James McKernan and Yuri Prokhorov

TORIC PROJECTIVE BUNDLES

12. Hilbert Polynomials and Bézout s Theorem

arxiv:math/ v3 [math.ag] 1 Mar 2006

THE CONE OF CURVES AND THE COX RING OF RATIONAL SURFACES GIVEN BY DIVISORIAL VALUATIONS

ON THE NUMBER AND BOUNDEDNESS OF LOG MINIMAL MODELS OF GENERAL TYPE

ON THE NUMBER AND BOUNDEDNESS OF LOG MINIMAL MODELS OF GENERAL TYPE

COMPARING NUMERICAL DIMENSIONS

Asymptotic invariants of line bundles, semiampleness and finite generation

Mori Dream Spaces and GIT

arxiv: v1 [math.ag] 13 Mar 2019

Holomorphic Symplectic Manifolds

Uniruledness criteria and applications to classification and foliations

EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE

THE MINIMAL MODEL PROGRAM FOR THE HILBERT SCHEME OF POINTS ON P 2 AND BRIDGELAND STABILITY

arxiv: v1 [math.ag] 1 Mar 2017

FINITE GENERATION OF THE LOG CANONICAL RING IN DIMENSION FOUR

Ranks and generalized ranks

Test, multiplier and invariant ideals

Symplectic resolutions of the Hilbert squares of ADE surface singularities

Linear systems and Fano varieties: introduction

arxiv:math.ag/ v1 7 Jan 2005

P m 1 P(H 0 (X, O X (D)) ). Given a point x X, let

On the effective cone of the moduli space of pointed rational curves

arxiv:alg-geom/ v1 21 Mar 1996

RATIONALITY CRITERIA FOR MOTIVIC ZETA FUNCTIONS

Moduli spaces of log del Pezzo pairs and K-stability

HOW TO CLASSIFY FANO VARIETIES?

EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE

Instanton counting, Donaldson invariants, line bundles on moduli spaces of sheaves on rational surfaces. Lothar Göttsche ICTP, Trieste

arxiv:math/ v2 [math.ag] 1 May 2007

Commuting birth-and-death processes

Geometric Manin s Conjecture and rational curves

arxiv: v1 [math.ag] 2 Apr 2015

Lecture 1. Toric Varieties: Basics

Flops connect minimal models

Non-uniruledness results for spaces of rational curves in hypersurfaces

Nef line bundles on M 0,n from GIT

Balanced line bundles and equivariant compactifications of homogeneous spaces

On the Waring problem for polynomial rings

arxiv: v1 [math.ag] 29 Dec 2018

INDRANIL BISWAS AND GEORG HEIN

ASIAN J. MATH. cfl 2002 International Press Vol. 6, No. 1, pp , March THE WEAK LEFSCHETZ PRINCIPLE IS FALSE FOR AMPLE CONES Λ BRENDAN

Transcription:

On the effective cone of P n blown-up at n + 3 points (and other positivity properties) Elisa Postinghel KU Leuven joint with M.C. Brambilla (Ancona) and O. Dumitrescu (Hannover) Daejeon August 3-7, 2015 Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 1 / 14

Polynomial interpolation Choose p 1,..., p s P n C points in general position, and integers d, m i 0 Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 2 / 14

Polynomial interpolation Choose p 1,..., p s P n C points in general position, and integers d, m i 0 { } L = L Pn d (m f C[x] 1,..., m s ) := d mult pi (f ) m i Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 2 / 14

Polynomial interpolation Choose p 1,..., p s P n C points in general position, and integers d, m i 0 { } L = L Pn d (m f C[x] 1,..., m s ) := d mult pi (f ) m i Problem Compute dim(l). Unsolved in general. Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 2 / 14

Polynomial interpolation Choose p 1,..., p s P n C points in general position, and integers d, m i 0 { } L = L Pn d (m f C[x] 1,..., m s ) := d mult pi (f ) m i Problem Compute dim(l). Unsolved in general. Dimensionality ( n + d n ) s ( ) n + mi 1 =: vdim(l) n i=1 Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 2 / 14

Polynomial interpolation Choose p 1,..., p s P n C points in general position, and integers d, m i 0 { L = L Pn d (m 1,..., m s ) := Problem f C[x] d mult pi (f ) m i Compute dim(l). Unsolved in general. } { D Pic(Bls (P n )) D = dh s i=1 m ie i } Dimensionality ( n + d n ) s ( ) n + mi 1 =: vdim(l) n i=1 Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 2 / 14

Polynomial interpolation Choose p 1,..., p s P n C points in general position, and integers d, m i 0 { L = L Pn d (m 1,..., m s ) := Problem f C[x] d mult pi (f ) m i Compute dim(l). Unsolved in general. } { D Pic(Bls (P n )) D = dh s i=1 m ie i } Dimensionality ( n + d n ) s ( ) n + mi 1 =: vdim(l) = χ(bl s (P n ), O(D)) n i=1 Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 2 / 14

Polynomial interpolation Choose p 1,..., p s P n C points in general position, and integers d, m i 0 { L = L Pn d (m 1,..., m s ) := Problem f C[x] d mult pi (f ) m i Compute dim(l). Unsolved in general. } { D Pic(Bls (P n )) D = dh s i=1 m ie i } Dimensionality ( n + d n ) s ( ) n + mi 1 =: vdim(l) = χ(bl s (P n ), O(D)) n i=1 dim(l) = h 0 (Bl s (P n ), O(D)) χ(bl s (P n ), O(D)) Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 2 / 14

Polynomial interpolation Choose p 1,..., p s P n C points in general position, and integers d, m i 0 { L = L Pn d (m 1,..., m s ) := Problem f C[x] d mult pi (f ) m i Compute dim(l). Unsolved in general. } { D Pic(Bls (P n )) D = dh s i=1 m ie i } Dimensionality ( n + d n ) s ( ) n + mi 1 =: vdim(l) = χ(bl s (P n ), O(D)) n i=1 dim(l) = h 0 (Bl s (P n ), O(D)) χ(bl s (P n ), O(D)) Examples: L P2 2 (2, 2) LP2 4 (2, 2, 2, 2, 2) dim vdim (L is special) Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 2 / 14

Secant varieties of rational normal curves Theorem (Veronese 1881)! rational normal curve C P n of degree n through p 1,..., p n+3. Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 3 / 14

Secant varieties of rational normal curves Theorem (Veronese 1881)! rational normal curve C P n of degree n through p 1,..., p n+3. Secant varieties: σ t (C) := x 1,..., x t x 1,...,x t C Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 3 / 14

Secant varieties of rational normal curves Theorem (Veronese 1881)! rational normal curve C P n of degree n through p 1,..., p n+3. Secant varieties: σ t (C) := x 1,..., x t (t n/2 ) dim σ t (C) = 2t 1 x 1,...,x t C Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 3 / 14

Secant varieties of rational normal curves Theorem (Veronese 1881)! rational normal curve C P n of degree n through p 1,..., p n+3. Secant varieties: σ t (C) := (t n/2 ) dim σ t (C) = 2t 1 x 1,...,x t C x 1,..., x t Cones: I {1,..., n + 3}, L I = p i : i I = P I 1 Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 3 / 14

Secant varieties of rational normal curves Theorem (Veronese 1881)! rational normal curve C P n of degree n through p 1,..., p n+3. Secant varieties: σ t (C) := (t n/2 ) dim σ t (C) = 2t 1 x 1,...,x t C x 1,..., x t Cones: I {1,..., n + 3}, L I = p i : i I = P I 1 Join(L I, σ t (C)) Figure: Join(p i, C) Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 3 / 14

Secant varieties of rational normal curves Theorem (Veronese 1881)! rational normal curve C P n of degree n through p 1,..., p n+3. Secant varieties: σ t (C) := (t n/2 ) x 1,...,x t C x 1,..., x t dim σ t (C) = 2t 1 dim Join(L I, σ t (C)) = I + (2t 1) Cones: I {1,..., n + 3}, L I = p i : i I = P I 1 Join(L I, σ t (C)) Figure: Join(p i, C) Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 3 / 14

A combinatorial tool: the Base Locus Lemma mult L{ij} (f ) max{m i + m j d, 0} =: k {ij} Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 4 / 14

A combinatorial tool: the Base Locus Lemma mult L{ij} (f ) max{m i + m j d, 0} =: k {ij} mult LI (f ) max{ i I m i ( I 1)d, 0} =: k I Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 4 / 14

A combinatorial tool: the Base Locus Lemma mult L{ij} (f ) max{m i + m j d, 0} =: k {ij} mult LI (f ) max{ i I m i ( I 1)d, 0} =: k I mult C (f ) max{ n+3 i=1 m i nd, 0} =: k C Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 4 / 14

A combinatorial tool: the Base Locus Lemma mult L{ij} (f ) max{m i + m j d, 0} =: k {ij} mult LI (f ) max{ i I m i ( I 1)d, 0} =: k I mult C (f ) max{ n+3 i=1 m i nd, 0} =: k C mult σt(c)(f ) max{tk C (t 1)d, 0} =: k σt Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 4 / 14

A combinatorial tool: the Base Locus Lemma mult L{ij} (f ) max{m i + m j d, 0} =: k {ij} mult LI (f ) max{ i I m i ( I 1)d, 0} =: k I mult C (f ) max{ n+3 i=1 m i nd, 0} =: k C mult σt(c)(f ) max{tk C (t 1)d, 0} =: k σt mult Join(LI,σ t(c))(f ) max{k σt + k I d, 0} =: k I,σt Lemma (Brambilla-Dumitrescu-P 15) k I,σt Join(L I, σ t ) Bs( D ) with that exact multiplicity. Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 4 / 14

Dimensionality problem for linear systems -Each subvariety contained with multiplicity in the base locus produces a jump between vdim(l) and dim(l). Can we identify it?- Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 5 / 14

Dimensionality problem for linear systems -Each subvariety contained with multiplicity in the base locus produces a jump between vdim(l) and dim(l). Can we identify it?- Examples L P2 6 (5, 5) k 12 = 4, dim(l) = vdim(l) + 6 Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 5 / 14

Dimensionality problem for linear systems -Each subvariety contained with multiplicity in the base locus produces a jump between vdim(l) and dim(l). Can we identify it?- Examples L P2 6 (5, 5) k 12 = 4, dim(l) = vdim(l) + 6 L P3 6 (5, 5, 5) k {ij} = 4 k {123} = 3 dim(l) = vdim(l) + 10 + 10 + 10 1 = 9 Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 5 / 14

Dimensionality problem for linear systems -Each subvariety contained with multiplicity in the base locus produces a jump between vdim(l) and dim(l). Can we identify it?- Examples L P2 6 (5, 5) k 12 = 4, dim(l) = vdim(l) + 6 L P3 6 (5, 5, 5) k {ij} = 4 k {123} = 3 dim(l) = vdim(l) + 10 + 10 + 10 1 = 9 Lemma Contribution of L I is ( 1) I ( n I +k I n ). Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 5 / 14

Dimensionality problem for linear systems -Each subvariety contained with multiplicity in the base locus produces a jump between vdim(l) and dim(l). Can we identify it?- Example: L P4 9 (67 ): vdim(l) = 167, dim(l) = 1. ( ) ( ) 7 5 dim(l) = vdim(l) + 2 4 Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 6 / 14

Dimensionality problem for linear systems -Each subvariety contained with multiplicity in the base locus produces a jump between vdim(l) and dim(l). Can we identify it?- Example: L P4 9 (67 ): vdim(l) = 167, dim(l) = 1. ( ) ( ) ( ) 7 5 8 dim(l) = vdim(l) + + 1 2 4 4 k C = 6 Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 6 / 14

Dimensionality problem for linear systems -Each subvariety contained with multiplicity in the base locus produces a jump between vdim(l) and dim(l). Can we identify it?- Example: L P4 9 (67 ): vdim(l) = 167, dim(l) = 1. ( ) ( ) ( ) 7 5 8 dim(l) = vdim(l) + + 1 + 7 ( 1) 2 4 4 k C = 6 k Join(C,pi ) = 4 Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 6 / 14

Dimensionality problem for linear systems -Each subvariety contained with multiplicity in the base locus produces a jump between vdim(l) and dim(l). Can we identify it?- Example: L P4 9 (67 ): vdim(l) = 167, dim(l) = 1. ( ) ( ) ( ) 7 5 8 dim(l) = vdim(l) + + 1 + 7 ( 1) + 1 0 2 4 4 k C = 6 k Join(C,pi ) = 4 k σ2 = 3 Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 6 / 14

Dimensionality problem for linear systems -Each subvariety contained with multiplicity in the base locus produces a jump between vdim(l) and dim(l). Can we identify it?- Example: L P4 9 (67 ): vdim(l) = 167, dim(l) = 1. ( ) ( ) ( ) 7 5 8 dim(l) = vdim(l) + + 1 + 7 ( 1) + 1 0 2 4 4 k C = 6 k Join(C,pi ) = 4 k σ2 = 3 Lemma Contribution of Join(L I, σ t ) is ( 1) I ( n ( I +2t)+k I,σ t n ). Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 6 / 14

Fröberg-Iarrobino conjecture dim(l) apolarity Hilbert function of ideals generated by powers of linear forms Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 7 / 14

Fröberg-Iarrobino conjecture dim(l) apolarity Hilbert function of ideals generated by powers of linear forms Conjecture (Fröberg 85, Iarrobino 97) dim(l) = vdim(l) + I ( 1) I ( n I + ki n expect in a list of cases, among which s = n + 3. ) Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 7 / 14

Fröberg-Iarrobino conjecture dim(l) apolarity Hilbert function of ideals generated by powers of linear forms Conjecture (Fröberg 85, Iarrobino 97) dim(l) = vdim(l) + I ( 1) I ( n I + ki n expect in a list of cases, among which s = n + 3. ) Conjecture (Brambilla-Dumitrescu-P 15) dim(l) = vdim(l) + I,t if s = n + 3. ( 1) I ( n ( I + 2t) + ki,σt n ) Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 7 / 14

Motivation II: Bl n+3 (P n ) is... [Mukai 05] Bl n+3 (P n ) = U( a), the moduli space of rank-2 parabolic vector bundles over (n + 3)-pointed P 1, where a = (a,..., a) [0, 1] n+3 is a parabolic weight. Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 8 / 14

Motivation II: Bl n+3 (P n ) is... [Mukai 05] Bl n+3 (P n ) = U( a), the moduli space of rank-2 parabolic vector bundles over (n + 3)-pointed P 1, where a = (a,..., a) [0, 1] n+3 is a parabolic weight. [Mukai 01] Cox(Bl n+3 (P n )) = R G, the Cox-Nagata ring, ring of polynomials in C[x 1,..., x n+3, y 1,..., y n+3 ] fixed by Nagata action of G 2 a (Hilbert s 14th problem). Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 8 / 14

Motivation II: Bl n+3 (P n ) is... [Mukai 05] Bl n+3 (P n ) = U( a), the moduli space of rank-2 parabolic vector bundles over (n + 3)-pointed P 1, where a = (a,..., a) [0, 1] n+3 is a parabolic weight. [Mukai 01] Cox(Bl n+3 (P n )) = R G, the Cox-Nagata ring, ring of polynomials in C[x 1,..., x n+3, y 1,..., y n+3 ] fixed by Nagata action of G 2 a (Hilbert s 14th problem). [Dolgachev 81; Castravet-Tevelev 06; Sturmfels-Velasco 10] Generators of Cox(Bl n+3 (P n )) 2 n+2 weights of the half-spin representation of so 2(n+3). Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 8 / 14

Birational geometry of Bl n+3 (P n ) [Castravet-Tevelev 06] Bl n+3 (P n ) is a Mori Dream Space. Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 9 / 14

Birational geometry of Bl n+3 (P n ) [Castravet-Tevelev 06] Bl n+3 (P n ) is a Mori Dream Space. The birational geometry of a MDS can be encoded in some finite data: the polyhedral cones Eff(Bl n+3 (P n )) Mov(Bl n+3 (P n )) together with their Mori/nef chamber decompositions. Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 9 / 14

Birational geometry of Bl n+3 (P n ) [Castravet-Tevelev 06] Bl n+3 (P n ) is a Mori Dream Space. The birational geometry of a MDS can be encoded in some finite data: the polyhedral cones Eff(Bl n+3 (P n )) Mov(Bl n+3 (P n )) together with their Mori/nef chamber decompositions. MDSs behave particularly well from the MMP point of view. Can we find a good minimal model, i.e. one for which the abundance conjecture holds? Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 9 / 14

Effective cone, movable cone and more Theorem (Brambilla-Dumitrescu-P 15) Eff(Bl n+3 (P n )) is given by inequalities: {m i d, k I,σt 0, I, σ t : dim Join(L I, σ t ) = n}. Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 10 / 14

Effective cone, movable cone and more Theorem (Brambilla-Dumitrescu-P 15) Eff(Bl n+3 (P n )) is given by inequalities: {m i d, k I,σt 0, I, σ t : dim Join(L I, σ t ) = n}. Mov(Bl n+3 (P n )) is given by inequalities: {m i d, k I,σt 0, I, σ t : dim Join(L I, σ t ) = n, n 1}. Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 10 / 14

Effective cone, movable cone and more Theorem (Brambilla-Dumitrescu-P 15) Eff(Bl n+3 (P n )) is given by inequalities: {m i d, k I,σt 0, I, σ t : dim Join(L I, σ t ) = n}. Mov(Bl n+3 (P n )) is given by inequalities: {m i d, k I,σt 0, I, σ t : dim Join(L I, σ t ) = n, n 1}. Theorem (Mukai 05; Araujo-Massarenti 15) The Mori chamber decomposition of Eff is given by the hyperplanes k I,σt = 0 : dim Join(L I, σ t } = n r, r 2, I = r (mod 2) Walls corresponds to flips of a P n r in a P r+1. Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 10 / 14

Mori chamber decomposition N 1 (X) Eff Mov Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 11 / 14

Semiample, ample and nef cones Theorem (Dumitrescu-P 15) If s 2n, D on Bl s (P n ) is basepoint free iff m i 0, k {i,j} 0 (A) Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 12 / 14

Semiample, ample and nef cones Theorem (Dumitrescu-P 15) If s 2n, D on Bl s (P n ) is basepoint free iff m i 0, k {i,j} 0 (A) If s 2n, D on Bl s (P n ) is very ample iff m i 1, k {i,j} 1 (B) Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 12 / 14

Semiample, ample and nef cones Theorem (Dumitrescu-P 15) If s 2n, D on Bl s (P n ) is basepoint free iff m i 0, k {i,j} 0 (A) If s 2n, D on Bl s (P n ) is very ample iff m i 1, k {i,j} 1 (B) Corollary For s 2n, the semi-ample cone of Bl s (P n ) is given by (A). Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 12 / 14

Semiample, ample and nef cones Theorem (Dumitrescu-P 15) If s 2n, D on Bl s (P n ) is basepoint free iff m i 0, k {i,j} 0 (A) If s 2n, D on Bl s (P n ) is very ample iff m i 1, k {i,j} 1 (B) Corollary For s 2n, the semi-ample cone of Bl s (P n ) is given by (A). For s 2n, the ample cone of Bl s (P n ) is given by (B). Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 12 / 14

Semiample, ample and nef cones Theorem (Dumitrescu-P 15) If s 2n, D on Bl s (P n ) is basepoint free iff m i 0, k {i,j} 0 (A) If s 2n, D on Bl s (P n ) is very ample iff m i 1, k {i,j} 1 (B) Corollary For s 2n, the semi-ample cone of Bl s (P n ) is given by (A). For s 2n, the ample cone of Bl s (P n ) is given by (B). Corollary The nef cone coincides with the semi-ample cone Bl s (P n ), for s 2n. Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 12 / 14

Good minimal models for Bl n+3 (P n ) Conjecture ((Log) abundance conjecture) If (Bl n+3 (P n ), ), 0 is a log canonical Q-divisor, then K X + is nef iff it is semi-ample. Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 13 / 14

Good minimal models for Bl n+3 (P n ) Conjecture ((Log) abundance conjecture) If (Bl n+3 (P n ), ), 0 is a log canonical Q-divisor, then K X + is nef iff it is semi-ample. Theorem (Dumitrescu-P 15) X = Bl n+3 (P n ), = ɛd, with 0 ɛ << 1 and D Eff(Bl n+3 (P n )) line bundle. Assume K X + is nef (equiv. semi-ample), i.e. ɛm i n 1, ɛk {i,j} n 3. Then (X, ) admits a log resolution such that (X, ) is log canonical. This gives good minimal models for the pairs (Bl n+3 (P n ), ). Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 13 / 14

Bibliography [1] C. Araujo, A. Massarenti, Explicit log Fano structures on blow-ups of projective spaces, preprint ArXiv:1505.02460 (2015) [2] M. C. Brambilla, O. Dumitrescu and E. Postinghel, On the effective cone of P n blown-up at n + 3 points, preprint ArXiv:1501.04094 (2015) [3] A. M. Castravet and J. Tevelev, Hilbert s 14th problem and Cox rings, Compos. Math. 142 (2006), no. 6, 1479 1498. [4] O. Dumitrescu and E. Postinghel, Positivity of divisors on blown-up projective spaces, preprint ArXiv:1506.04726 (2015) [5] A. Iarrobino, Inverse system of symbolic power III. Thin algebras and fat points, Compositio Math. 108 (1997), no. 3, 319 356 [6] S. Mukai, Finite generation of the Nagata invariant rings in A-D-E cases, RIMS Preprint n. 1502. (2005) [7] B. Sturmfels, M. Velasco Blow-ups of P n3 at n points and spinor varieties. J. Commut. Algebra 2 (2010), no. 2, 223-244 THANKS!! Elisa Postinghel (KU Leuven) () Effective cone of Bl n+3 (P n ) SIAM AG 2015 14 / 14