Modelling and simulation of dependence structures in nonlife insurance with Bernstein copulas

Similar documents
Modeling of Dependence Structures in Risk Management and Solvency

A simple tranformation of copulas

Logarithmic spurious regressions

Lower Bounds for the Smoothed Number of Pareto optimal Solutions

Least-Squares Regression on Sparse Spaces

under the null hypothesis, the sign test (with continuity correction) rejects H 0 when α n + n 2 2.

Lecture Introduction. 2 Examples of Measure Concentration. 3 The Johnson-Lindenstrauss Lemma. CS-621 Theory Gems November 28, 2012

u!i = a T u = 0. Then S satisfies

Convergence of Random Walks

Expected Value of Partial Perfect Information

MODELLING DEPENDENCE IN INSURANCE CLAIMS PROCESSES WITH LÉVY COPULAS ABSTRACT KEYWORDS

Robust Forward Algorithms via PAC-Bayes and Laplace Distributions. ω Q. Pr (y(ω x) < 0) = Pr A k

EIGEN-ANALYSIS OF KERNEL OPERATORS FOR NONLINEAR DIMENSION REDUCTION AND DISCRIMINATION

Generalization of the persistent random walk to dimensions greater than 1

Influence of weight initialization on multilayer perceptron performance

Discrete Operators in Canonical Domains

Separation of Variables

On conditional moments of high-dimensional random vectors given lower-dimensional projections

Topic 7: Convergence of Random Variables

Proof of SPNs as Mixture of Trees

Modelling and simulation of dependence structures in nonlife insurance with Bernstein copulas

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

LATTICE-BASED D-OPTIMUM DESIGN FOR FOURIER REGRESSION

Some Examples. Uniform motion. Poisson processes on the real line

An Optimal Algorithm for Bandit and Zero-Order Convex Optimization with Two-Point Feedback

1 Math 285 Homework Problem List for S2016

Euler equations for multiple integrals

The Approximability and Integrality Gap of Interval Stabbing and Independence Problems

Chapter 9 Method of Weighted Residuals

Hyperbolic Systems of Equations Posed on Erroneous Curved Domains

Agmon Kolmogorov Inequalities on l 2 (Z d )

CONSERVATION PROPERTIES OF SMOOTHED PARTICLE HYDRODYNAMICS APPLIED TO THE SHALLOW WATER EQUATIONS

Modelling and simulation of dependence structures in nonlife insurance with Bernstein copulas

A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks

Leaving Randomness to Nature: d-dimensional Product Codes through the lens of Generalized-LDPC codes

IERCU. Institute of Economic Research, Chuo University 50th Anniversary Special Issues. Discussion Paper No.210

arxiv: v4 [math.pr] 27 Jul 2016

arxiv: v1 [hep-lat] 19 Nov 2013

A LIMIT THEOREM FOR RANDOM FIELDS WITH A SINGULARITY IN THE SPECTRUM

arxiv: v1 [physics.flu-dyn] 8 May 2014

EVALUATING HIGHER DERIVATIVE TENSORS BY FORWARD PROPAGATION OF UNIVARIATE TAYLOR SERIES

Permanent vs. Determinant

Noether s theorem applied to classical electrodynamics

Stable and compact finite difference schemes

Chapter 6: Energy-Momentum Tensors

Switching Time Optimization in Discretized Hybrid Dynamical Systems

A Spectral Method for the Biharmonic Equation

IPA Derivatives for Make-to-Stock Production-Inventory Systems With Backorders Under the (R,r) Policy

STATISTICAL LIKELIHOOD REPRESENTATIONS OF PRIOR KNOWLEDGE IN MACHINE LEARNING

NOTES ON EULER-BOOLE SUMMATION (1) f (l 1) (n) f (l 1) (m) + ( 1)k 1 k! B k (y) f (k) (y) dy,

Thermal conductivity of graded composites: Numerical simulations and an effective medium approximation

THE VAN KAMPEN EXPANSION FOR LINKED DUFFING LINEAR OSCILLATORS EXCITED BY COLORED NOISE

Tractability results for weighted Banach spaces of smooth functions

Optimal Measurement and Control in Quantum Dynamical Systems.

Worst VaR Scenarios. Paul Embrechts a Andrea Höing a, Giovanni Puccetti b. 1 Introduction

1D Heat Transfer. Background. Local Equations. The temperature assumption. Balance law. Lecture 7

Survey Sampling. 1 Design-based Inference. Kosuke Imai Department of Politics, Princeton University. February 19, 2013

arxiv: v4 [cs.ds] 7 Mar 2014

One-dimensional I test and direction vector I test with array references by induction variable

Extinction, σ/area. Energy (ev) D = 20 nm. t = 1.5 t 0. t = t 0

ON THE OPTIMALITY SYSTEM FOR A 1 D EULER FLOW PROBLEM

Practical Analysis of Key Recovery Attack against Search-LWE Problem

Situation awareness of power system based on static voltage security region

Capacity Analysis of MIMO Systems with Unknown Channel State Information

Balancing Expected and Worst-Case Utility in Contracting Models with Asymmetric Information and Pooling

An Eulerian level set method for partial differential equations on evolving surfaces

Lower bounds on Locality Sensitive Hashing

Lecture 2: Correlated Topic Model

Acute sets in Euclidean spaces

SYMMETRIC KRONECKER PRODUCTS AND SEMICLASSICAL WAVE PACKETS

On Testing Significance of the Multivariate Rank Correlation Coefficient

Convergence rates of moment-sum-of-squares hierarchies for optimal control problems

Introduction to the Vlasov-Poisson system

Hyperbolic Moment Equations Using Quadrature-Based Projection Methods

arxiv: v1 [cs.it] 21 Aug 2017

6 General properties of an autonomous system of two first order ODE

05 The Continuum Limit and the Wave Equation

NATURAL BOUNDARY ELEMENT METHOD FOR THREE DIMENSIONAL EXTERIOR HARMONIC PROBLEM WITH AN INNER PROLATE SPHEROID BOUNDARY

Multidimensional Fast Gauss Transforms by Chebyshev Expansions

OPTIMAL CONTROL PROBLEM FOR PROCESSES REPRESENTED BY STOCHASTIC SEQUENTIAL MACHINE

Spurious Significance of Treatment Effects in Overfitted Fixed Effect Models Albrecht Ritschl 1 LSE and CEPR. March 2009

arxiv: v1 [math.oc] 5 Oct 2016

Counting Lattice Points in Polytopes: The Ehrhart Theory

Problems Governed by PDE. Shlomo Ta'asan. Carnegie Mellon University. and. Abstract

Transformations of Copulas and Measures of Concordance

Equilibrium Glauber dynamics of continuous particle systems as a scaling limit of Kawasaki dynamics

New Statistical Test for Quality Control in High Dimension Data Set

Lower Bounds for Local Monotonicity Reconstruction from Transitive-Closure Spanners

Robust Low Rank Kernel Embeddings of Multivariate Distributions

7.1 Support Vector Machine

FLUCTUATIONS IN THE NUMBER OF POINTS ON SMOOTH PLANE CURVES OVER FINITE FIELDS. 1. Introduction

An Eulerian approach to transport and diffusion on evolving implicit surfaces

Why Bernstein Polynomials Are Better: Fuzzy-Inspired Justification

Monte Carlo Methods with Reduced Error

On a limit theorem for non-stationary branching processes.

Survival exponents for fractional Brownian motion with multivariate time

A representation theory for a class of vector autoregressive models for fractional processes

REAL ANALYSIS I HOMEWORK 5

Estimation of the Maximum Domination Value in Multi-Dimensional Data Sets

Transcription:

Moelling an simulation of epenence structures in nonlife insurance with Bernstein copulas Prof. Dr. Dietmar Pfeifer Dept. of Mathematics, University of Olenburg an AON Benfiel, Hamburg Dr. Doreen Straßburger Dept. of Mathematics, University of Olenburg an mgm consulting partners, Hamburg Jörg Philipps Dept. of Mathematics, University of Olenburg

. Introuction o Classical copula concepts: elliptical (Gauß, t, ) Archimeian (Gumbel, Clayton, Frank, ) o Approximation theory: Bernstein polynomials in one an more variables or in one an more imensions (Bézier curves an surfaces) Bernstein copulas: Bernstein copulas allow for a very flexible, non-parametric an essentially non-symmetric escription of epenence structures also in higher imensions Bernstein copulas approximate any given copula arbitrarily well Bernstein copula ensities are given in an explicit form an can hence be easily use for Monte Carlo simulation stuies.

2. Some simple mathematical facts on Bernstein polynomials an copulas m k m k Lemma. Let Bmkz (,, ) = z( z), 0 z, k = 0,, m. k Then we have Further, mb( m, k, z) z= for k = 0,, m. 0 B ( mkz,, ) = mbm [ (, k, z ) Bm (, kz, )] for k = 0,, m z with the convention Bm (,, z) = Bm (, mz, ) = 0. 2

Theorem. For let U = ( U,, U ) be a ranom vector whose marginal component U follows a iscrete uniform istribution over T : = { 0,,, m } i with m, i=,,. Let further enote i i i Then p k k P U k (,, ): = { = } for all ( ) i i i= k,, k T. i i= m m (,, ): = (,, ) (,, ), (,, ) [ 0,] cu u pk k mbm k u u u i i i i k= 0 k = 0 i= efines the ensity of a -imensional copula, calle Bernstein copula. We call c the Bernstein copula ensity inuce by U. 3

By integration, we obtain the Bernstein copula C inuce by U as x x m m C( x,, x ): = c( u,, u ) u u = P { U < k } B( m, k, x ), i i i i i 0 0 k= 0 k = 0 i= i= for ( x x ) [ ],, 0,. Remark: if = ( V V ) V,, is a ranom vector with joint Bernstein copula ensity c then also any partial ranom vector ( Vi Vi ) possesses a Bernstein copula ensity,, with n< an i n < < in [ i,, i n ] c given by, n,,,,, 0,. m m n n [ i,, in ] c u u P U k m B m k u u u i ( ) i n i { } ( ) ( ) [ ] i = n i = i i i i i i n ki = 0 k 0 i n = = = 4

Definition. Uner the assumptions of the above theorem efine the intervals kj kj+ Ik :,,, k = j= mj m for all possible choices ( k,, k) Ti. Then the function i= j m ( ) m * c : = mi p k,, k Ik,, k i= k= 0 k = 0 is the ensity of a -imensional copula, calle gri-type or checkerboar copula inuce by U. Here A enotes the inicator ranom variable of the set A, as usual. Interpretation: = ( W W ) W,, follows a gri-type copula iff ( W k,, k ) = U ( k,, k ) i for all ( ) W P I I k,, k T, i= i where U ( ) enotes the continuous uniform istribution over a Borel set with positive Lebesgue measure. 5

Hence the Bernstein copula inuce by U can be regare as a naturally smoothe version of the gri-type copula inuce by U, replacing the inicator functions ( u,, u ) ( u ) by the polynomials = Ik,, k k i k, i + i i= mi m i Bm ( i, ki, ui), ( u,, u) [ 0, ]. i= 6

Example. The following graphs show the smoothing effect in case =. m = 5 m = 0 7

Natural generalizations of Bernstein an gri-type copulas are obtaine if we look at suitable partitions of unity, i.e. families of non-negative functions { φ( mk,, i) 0 k m, m } efine on the unit interval [ ] properties: 0, with the following φ ( mku,, ) u= for k = 0,, m m 0 m φ( mk,, i ) = for m. k= 0 In this case, a -imensional copula ensity c φ inuce by U is given by m m φ c ( u,, u ): = P { U = k } mφ ( m, k, u ), ( u,, u ) [ 0, ]. i i i i i i k= 0 k = 0 i= i= 8

The copula itself is accoringly given by m m φ C ( u,, u ): = P { U < k } φ ( m, k, u ), ( u,, u ) [ 0, ]. i i i i i k= 0 k = 0 i= i= Note that m φ( mku,, ) = Bm (, ku, ) = u( u) k k m k in case of Bernstein copulas an = φ( mku,, ) k k+, m m ( u) for 0 k m, m in case of gri-type copulas. 9

Note further that any such family of functions { φ( mk,, i) 0 k m, m } inuces immeiately a new family { φ (,, i ) 0, } but fixe K with similar properties via K mk k m m for arbitrary, since obviously K K φ ( mk,, i): = φ( K mk, k+ j, i ) for k = 0,, m j= 0 K K φk ( mkuu,, ) = φ( KmKk, + juu, ) = =, k= 0,, m 0 j= 0 0 j= 0 K m m m K m K m φ ( mk,, i) = φ( K mk, k+ j, i) = φ( K mi,, i ) =, m. K k= 0 j= 0 k= 0 i= 0 0

For Bernstein copulas, this generalization has a irect impact on the smoothing effect pointe out in the above example. The following two graphs show this effect for K = 3 an K = 0. The case K = is shown as a thin black line, for comparison. m = 5 K = 3 K = 0

3. Fitting empirical ata to gri-type an Bernstein copulas o In this section: case = 2, for simplicity. However, the metho propose here works accoringly in any imension. o Example ata set: a 34-year time series of (economically ajuste) winstorm an flooing losses One possible way to extract the epenence structure from the ata is the empirical copula scatterplot, which is a plot of the joint relative ranks of the ata. The following figure shows such a plot for a series of n = 34 observation years. 2

ranks of winstorm losses empirical copula scatter plot 3

o Fit these ata to a gri-type copula with a given gri resolution, say m= m2 = m= 0, by counting the relative frequency of the ata points in each of the m m2 = 00 target cells contingency table a ij (matrix notation: i = row inex, j = column inex; roune to 3 ecimal places). upper cell bounary 0, 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9,0 sum,0 0,000 0,000 0,000 0,000 0,000 0,029 0,029 0,029 0,000 0,000 0,009 0,9 0,029 0,000 0,000 0,000 0,000 0,000 0,029 0,000 0,000 0,029 0,009 0,8 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,029 0,029 0,059 0,02 0,7 0,000 0,029 0,000 0,000 0,000 0,029 0,000 0,000 0,029 0,000 0,009 0,6 0,000 0,029 0,029 0,029 0,000 0,000 0,000 0,029 0,000 0,000 0,02 0,5 0,000 0,029 0,000 0,029 0,000 0,000 0,000 0,000 0,029 0,000 0,009 0,4 0,029 0,000 0,000 0,000 0,029 0,029 0,029 0,000 0,000 0,000 0,02 0,3 0,000 0,000 0,000 0,059 0,000 0,000 0,000 0,029 0,000 0,000 0,009 0,2 0,029 0,029 0,000 0,000 0,059 0,000 0,000 0,000 0,000 0,000 0,02 0, 0,000 0,000 0,059 0,000 0,000 0,029 0,000 0,000 0,000 0,000 0,009 sum 0,009 0,02 0,009 0,02 0,009 0,02 0,009 0,02 0,009 0,009 4

o observe marginal sums are not equal to m = optimization problem: 0 ik i= j= min! m m i= j= ( x ) 2 ij aij subject to m m x = x j = = an x, k 0 for k, =,, m m 0 The explicit solution of such a problem is in general not straightforwar to fin, although there exists a solution ue to the Karush-Kuhn-Tucker theorem from optimization theory. Using a suitable software package like octave (a public omain computer algebra system), we obtain the following solution (roune to 3 ecimal places); see the coe listing in the Appenix of the paper. 5

upper cell bounary 0, 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9,0 sum,0 0,003 0,000 0,002 0,000 0,003 0,027 0,032 0,027 0,003 0,003 0, 0,9 0,032 0,000 0,00 0,000 0,002 0,000 0,03 0,000 0,002 0,03 0, 0,8 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,020 0,025 0,055 0, 0,7 0,003 0,027 0,002 0,000 0,003 0,027 0,003 0,000 0,032 0,003 0, 0,6 0,000 0,025 0,029 0,02 0,000 0,000 0,000 0,025 0,000 0,000 0, 0,5 0,003 0,028 0,002 0,025 0,003 0,000 0,003 0,000 0,032 0,003 0, 0,4 0,027 0,000 0,000 0,000 0,027 0,02 0,026 0,000 0,000 0,000 0, 0,3 0,003 0,000 0,002 0,054 0,003 0,000 0,003 0,028 0,003 0,003 0, 0,2 0,025 0,020 0,000 0,000 0,055 0,000 0,000 0,000 0,000 0,000 0, 0, 0,003 0,000 0,06 0,000 0,003 0,026 0,002 0,000 0,002 0,002 0, sum 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, optimal resulting contingency table 6

A more pragmatic way to fin at least a goo suboptimal solution that can be easily implemente e.g. in spreasheets is as follows. Consier the above optimization problem without the non-negativity conitions first. The equivalent Lagrange problem (which leas to a system of linear equations) is easy to solve an gives the (general) solution x ij a j ai 2 = aij + for i, j=,, m, 2 m m m where the inex i means summation, as usual. For the ata set above, we thus obtain 7

upper cell bounary 0, 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9,0 sum,0 0,002-0,00 0,002-0,00 0,002 0,029 0,032 0,029 0,002 0,002 0, 0,9 0,032-0,00 0,002-0,00 0,002-0,00 0,032-0,00 0,002 0,032 0, 0,8-0,00-0,004-0,00-0,004-0,00-0,004-0,00 0,026 0,029 0,058 0, 0,7 0,002 0,029 0,002-0,00 0,002 0,029 0,002-0,00 0,032 0,002 0, 0,6-0,00 0,026 0,029 0,026-0,00-0,004-0,00 0,026-0,00-0,00 0, 0,5 0,002 0,029 0,002 0,029 0,002-0,00 0,002-0,00 0,032 0,002 0, 0,4 0,029-0,004-0,00-0,004 0,029 0,026 0,029-0,004-0,00-0,00 0, 0,3 0,002-0,00 0,002 0,058 0,002-0,00 0,002 0,029 0,002 0,002 0, 0,2 0,029 0,026-0,00-0,004 0,058-0,004-0,00-0,004-0,00-0,00 0, 0, 0,002-0,00 0,06-0,00 0,002 0,029 0,002-0,00 0,002 0,002 0, sum 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, o solution is not feasible since it contains negative entries cell-wise aitive correction with a: min { xij i, j m} norming = an consecutive 8

upper cell bounary 0, 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9,0 sum,0 0,004 0,002 0,004 0,002 0,004 0,024 0,026 0,024 0,004 0,004 0, 0,9 0,026 0,002 0,004 0,002 0,004 0,002 0,026 0,002 0,004 0,026 0, 0,8 0,002 0,000 0,002 0,000 0,002 0,000 0,002 0,022 0,024 0,046 0, 0,7 0,004 0,024 0,004 0,002 0,004 0,024 0,004 0,002 0,026 0,004 0, 0,6 0,002 0,022 0,024 0,022 0,002 0,000 0,002 0,022 0,002 0,002 0, 0,5 0,004 0,024 0,004 0,024 0,004 0,002 0,004 0,002 0,026 0,004 0, 0,4 0,024 0,000 0,002 0,000 0,024 0,022 0,024 0,000 0,002 0,002 0, 0,3 0,004 0,002 0,004 0,046 0,004 0,002 0,004 0,024 0,004 0,004 0, 0,2 0,024 0,022 0,002 0,000 0,046 0,000 0,002 0,000 0,002 0,002 0, 0, 0,004 0,002 0,048 0,002 0,004 0,024 0,004 0,002 0,004 0,004 0, sum 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, xij + a final suboptimal contingency table y ij = 2 + m a 9

For imension 2, > with the inex sets I : = {,, m} an, for i {,, m} an k k k =,,, I ( i) : {,, m} = { i} {,, m}, the corresponing Lagrange optimization problem has the solution k ( xi i ai i ) i i I min! ( ) x [ k] ( ik) : = xi i = ( i i ) I ( i ) m k k x a a i 2 subject to i,, m, k =,, (*) for { } = ( ) + for ( i i ) { m} i i i i [ k] k m k= k m,,,,. 20

Proof: putting the graient of the Lagrange function 2 m L= ( xi ) 2 ( ) i a i i λ k, i x k [ k] i + k ( i i ) I k= ik = m to zero results in the m aitional equations (besies the sie conitions (*)) L x i i ( x a ) = 2 + 2 λ = 0 i i i i k, ik k= for all ( ) i i I (**). These two sets of equations are solve by λ ( i ) a = an m m [ k] k ki, k x a λ i i i i k, ik k= = i,, m, k =,,. for { } k 2

Note also that in the special case = 2, we have ( ) = an a ( j) = a for i j { m} a i a [] i [2] j,,,. The above solution can be use as an initial solution for either the multiimensional Karush-Kuhn-Tucker approach or the simplifie version escribe above, giving y x + a = + ma with a = { xi i i i m} i i i i : min,,. 22

Any of the contingency tables above can be use to efine the joint istribution of the U = U, U inucing the gri-type an Bernstein copulas. iscrete ranom vector ( ) 2 contour plot of the (suboptimal) Bernstein copula ensity, with empirical copula scatterplot superimpose 23

4. Simulating from Bernstein copulas o Bernstein copula ensities are polynomials, hence boune over the unit cube [ 0,] by a constant M > 0 multivariate acceptance-rejection metho o average rate of samples obtaine by this proceure is /M Step : generate + inepenent uniformly istribute ranom numbers u,, u +. Step 2: check whether ( ) cu,, u > Mu +. If so, go to Step 3, otherwise go to Step. Step 3: use ( u,, u ) as a sample from the Bernstein copula. 24

o in the winstorm / flooing example: M = 2,35 o Q-Q-plots from the 34 year time series of the logarithms of winstorm an flooing losses (μ = location parameter, σ = scale parameter): winstorm 25

flooing 26

Log winstorm losses Log flooing losses Distribution Gumbel Normal Parameters μ = 6,367 μ = 6,625 σ = 0,8872 σ = 0,9777 o winstorm losses are consiere to follow a Fréchet istribution with extremal inex α= / σ=,27 o flooing losses are consiere to follow a lognormal istribution 27

The following graphs show the results of a fourfol Monte Carlo simulation for the aggregate risk (winstorm an flooing) on the basis of 000 pairs of points simulate from Bernstein copulas an the marginal istributions specifie above. The four cases consiere are: re line: Bernstein copula on the basis of a 4 x 4 gri green line: Bernstein copula on the basis of a 0 x 0 gri blue line: inepenence case orange line: Gaussian copula estimate from original ata 28

4x4 gri, approx. sol. 0x0 gri, approx. sol. 0x0 gri, opt. sol. contour plot of Bernstein copula ensities 29

30

3

32

33

34

References [] T. BOUEZMARNI, J. V.K. ROMBOUTS, A. TAAMOUTI (2008): Asymptotic properties of the Bernstein ensity copula for epenent ata. CORE iscussion paper 2008/45, Leuven University, Belgium. [2] V. DURRLEMAN, A. NIKEGHBALI, T. RONCALLI (2000): Copulas approximation an new families. Groupe e Recherche Opérationelle, Créit Lyonnais, France, Working Paper. [3] T. KULPA (999): On approximation of copulas. Internat. J. Math. & Math. Sci. 22, 259 269. [4] X. LI, P. MIKUSIŃSKI, H. SHERWOOD, M.D. TAYLOR (997): On approximation of copulas. In: V. Beneš an J. Štěpán (Es.), Distributions with Given Marginals an Moment Problems, Kluwer Acaemic Publishers, Dorrecht. [5] A. SANCETTA, S.E. SATCHELL (2004): The Bernstein copula an its applications to moelling an approximations of multivariate istributions. Econometric Theory 20(3), 535 562. [6] M. SALMON, C. SCHLEICHER (2007): Pricing multivariate currency options with copulas. In: Copulas. From Theory to Application in Finance, J. Rank (e.), Risk Books, Lonon, 29 232. 35