EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements

Similar documents
Digital Integrated Circuits A Design Perspective

Interconnect (2) Buffering Techniques. Logical Effort

EE141. Administrative Stuff

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002

Integrated Circuits & Systems

9/18/2008 GMU, ECE 680 Physical VLSI Design

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

! Crosstalk. ! Repeaters in Wiring. ! Transmission Lines. " Where transmission lines arise? " Lossless Transmission Line.

Logical Effort EE141

Announcements. EE141-Spring 2007 Digital Integrated Circuits. CMOS SRAM Analysis (Read/Write) Class Material. Layout. Read Static Noise Margin

EE115C Digital Electronic Circuits Homework #5

Lecture 23. Dealing with Interconnect. Impact of Interconnect Parasitics

Digital EE141 Integrated Circuits 2nd Combinational Circuits

Interconnect (2) Buffering Techniques.Transmission Lines. Lecture Fall 2003

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

EE M216A.:. Fall Lecture 5. Logical Effort. Prof. Dejan Marković

EE115C Digital Electronic Circuits Homework #4

Logical Effort. Sizing Transistors for Speed. Estimating Delays

The CMOS Inverter: A First Glance

The Wire. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

EECS 151/251A Spring 2018 Digital Design and Integrated Circuits. Instructors: Nick Weaver & John Wawrzynek. Lecture 12 EE141

Lecture 4: CMOS review & Dynamic Logic

Announcements. EE141- Spring 2003 Lecture 8. Power Inverter Chain

EE115C Digital Electronic Circuits Homework #6

EE 330 Lecture 39. Digital Circuits. Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates)

Properties of CMOS Gates Snapshot

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

Logic Gate Sizing. The method of logical effort. João Canas Ferreira. March University of Porto Faculty of Engineering

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp

Digital Integrated Circuits 2nd Inverter

EECS 151/251A Homework 5

Digital Integrated Circuits A Design Perspective

The CMOS Inverter: A First Glance

THE INVERTER. Inverter

Logical Effort: Designing for Speed on the Back of an Envelope David Harris Harvey Mudd College Claremont, CA

Very Large Scale Integration (VLSI)

ECE260B CSE241A Winter Interconnects. Website:

Interconnects. Wire Resistance Wire Capacitance Wire RC Delay Crosstalk Wire Engineering Repeaters. ECE 261 James Morizio 1

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

EE141Microelettronica. CMOS Logic

EE371 - Advanced VLSI Circuit Design

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EE141-Fall 2012 Digital Integrated Circuits. Announcements. Homework #3 due today. Homework #4 due next Thursday EECS141 EE141

EE 447 VLSI Design. Lecture 5: Logical Effort

CMPEN 411 VLSI Digital Circuits Spring Lecture 14: Designing for Low Power

Interconnect s Role in Deep Submicron. Second class to first class

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

VLSI Design, Fall Logical Effort. Jacob Abraham

EE141-Spring 2007 Digital Integrated Circuits. Administrative Stuff. Last Lecture. Wires. Interconnect Impact on Chip. The Wire

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

ECE 497 JS Lecture - 18 Impact of Scaling

Digital Integrated Circuits (83-313) Lecture 5: Interconnect. Semester B, Lecturer: Adam Teman TAs: Itamar Levi, Robert Giterman 1

Interconnects. Introduction

Power Dissipation. Where Does Power Go in CMOS?

Dynamic operation 20

Lecture 6: Logical Effort

EECS 141: SPRING 09 MIDTERM 2

COMBINATIONAL LOGIC. Combinational Logic

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Announcements. EE141- Fall 2002 Lecture 25. Interconnect Effects I/O, Power Distribution

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

Lecture 7 Circuit Delay, Area and Power

Homework Assignment #5 EE 477 Spring 2017 Professor Parker

ECE429 Introduction to VLSI Design

CSE493/593. Designing for Low Power

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 25. Dealing with Interconnect and Timing. Digital Integrated Circuits Interconnect

Homework #2 10/6/2016. C int = C g, where 1 t p = t p0 (1 + C ext / C g ) = t p0 (1 + f/ ) f = C ext /C g is the effective fanout

Luis Manuel Santana Gallego 31 Investigation and simulation of the clock skew in modern integrated circuits

COMP 103. Lecture 16. Dynamic Logic

Lecture 8: Combinational Circuit Design

Lecture 12 CMOS Delay & Transient Response

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EE M216A.:. Fall Lecture 4. Speed Optimization. Prof. Dejan Marković Speed Optimization via Gate Sizing

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

Last Lecture. Power Dissipation CMOS Scaling. EECS 141 S02 Lecture 8

COMP 103. Lecture 10. Inverter Dynamics: The Quest for Performance. Section 5.4.2, What is this lecture+ about? PERFORMANCE

EE141-Fall Digital Integrated Circuits. Announcements. Lab #2 Mon., Lab #3 Fri. Homework #3 due Thursday. Homework #4 due next Thursday

EECS 312: Digital Integrated Circuits Midterm Exam 2 December 2010

Lecture 9: Interconnect

Integrated Circuits & Systems

CPE/EE 427, CPE 527 VLSI Design I L13: Wires, Design for Speed. Course Administration

University of Toronto. Final Exam

Lecture 5: DC & Transient Response

Digital Integrated Circuits A Design Perspective

EECS 141: FALL 05 MIDTERM 1

EE115C Winter 2017 Digital Electronic Circuits. Lecture 19: Timing Analysis

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements

Name: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015

Exam 2 Fall How does the total propagation delay (T HL +T LH ) for an inverter sized for equal

ENEE 359a Digital VLSI Design

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture #39. Transistor Scaling

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

EE 330 Lecture 37. Digital Circuits. Other Logic Families. Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates)

Lecture 4: DC & Transient Response

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues

Digital Integrated Circuits. The Wire * Fuyuzhuo. *Thanks for Dr.Guoyong.SHI for his slides contributed for the talk. Digital IC.

Transcription:

EE241 - Spring 2000 Advanced Digital Integrated Circuits Lecture 3 Circuit Optimization for Speed Announcements Tu 2/8/00 class will be pre-taped on Friday, 2/4, 4-5:30 203 McLaughlin Class notes are available in the morning before the class on the Web ISSCC preview seminars:» Fri 1/28, 2-5pm, 531 Cory (Hogan Rm) - 5 speakers from Stanford» Tue 2/1 3:30-5:30pm, 531 Cory 4 speakers from Philips» Thu 2/3 4-5 531 Cory 2 speakers from UC Davis 1

Static CMOS Delay Intrinsic logic delay» From internal R, C = constant RC delay of the load» Fan-out» Wire RC For a given gate, delay is a function of:» Load» Input rise time(s)» Intrinsic delay Delay model application: intrinsic delay 2C D +C G Close to Shoji 2

Delay dependence on inputs V DD R P R P 3.0 A = B = 1 0 A R N B B F C L 2.0 1.0 0.0 A = 1, B = 1 0 A = 1 0, B =1 R N A C int -1.0 0 100 200 300 400 time, ps Optimizing the intrinsic RC delay 3

Progressive Sizing Uniform versus progressive sizing Uniform k n-1 Non-uniform 1 N k n-1 k k 2 k n-1 4

Sizing models Case study 5

Example: Progressive Scaling of NMOS Devices in DOMINO CMOS What if External Capacitance is Dominant? Divide and Conquer! 6

Divide and Conquer In 1 u u 2 u N-1 Out Ci C1 C2 C L u opt = e t p as a function of u and x 60.0 u/ln(u) 40.0 x=10,000 x=1000 20.0 x=100 x=10 0.0 1.0 3.0 5.0 7.0 u 7

Adding Intrinsic Load Optimum Tapering Factor for Realistic Load 5 4 u opt 3 2 0 1 2 3 α = gγ 8

Tapering Factor for Realistic Load Effect of Rise/Fall Times 9

Effect of Rise/Fall Times Negative Delay? 10

Impact of Rise and Fall Times Impact of Termination m f N k o k o k1 C L 11

Required Number of Buffer Stages What about power consumption (and area)? 12

Delay versus Area and Power Optimizing t p versus t r /t f 13

Problem: Ground Bounce Sizing in Presence of Noise 14

RC-line delay O mm 0.35 µm process minimum width wires r = 0.12 Ω/µm c = 0.16 ff/µm τ = 0.019 fs/µm2 1O mm Waveforms for 10 mm RC Line: tp = 750 psec Delay and Rise Times for a 10 mm line Simulation Results Analytically: t d = 0.4 d 2 RC t r = d 2 RC 15

Repeaters Optimum repetition rate t d = (l/l s )2t b For 0.35 mm tech. l s = 3.5 mm n = 17.5 mm/ns Increasing Wire Width and Spacing Reduces impact of fringing capacitance and capacitance to neighboring wires 16

Overdrive of Low-Swing RC Lines 300 mv signal 1.5 V overdrive 750 ps -> 350 ps Bipolar Overdrive Signaling Issues: Crosstalk Delay still quadratic with respect to length 17

Impact of wire-delay on highperformance design Critical Path Delay Model (Phil Fischer - Sematech) L net 1 2 N Global Wire L Edge t d stage t d global = t d inv + t d Edge t d cycle = N * t d stage + t d global t d = R o (C out + f.o.c g in ) + R o (C w ) + 0.4(C w R w 1.6 + t of 1.6 ) 1/1.6 + 0.7R w C g in Transistor and Interconnect Parameters Parameter 250nm 180nm 150nm 130nm 100nm 70nm 50nm Wint M1-2 local (nm) 320 230 195 170 130 95 70 Hint M1-2 local (nm) 576 420 390 360 312 257 210 Pitchw M1-2 local (nm) 640 460 390 340 260 190 140 tins M1-2 local (nm) 650 500 450 360 320 270 210 Wint M semi-global (nm) 500 Hint M semi-global (nm) 900 Pitchw M semi-global (nm) 1500 1000 900 800 600 400 350 tins M semi-global (nm) 900 Wint M global (nm) 2000 Hint M global (nm) 2000 Pitchw M global(nm) 4000 4000 4000 4000 4000 4000 4000 tins M global (nm) 1400 Chip area (cm 2 ) 3.0 3.6 3.9 4.3 5.2 6.2 7.5 Vdd (V) 2.5 1.8 1.8 1.5 1.2 0.9 0.6 Metal Levels 6 6 6 7 8 9 9 Metal resistivity (µohm-cm) 3.3 2.2 2.2 2.2 2.2 1.8 1.8 Relative dielectric constant 3.9 2.7 2.5 2.0 1.5 1.4 1.4 Transistors: Equivalent tox (nm) 4.50 3.50 2.80 2.50 1.80 1.40 1.00 In nominal (µa/µm) 600 600 600 600 600 600 600 Ip nominal (µa/µm) 280 280 280 280 280 280 280 18

NAND Gate Stage Delay (with scaled local interconnect, fi = fo = 3) 140 Source: P. Fischer 120 100 Stage delay Delay (ps) 80 60 Gate delay 40 20 Wire delay 0 250240 190180 150140130 10090 70 50 40 Technology Min. Feature (nm) For future Cu-low k High-Performance Microprocessor 3200 2800 Clock Freq. (MHz) 2400 2000 1600 1200 800 400 Cu-Low k Al-Low k Cu-SiO 2 Al-SiO 2 0 250 240 190 180 150 140 130 100 90 70 50 40 Technology Min. Feature (nm) Logic Depth = 12 Gates 19

Clock-Cycle Model Summary Parameter 250nm 180nm 150nm 130nm 100nm 70nm 50nm L net Logic wire CP ( µm) 175 139 126 103 78 59 48 Cint M1 (pf/cm) 1.92 1.21 1.16 0.97 0.77 0.76 0.81 Cint 2µm M global (pf/cm) 1.86 1.29 1.19 0.95 0.72 0.67 0.67 Rint M1 (Kohm/cm) 1.8 2.5 2.9 3.6 5.4 7.4 12.3 Rint 2µm M global (ohm/cm) 83 55 55 55 55 45 45 tof (ps/cm) 80 64 57 57 49 48 48 L edge (cm) 1.73 1.90 1.96 2.07 2.28 2.49 2.74 td-global (ps) 377 235 210 190 176 168 160 td-gates Logic D=12 (ps) 830 512 428 370 274 193 139 td-cycle Model (ps) 1207 746 637 560 450 361 299 tcycle time (ps) 1341 829 708 622 500 401 332 Ratio (td-cycle/t cycle time) 0.90 0.90 0.90 0.90 0.90 0.90 0.90 High Perf. Clock, mp (MHz) 746 1206 1412 1607 2001 2497 3015 Rounded Clock, mp (MHz) 750 1200 1400 1600 2000 2500 3000 Cost - Performance (D=25) Cost Perf. Clock, mp (MHz) 380 615 727 833 1072 1406 1782 Rounded Clock, mp (MHz) 400 600 700 800 1100 1400 1800 Wn Output ( µm) 6.0 4.0 3.5 3.0 2.0 1.5 1.0 Logic Area (cm 2 ) 1.20 1.15 1.18 1.10 1.11 1.11 1.10 Ng 1.00E+06 1.50E+06 2.00E+06 3.00E+06 6.00E+06 1.20E+07 2.00E+07 Ntr Logic 6.00E+06 9.00E+06 1.20E+07 1.80E+07 3.60E+07 7.20E+07 1.20E+08 Rules of Thumb Keep the fan-in less than 3 Keep the fan-out less than 5 Same delays of gates in the critical path Same rise/fall times Size the transistors to drive the interconnect 20

Logical Effort Designing for speed on the Back of an Envelope Sutherland, Sproull, ARVLSI 91 Sutherland, Sproull, Harris, Morgan-Kaufman 99 A simple method for manual sizing of logic gates: simple delay model transistor sizes number of stages Expanding the sizing rules of inverters to complex logic gates Delay Model Normalized delay (d) t pnand tpinv F(Fan-in) 1 2 3 4 5 6 7 Fan-out 21

Delay in a Logic Gate Gate delay: d = f + p effort delay parasitic delay Effort delay: f = g h logical effort electrical effort = C out /C in Logical effort is a function of topology, independent of sizing Electrical effort is a function of load/gate size Logical Effort Logical effort is the ratio of input capacitance of a gate to the input capacitance of an inverter with the same output current g = 1 g = 4/3 g = 5/3 22

Logical Effort Example 8-input AND 23