Positron Annihilation techniques for material defect studies

Similar documents
POSITRON AND POSITRONIUM INTERACTIONS WITH CONDENSED MATTER. Paul Coleman University of Bath

Application of positrons in materials research

Positron Annihilation in Material Research

Positron Annihilation Spectroscopy - A non-destructive method for material testing -

DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN THICK MATERIALS

Basics and Means of Positron Annihilation

Study of semiconductors with positrons. Outlook:

Outlook: Application of Positron Annihilation for defects investigations in thin films. Introduction to Positron Annihilation Methods

Introduction into Positron Annihilation

Motivation. g-spectroscopy deals with g-ray detection and is one of the most relevant methods to investigate excited states in nuclei.

Laboratory of Nuclear Solid State Physics, USTC

PRINCIPLES OF POSITRON ANNIHILATION

Positron Annihilation Spectroscopy

The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf

Positron theoretical prediction

Research Center Dresden Rossendorf

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS)

Material Science using Positron Annihilation

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

Nuclear Decays. Alpha Decay

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e +

ASPECTS OF THE MCMASTER INTENSE POSITRON BEAM FACILITY

The intense Positron Source EPOS at ELBE Radiation Source of Research Center Rossendorf

Department of Physics, Techno India Batanagar (Techno India Group), Kolkata , West Bengal, India.

Positron-Electron Annihilation

The intense positron source EPOS at Research Center Rossendorf

Positron Annihilation Lifetime Spectroscopy (PALS)

LAB 4: Gamma-ray coincidence spectrometry (2018)

CHAPTER-II Experimental Techniques and Data Analysis (Positron annihilation spectroscopy)

Units and Definition

Gamma ray coincidence and angular correlation

? Physics with many Positrons

Alpha Decay. Decay alpha particles are monoenergetic. Nuclides with A>150 are unstable against alpha decay. E α = Q (1-4/A)

Slow-Positron-Beam Techniques

Positron Annihilation in Materials Science

INTRODUCTION TO MEDICAL PHYSICS 1 Quiz #1 Solutions October 6, 2017

GAMMA RAY SPECTROSCOPY

RFSS: Lecture 6 Gamma Decay

EEE4106Z Radiation Interactions & Detection

R. Krause-Rehberg. Martin-Luther-Universität Halle-Wittenberg. Positron Lifetime / Doppler Broadening / Angular Correlation / AMOC

in Si by means of Positron Annihilation

Lecture 3. lecture slides are at:

3. Perturbed Angular Correlation Spectroscopy

CHARGED PARTICLE INTERACTIONS

Atomic Structure and Processes

Conclusion. 109m Ag isomer showed that there is no such broadening. Because one can hardly

SLOW-POSITRON IMPLANTATION SPECTROSCOPY IN NANOSCIENCE *

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983)

2007 Fall Nuc Med Physics Lectures

Discovery of the Positron

Investigation of SiC by Positrons

Positron Annihilation Spectroscopy on Defects in Semiconductors

Detection and measurement of gamma-radiation by gammaspectroscopy

The ortho-positronium lifetime puzzle & new Physics

Chapter 4 Scintillation Detectors

Some nuclei are unstable Become stable by ejecting excess energy and often a particle in the process Types of radiation particle - particle

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron.

Workout Examples No.of nucleons Binding energy

The EPOS System (ELBE Positron Source) at Helmholtz Centre Dresden- Rossendorf and first experiments at photovoltaic CIGS layers

BETA-RAY SPECTROMETER

FACTS WHY? C. Alpha Decay Probability 1. Energetics: Q α positive for all A>140 nuclei

Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra

COMPUTATION OF POSITRON IMPLANTATION PROFILE IN SOLIDS. *Corresponding author. Tel:

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS

Scintillation Detector

Interaction of Ionizing Radiation with Matter

PHY492: Nuclear & Particle Physics. Lecture 3 Homework 1 Nuclear Phenomenology

DETECTORS. I. Charged Particle Detectors

POLITECNICO DI MILANO. Study of thin films and mesoporous materials by means of Positron Annihilation Spectroscopy for applied and fundamental Physics

Interaction of ion beams with matter

Properties of the nucleus. 9.1 Nuclear Physics. Isotopes. Stable Nuclei. Size of the nucleus. Size of the nucleus

Thermonuclear Reactions in the Sun

13. Basic Nuclear Properties

W. Udo Schröder Departments of Chemistry & of Physics and Astronomy

STRESS ANALYSIS USING BREMSSTRAHLUNG RADIATION

PHY492: Nuclear & Particle Physics. Lecture 6 Models of the Nucleus Liquid Drop, Fermi Gas, Shell

Lecture 3. lecture slides are at:

QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter

Contents. Preface to the First Edition Preface to the Second Edition

Radiation Physics PHYS /251. Prof. Gocha Khelashvili

energy loss Ionization + excitation of atomic energy levels Mean energy loss rate de /dx proportional to (electric charge) 2 of incident particle

Positron Lifetime Spectroscopy of Silicon Nanocontainers for Cancer Theranostic Applications

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples)

Beam diagnostics: Alignment of the beam to prevent for activation. Accelerator physics: using these sensitive particle detectors.

Identification of Getter Defects in high-energy self-implanted Silicon at Rp/2

Lecture 4: Nuclear Energy Generation

Outline. Absorbed Dose in Radioactive Media. Introduction. Radiation equilibrium. Charged-particle equilibrium

In Situ Observation of Damage Evolution in Polycarbonate under Ion Irradiation with Positrons

RFSS: Lecture 2 Nuclear Properties

is the minimum stopping potential for which the current between the plates reduces to zero.

14. Structure of Nuclei

The interaction of radiation with matter

Rb, which had been compressed to a density of 1013

MC simulation of a PGNAA system for on-line cement analysis

Final Exam. Evaluations. From last time: Alpha radiation. Beta decay. Decay sequence of 238 U

Atomic and nuclear physics

Gamma-ray decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 March 7, 2011

COMPARATIVE STUDY OF PIGE, PIXE AND NAA ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MINOR ELEMENTS IN STEELS

Transcription:

Positron Annihilation techniques for material defect studies H. Schut Section : Neutron and Positron Methods in Materials (NPM 2 ) Department: Radiation, Radionuclides and Reactors (R 3 ) Faculty of Applied Sciences November 26, 2013 1

The positron Prediction by Dirac (1930) theory of relativity and quantum mechanics E = ± (p 2 c 2 + m o2 c 4 ) 1/2 Hole Theory these solutions are interpreted as electrons with negative energy November 26, 2013 2

Positron discovery: the first pictures Picture of a positron in the cloud chamber (1932) Decreased curvature C.D. Anderson (23 MeV) Lead foil Begin of track (63 MeV) November 26, 2013 3

More recent positron-electron tracks From: Phys. Edu 34(5) september 1995, G.T. Jones November 26, 2013 4

Recent picture of a positron as iso-surface of the positron wave function Seitsonen, Puska and Nieminen (Helsinki University of Technology, 1995) Si Si vacancy + Sb neighboring atom Free positron Trapped positron November 26, 2013 5

Positron annihilation history Prediction Ps 1934 1932 1928 discovery Ps (Deutch) 1951 60 s 70 s 80 s 90 s 2000 Electronic structure studies Bulk defect studies, polymers Development exp. techniques ACAR, Doppler, lifetime Near surface defects thin layers, interfaces, nano precipitates New applications New techniques (PEAS, AMOC,... Theory, QM calculations Fast e+ Isotopes (weak sources) Slow e+ beams Isotopes (strong sources) accelerators reactors November 26, 2013 6

Positron annihilation (the Science Fiction approach ) Positron gun! The comic Barbarella Jean Claude Forest 1964 The movie Barbarella Jane Fonda; Roger Vadim 1968 Antimatter + Matter complete destruction November 26, 2013 7 More details

Characteristics of the positron as the anti-particle of the electron positron electron Rest Mass 9.109 10-31 kg Charge + 1.60219 10-19 C - Spin ½ lepton ½ Magnetic moment + g q/ 2m S - (g = 2.002319) Classic radius 2.81794 10-15 m Lifetime stable (in vacuum) stable t > 2 x 10 21 year E = mc 2 rest mass = 511.0034 kev / c 2 ( 1 Joule= 1/ q ev) November 26, 2013 8

Positron Annihilation Process of transforming mass into photons e + + e - gamma quanta (photons) General Conservation law s: energy linear momentum electric charge angular momentum most probable: tw o photon parity Hence the study of the annihilation quanta will give information about the state of the annihilation positron electron pair immediately before the transition! November 26, 2013 9

Annihilation cross section for tw o photon annihilation in the low velocity limit (free particles) 2y = r o 2 c / v With r o the classical Borh radius of the electron (positron) ~10-15 m The other annihilation rates (1, 3 photons ) scale w ith the fine structure constant 4 and, respectively = e 2 / o = 1/ 137 November 26, 2013 10

Case 1) zero momentum both particles at rest (in lab system) or observation in the center of mass system Before annihilation: After Annihilation Total energy E = E electron + E positron = 2 m o c 2 E y1 + E y2 (1) Total momentum p = 0 E y1 / c + E y2 / c (2) (as components of p vector) tw o photons emitted in opposite directions energy of each photon = m o c 2 = 511 kev November 26, 2013 11

Case 2 : electron momentum p = p x Before annihilation: After Annihilation Total energy E = E electron + E positron = (m o2 c 4 + p x 2 c 2 ) 1/ 2 + m o c 2 = E y1 + E y2 (1) Total momentum p = p x = E y1 / c+ E y2 / c p y = p z = 0 = p y = p z (2) in case gamma s emitted in the direcion of p tw o photons emitted in opposite directions energy of the photons = m o c 2 ± c p x / 2 (doppler broadening) November 26, 2013 12

General solution 1 2 = 2 pc sin( ) pc cos( ) + m c m c p c 2 2 4 2 2 0 0 E = 1 mc mc pc pc 2 2 4 2 2 0 0 2 cos( ) E = 2 mc mc pc pc 2 2 4 2 2 0 0 2 cos( ) p 2 1 November 26, 2013 13

Approximation: E = m o c 2 ± ½ p c kev y-y = - p / m c radians Some values : Energy of electrons (in solids) 10 ev ½ p c = 1.5 x 10 3 ev (compare to 511 x 10 3 ev) p of the order of 1x 10 24 m kg/ s p / mc = 3 mrad ( 3 mm at 1 m ) November 26, 2013 14

The effect of conservation of momentum and energy 2 e + + e - annihilation process : before e - e + p = 0 CM frame after E m o c 2 180 o E m o c 2 = 511 kev x conservation of energy and momentum lab frame z e - e + before p p y after E m o c 2-1/2 c p 180 o - p / m o c E m o c 2 + 1/2 c p Doppler broadening 2D - ACAR November 26, 2013 15

counts spectrum HOR 16000 14000 spectrum HOR 12000 10000 4000 8000 3500 6000 3000 4000 2000 2500 0 2000 0 1500 1000 1500 2000 counts gamma energy (kev) 1000 500 0 400 450 500 550 600 3 gamma energy (kev) Electron momentum broadens the 511 kev line peak width 2.5 FWHM (kev 2 1.5 1 0.5 0 0 500 1000 1500 2000 2500 3000 gamma energy (kev) November 26, 2013 16

Positronium: An electron - positron bound state e + Ps atom e - H atom physical property Ps atom 1.0080 atomic mass (amu) 0.00110 0.99956 reduced mass ½ 1 a 0 (radius) size 2 a 0 (diameter) 13.598 ev ionization energy 6.803 ev J =0 (para) spin states S = 0 (para) J=1 (ortho) S = 1 (ortho) life time 125 ps ( 125 x 10-12 s, para) 142 ns (142 x 10-9 s, ortho) November 26, 2013 17 a 0 = Bohr radius = 0.528 A

Positronium annihilation modes: Para Ps self annihilates by two-gamma emission (125 ps) Ortho Ps self annihilates by three-gamma emission (142 ns) or in media: o- Ps ( ) + e - () p-ps () + e - () (spin exchange) o- Ps ( ) + e - () 2 gamma s + e - () (pick off) Para -Ps has zero internal momentum therefore Ey ~ 511 kev (only translational momentum of the atom) November 26, 2013 18

Positron sources Isotopes nuclear reactions neutron absorption Pair production Electron accelerators Fission reactors neutron gamma conversion prompt gammas November 26, 2013 19

Examples of positron emitters Isotope half life % e+ production application 11 C 20 min 100 11 B(p,n) 11 C medical diagnostics (PET) 10 B(d,n) 11 C 14 N(p, ) 11 C 13 N 10 min 100 12 C(d,n) 13 N 16 O(p, ) 13 N 15 O 2 min 99 14 N(d,n) 15 O 18 F 110 min 97 18 O(p,n) 18 F 22 Na 2.6 y 90 24 Mg(d,) 22 Na PA accelerators 58 Co 71.3 d 15.5 58 Ni(n,p) 58 Co nucl reactors 64 Cu 12.9 h 19.3 63 Cu(n,y) 64 Cu nucl reactors November 26, 2013 20

22Na 22 Na decay scheme 22Na + 90.4%, EC 9.5% 1.274 MeV 3.7 ps + (0.1% ) 0 22Ne + end point energy 540 kev half life 2.602 year November 26, 2013 21

Positron kinetic energy distribution 22 Na 22 Ne + e + + e (1274 kev 22 Ne * ) HOR gamma flux distribution Pair production: positron kinetic energy depends on the initial energy of the photon (Bremsstrahlung or prompt fission gamma energy - 1.022 MeV) Photon energy (MeV) November 26, 2013 22

Positron - solid interaction First encounter Fast positrons entering a solid loose their kinetic energy by different ineleastic energy loss mechanisms Timescale < 10-15 seconds Vacuum Solid scattering e + core exitations Secundary electron November 26, 2013 23

Positron - solid interaction Thermalisation Timescale < 10-12 seconds e + Vacuum Solid Plasmons Electron-hole pairs phonons Fast Ps Fast e + Non thermal e + November 26, 2013 24

Positron - solid interaction equilibrium Timescale < 10-10 seconds Vacuum Solid Diffusion and trapping annihilation e + Energetic Ps thermal e + Slow e + Surface trapping November 26, 2013 25

Positron implantation profile Fast positrons ( + energy distribution) No depth resolution Implantation depth range Element density a + r (99%) [g/cm 3 ] [cm -1 ] [m] Al 2.7 104 442 C 2.25 87 530 Li.53 20 2250 I(x) = I(0) exp (-a + x) a + = (16±1) E m -1.43 (cm 1 ) (E in MeV) Mo 10.2 394 117 Si 2.33 90 500 W 19.35 747 62 November 26, 2013 26

Positron implantation profile Slow positrons Mono energetic beams (~ 0.1-25 kev) w ith m = 2 Si x o = 1.3 <x> <x> = ( / ) E n n = 1.6 1.8, ~ 4.0 P(x,E) 2 kev 5 kev 10 kev 20 kev 0 500 1000 1500 2000 2500 X (nm) November 26, 2013 27

Positron w orkfunction diffusion Implantation and stopping Beam or source annihilation Positron w ork function + vacuum solid + < 0 spontanous emission from the solid into vacuum (W, Mo, Ni, SiC,...) November 26, 2013 28

Positron trapping diffusion Implantation and stopping Beam or source Trapping + annihilation Positron w ork function + vacuum solid E B = 1 3 ev (vacancies in metals) The attractive potential w ell (a defect) results in a confinement of the positron (collapse of the w ave function ) November 26, 2013 29 Trapping rate ( t ) of the order of 10 14 s -1

Probing Local electron density w ith positrons 22 Na 1274 kev + 22 Ne 22 Na Decay (START) Annihilation (STOP) November 26, 2013 30

Observables (1) Doppler broadening S(hape) and W (ing) detecting one 511 kev gamma and determing the width of the photo peak counts 10000 1000 100 10 1 111 211 311 411 511 gamma energy (kev) Low momentum Valence, conduction electrons P(ara) Positronium Open volume (vacancies, voids...) 10000 S parameter W parameter 1000 100 10 1 501 511 521 High momentum Core electrons Local chemical surroundnig Nano precipitates, sub-latice defects November 26, 2013 31

Doppler broadening setup The Variable Energy Positron beam (VEP) 22 Na source sample chamber Coincidence setup (2 detectors) November 26, 2013 32

Some examples (beam exp t)? Model? S parameter 0.65 0.63 0.61 0.59 0.57 0.55 0.53 0.51 0.49 0.47 0 0.5 1 2 micron depth 0 5 10 15 20 25 30 positron energy (kev) depth November 26, 2013 33

1 x 10 16 H + cm -2 1.15 1.10 mean implantation depth (nm) 100 500 1000 2000 800 o C cavities H implantation (1x10 16 cm -2 ) 800 o C anneal 350 o C anneal S 1.05 350 o C 1.00 Si cavity layer 0.95 Si Si e + beam 0 230 380 nm 0.90 0 5 10 15 20 25 positron implantation energy (kev) H + implantation Cavities Virgin Si November 26, 2013 34

Observables (2) Angular Correlation measument of the angle between the two 511 kev gammas NaI detector Photomultipliers Fast e + ( 22 Na) NaI detector p x p y sample 4 x 10 8 e + /s Intense Low-energy Positron Beam POSH November 26, 2013 35

The Delft POSH 2D-ACAR setup 3 4 5 2 1 1 2 Anger cameras source ( 22 Na) chamber 1 3 4 5 POSH e + beam line Accelerator Target chamber November 26, 2013 36

Example of 1 D ACAR Measurement of the Fermi level of electrons in Al k z free electron gas model k f k y Highest energy level occupied E f Maximum momentum p f = ( 2 m E f ) 1/ 2 Maximum angle angular correlation ( f ) k x Uniform k- distribution show November 26, 2013 37

Example of a 2D ACAR application Li nanoclusters are FCC and in simple epitaxy with the MgO host matrix. Li nano cluster e + MgO matrix Depth November 26, 2013 38

Li nanoclusters are FCC and in simple epitaxy with the MgO host matrix. MgO(100):Li POSH (4 kev) MgO(100) fast e + ( 22 Na) MgO(100):Li nanocrystals Mg Li Li Mg Mg Mg O Mg [010] [100] [001] Mg O Li Li [010] [100] [001] Li O Mg [010] [100] [001] Mg O Mg Mg O O Li Li Mg Mg MgO(100) November 26, 2013 39 In MgO Li nano clusters have FCC structure!

X W Typical FS surface of an fcc alkali like metal L K Projection on p x -p y plane November 26, 2013 40

Observables (3) positron lifetime (PALS) measurement of the time elapsed between positron injection and annihilation start 22 Na stop resolution 260 ps HV CFD CFD TAC ADC PC MCA November 26, 2013 41

Counts 1e+6 1e+5 1e+4 1e+3 1e+2 1e+1 1e+0 Typical PALS spectra D( t) k 1 i1 I i t exp( ) i Positron Lifetimes in dense solids (metals and semiconductors) e + + e - 2 Tungsten (100 ps) Silicon (220 ps) Positron lifetimes in polymer 1e-1 1e-2 ortho - Ps formation (140 ns) 1e-3 1e-4 0 100 200 300 400 500 Channel (t) PolyEthyleen (PE) (2-3 ns) November 26, 2013 42

Calculated positron lifetimes in vacancy clusters ( r 0 ne ) 2 o cn vacancy e Lifetime (psec) 400 300 200 100 0 Cu Radius (nm) 0 0.30 0.82 0.94 1.04 Jensen et al. (1987) Tang (2003) 0 5 10 15 20 25 30 35 40 45 Number of Vacancies Vacancy cluster November 26, 2013 43

Positron lifetimes in polymers Semi empirical relation betw een volume size (R) and o-ps decay rate Usually the third long lifetime component 3 2 1 sin(2 / 0) Ro 2 R 1 R R 1 2 R Spherical potental w ell 2 R o R = 0.166 nm November 26, 2013 44

Annealing of Fe deformed at low temperature D( t) k 1 i1 I i exp( t i ) Vacancies migrate and cluster above ~200 K November 26, 2013 45 Vehanen et al. (1982)

sensitivity range for measuring defect concentration (Al and Mo) 10-6 10-4 at.fr. November 26, 2013 46

examples of systems studied with positrons Vacancies nano precipitates interfaces polymers (free volume) Voids nano precipitates surfaces nano-colloids internally decorated voids dislocations Metals, Alloys Semiconductors (Si, GaAs,... Polymers Colloids, Ceramics, Metaloxides... November 26, 2013 47