Wave Propagation in Heterogeneous Media: Born and Rytov Approximations. Chris Sherman

Similar documents
SUMMARY. fractured reservoirs in the context of exploration seismology.

Seismic Wave Propagation and Scattering in the Heterogeneous Earth : Second Edition

SEISMIC WAVE PROPAGATION AND SCATTERING IN THE HETEROGENEOUS EARTH

The Basic Properties of Surface Waves

Introduction to Seismology

Introduction to Seismology Spring 2008

Attenuation and dispersion

Seismic Waves Propagation in Complex Media

PEAT SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity

7.2.1 Seismic waves. Waves in a mass- spring system

Earthscope Imaging Science & CIG Seismology Workshop

Main Menu. Summary. Introduction

Unified Explanation of Envelope Broadening and Maximum-Amplitude. Decay of High-Frequency Seismograms based on the Envelope

221B Lecture Notes Scattering Theory II

6. LIGHT SCATTERING 6.1 The first Born approximation

Flaw Scattering Models

Chapter 6. Secondary source theories

Three-scale Radar Backscattering Model of the Ocean Surface Based on Second-order Scattering

Simulating the Envelope of Scalar Waves in 2D Random Media Having Power-Law Spectra of Velocity Fluctuation

Radiative Transfer of Seismic Waves

Attenuation and dispersion

Acoustic Wave Equation

Sound Waves Sound Waves:

Seismic Waves and Earthquakes A Mathematical Overview

Physics 505 Homework No. 12 Solutions S12-1

LECTURE 5 - Wave Equation Hrvoje Tkalčić " 2 # & 2 #

A 27-point scheme for a 3D frequency-domain scalar wave equation based on an average-derivative method

The Pseudospectral Method

Intrinsic and Scattering Seismic Attenuation in W. Greece

An acoustic wave equation for orthorhombic anisotropy

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT SEISMOLOGY Lecture 3: The elastic wave equation

16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive Equations

Chapter 2 Solutions. Chapter 2 Solutions 1. 4( z t) ( z t) z t

Part 5 ACOUSTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA

Angular Spectrum Representation for Propagation of Random Electromagnetic Beams in a Turbulent Atmosphere

Multiple Filter Analysis

Main Menu SUMMARY INTRODUCTION

Reflection of SV- Waves from the Free Surface of a. Magneto-Thermoelastic Isotropic Elastic. Half-Space under Initial Stress

Waveform inversion and time-reversal imaging in attenuative TI media

INVERSION ASSUMING WEAK SCATTERING

Approximate- vs. full-hessian in FWI: 1D analytical and numerical experiments

Signal Loss. A1 A L[Neper] = ln or L[dB] = 20log 1. Proportional loss of signal amplitude with increasing propagation distance: = α d

Surface Waves and Free Oscillations. Surface Waves and Free Oscillations

Downloaded 10/15/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

OPAC102. The Acoustic Wave Equation

GEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS

PEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II

Prevailing-frequency approximation of the coupling ray theory for S waves

Chapter 9. Electromagnetic waves

1.1 Stress, strain, and displacement! wave equation

Acoustic anisotropic wavefields through perturbation theory

Superposition of electromagnetic waves

Math 4263 Homework Set 1

CHAPTER-5 WAVEPACKETS DESCRIBING the MOTION of a FREE PARTICLE in the context of the WAVE-PARTICLE DUALITY hypothesis

Scattering of Scalar Light Fields From Collections of Particles

On the study of elastic wave scattering and Rayleigh wave velocity measurement of concrete with steel bar

Time-lapse traveltime change of singly scattered acoustic waves

Chapter 11. Scattering and Attenuation of Seismic Waves in the Lithosphere

Václav Bucha. Department of Geophysics Faculty of Mathematics and Physics Charles University in Prague. SW3D meeting June 6-7, 2016 C OM S TR 3 D

ONE-WAY AND ONE-RETURN APPROXIMATIONS (DE WOLF APPROXIMATION) FOR FAST ELASTIC WAVE MODELING IN COMPLEX MEDIA

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3

16.20 HANDOUT #2 Fall, 2002 Review of General Elasticity

Monte Carlo method projective estimators for angular and temporal characteristics evaluation of polarized radiation

Far-field radiation from seismic sources in 2D attenuative anisotropic media

Pseudo-acoustic wavefield propagation for anisotropic media

Seismogram Interpretation. Seismogram Interpretation

Upscaling Aspects of Spatial Scaling

Prevailing-frequency approximation of the coupling ray theory for electromagnetic waves or elastic S waves

Propagation of EM Waves in material media

Elastodynamic single-sided homogeneous Green's function representation: Theory and examples

We briefly discuss two examples for solving wave propagation type problems with finite differences, the acoustic and the seismic problem.

INTRODUCTION TO QUANTUM MECHANICS PART-II MAKING PREDICTIONS in QUANTUM

1.1 A Scattering Experiment

Gas Dynamics: Basic Equations, Waves and Shocks

Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival

Optical Imaging Chapter 5 Light Scattering

Distortion of the apparent S-wave radiation pattern in the high-frequency wavefield: Tottori-Ken Seibu, Japan, earthquake of 2000

Linearized AVO in viscoelastic media Shahpoor Moradi,Kristopher A. Innanen, University of Calgary, Department of Geoscience, Calgary, Canada

Introduction to Seismology Spring 2008

Seismic Noise Correlations. - RL Weaver, U Illinois, Physics

Wenyong Pan and Lianjie Huang. Los Alamos National Laboratory, Geophysics Group, MS D452, Los Alamos, NM 87545, USA

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n.

FOURIER TRANSFORM METHODS David Sandwell, January, 2013

The signature of attenuation and anisotropy on AVO and inversion sensitivities

Seismic Scattering in the Deep Earth

Snell s law in transversely isotropic media using linearized group velocities and related quantities

Wave Phenomena Physics 15c. Lecture 11 Dispersion

ELECTROMAGNETIC WAVES

Downloaded 09/04/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Mapping the conversion point in vertical transversely isotropic (VTI) media

Receiver. Johana Brokešová Charles University in Prague

Lecture 2 Supplementary Notes: Derivation of the Phase Equation

Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a).

GEOPHYSICAL PROSPECTING: DYNAMIC RESERVOIR CHARACTERIZATION AND TIME-LAPSE MULTICOMPONENT SEISMOLOGY FOR RESERVOIR MONITORING UNESCO EOLSS

Seismology and Seismic Imaging

LINEAR DISPERSIVE WAVES

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 13

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector

Stratigraphic filtering and source penetration depth

Transcription:

Wave Propagation in Heterogeneous Media: Born and Rytov Approximations Chris Sherman

Stochastic Scalar Wave Equation Wave Equation: &! " %& 1 # t V x ' ) () u(x,t) = 0 (*) Velocity Perturbation: = V o 1!! ( x) V x 1 V ( x)! 1 V o ( 1+! x ) for small ξ (**) Inserting (**) into (*): &! " 1 % V o ( ' 1+! ( x) )# t ) u(x,t) = 0 ( Sato, Haruo, Michael C. Fehler, and Takuto Maeda. 01. Seismic Wave Propagation and Scattering in the Heterogeneous Earth : Second Edition. Springer.

Born Approximation Rearranging: &! " 1 V # t % o Born Approximation: u = u o + u ( 1 u 1 << u ) o ' ) u(x,t) = " ( V! ( x )# t u(x,t) o & %! " 1 V # t o ' ) u +! " 1 o & ( V # t % o ' ) u = " 1 ( V! ( x )# t u o " o V! ( x )# t u 1 o Reference Solution Perturbation Solution Higher Order Term

Reference Solution Homogeneous scalar wave equation: (Incident wave) & %! " 1 V # t o ' ) u = 0 o ( Plane wave solution: u o = A o e i( kx!!t) Point source solution: u o = 1 4!r! " t! r # V o % & ' General solution: u o = G o ( x,t) Lay, Thorne, and Terry C. Wallace. 1995. Modern Global Seismology. Academic Press.

Born Approximation Inserting the reference solution: & %! " 1 V # t o ' ) u = " 1 ( V! x # t o ( A o e i ( kxe 3"!t) )! = "A o V! ( x )e i ( kxe 3"!t) o = "A o k! ( x)e i kxe 3"!t = S( x,t)*! ( x)! ( t) Point Source Terms Applying the point-source solution and representation theorem: u 1 = G( x,t)! S( x,t)

Born Approximation # A o e i kx'!!t Expanding: u 1 = " k! x' G x! x',t! t ' dx'dt '!#""" =!k A o! =!k A o! e!i"t =!k A o! e!i"t! t! t '! x! x' ' " ( x' )e i ( kx'e 3!!t) % & V o ( ) # "!#""" dx'dt ' 4! x! x' e i kx'e! ' 3+ x!x' % & V o ( x! x' )! x' """ dx' e ik ( x'e 3+ x!x' )! x' """ dx' x! x' # Fraunhofer zone: x! x' " r! x'e r r >> 1 &! L k % ' (

Born Approximation Expanding: u 1 =!k A o! e!i"t! x' r! x'e r """ e ik x'e 3+r!x'e r dx' =!k A o!r ekr!i"t """ # ( x' )e ikx' ( e 3!e r ) dx' u 1 =!k A o!r!! ( ke 3! ke r )e kr!i!t Exchange wavenumber

Applicability of the Born Approximation } Outside of Fraunhoffer zone } Perturbation size is small } Low velocity contrast r >> 1! L k a! < " 4 } Commonly used for backscattering problems ke r Scattered wave (u 1 ) Incident wave (u 0 ) ke 3

Rytov Approximation Stochastic wave equation: &! " 1 V # t % o ' ) u = " ( V!# t o u z Rytov Approximation: u = e i( kz!!t) e " ( x #,z,! ) = e i( kz!!t) U ( x #, z,t) = e i( kz!!t) e ln (")+i# x Log(A) fluctuations Phase fluctuations

Rytov Approximation Derivatives of u: ( ( )) = % z U + ik% z U k U +! & U!u = "# " Ue i kz!t % t u = % + % Ue i kx!t % t, - % t ( ) '(. / 0 = '( % t U i!% t U! U Substituting:! z U + ik! z U " k U + # U " 1 V o = " V %&! t U " i!! t U "! U' ( o Fourier Transform:! z!u + ik! z!u + " #!U =!k!u ) * e i( kz!t) ) * e i( kz!t) %&! t U " i!! t U "! U' (

Rytov Approximation Ignoring the first term and substituting U: ik! z " + # " =!k Fourier transform in perpendicular direction: ik! z! " # k! " =!!k Green s function solution: Convolving with the source term: G! ( k!, z,! ) = "i "i k e k k! z = k G! ( k", Z # z,! )!! k ", Z,! Z! ( k ", z)dz 0

Rytov Approximation: General Solution: u = e i( kz!!t) e " ( x #,z,! )!( x ", Z,! ) = k Z G! ( k", Z # z,! )! ( k! ", z)e #ik "x " dk " dz 0

Applicability of the Rytov Approximation } Small wavefield fluctuations } Low scattering angle ka > 1 } Commonly used for forward scattering problems Phase, Amplitude Distortions Incident wave (u 0 ) k

Media with Continuous Random Fluctuations Single scatterer vs. Continuous random medium

Media with Continuous Random Fluctuations } Assumptions: } Material fluctuations are random, stationary, and have zero mean } Characterized by an autocorrelation function! ( x) = 0! ( k )! k "! Born scattering amplitude (F) for a single scatterer: u 1 =!k A o!r!! ( ke 3! ke r )e kr!i!t = FA o r e kr!i!t Born scattering amplitude in an ensemble medium: " " " " " " # # # # #!"!"!"!"!"!" F = #! ( x' )! ( x'' ) e!i ( ke r!ke 3 )( x'!x'' ) dx'dx''

Most Probable Seismic Pulse JQ.& /& /+0%%"1 3 (& 4& (56718 amplitude!"#%! & '"(")*+"#,- +*.(' +/" (0")&" 1%)") +)*(&3)! 3 +/" &4"5+)%! 3 ()!*66- #&+),%+"# 7%5+%*+(& 89+/ * :*%&&*( 4),*,6+- #"(&+- 3%(5+( 9+/ ;")!"*( *(# %(+ 0*)*(5"<!%6+46"#,- +/" &=%*)" )+ 3 +/" 7%5+%*+( &4"5+)%! *& #">("# ( "=& 8?@< *(# 8?A<B C( +/" 4)"&"(+ "D*!46"& 9" &!%6*+" * 46*(" 9*0" 4)4*'*+(' 3)! +/" +4 #9( + * 5")+*( #"4+/ 8!E#)"5+(< ( * &('6" )*(#!!"#%! )"*6;*+(B F!6*) +)*(&!&&( &!%6*+(& ( *5%&+5 )*(#!!"#* 9")" 4")3)!"#,- 1*(' G H%I66") 8@JJK<L F/*4) "# %& 8@JJK,< *(# F*!%"6#"& G H%.")M 8@JJN<B O/" '"!"+)- *(# +/"!"#%! 4*)*!"+")& *)" 3 +/" )#") 3 " +i)5.&l # )"&4"5+0"6-B O/" i kz! t 3ln)"&")0) )"&")0) &5*6"& *(#! +/&",*5.')%(#!"#%! & 5/*)*5+");"#,- * 'E9*0" 0"65+- 3 PQQQ! &!@L *( (E9*0" 0"65+- 3 @NRQ! &!@ *(# * #"(&+3 SBR ' 5!!PB C( 1'B K (6- +/" /"+")'"("%& 4*)+ 3 +/"!#"6 & &/9(B C( +/" *5+%*6 1T!#"6L 1'B K & "!,"##"# 0 0.1 0. 0.3 0.4 ( * 5(&+*(+,*5.')%(#!"#%! 9+/ +/" 4)4")+"& #">("# time [s] *,0"B U" 5/&" +/"!#"6 '"!"+)- ( &%5/ * 9*- +/*+ %(#"&)"# )"7"5+(& 3)! +/"!#"6,)#")& *)" "D56%#"#B 1) 8-31)0 9" b!4*)&( 3 +/" 1T "D4")!"(+ *(# +/" '"(")*6;"# a^t/")+-c?(&+"- 3)!*6&!B C( +/",*5.')%(# 3 "*5/ &"&!')*! +/"!#"66(' 9" (""# (&+"*# 3 0"65+"& +/" &+33("&& +"(&) 9" &/9 +)*5"& +/*+ *)" )"5)#"# *6(' +/" )"5"0") 6(" 85!!( +)*0"6 5!4("(+& )@@"!#S" *(# )RR"" *(# #"(&+- 8!L " *)" +/" #&+*(5" '*+/")< *+ #"4+/& 3 @KL JKL @ZKL SRK *(# PPK!B O/" +/5.")L V*!"W 4*)*!"+")&<B 1) &!465+-L (6- +/" &+33("&& +"(&),6*5. 5%)0"& #"(+" +/" )"&%6+& 3 5(06%+( 3 +/" 5))"&4(#(' 5!4("(+ )@@ "D/,+& "D4("(+*66-5))"6*+"# 7%5+%*+(& :)""(^& 3%(5+( 8@N< 9+/ +/" (4%+ 9*0"6"+B O/" 4*)*!"+")& 3 +/" 8+/" 5))"6*+( 6"('+/ & AQ! *(# +/" 5))"&4(#(' &+*(#*)# (%!")5*6!#"6 *)" +/" &*!" *& ( 1'B @B #"0*+( 3 +/" 'E9*0" 0"65+- & @R 4") 5"(+<B U" %&" *,#-E 3)5" 6(" &%)5" 9+/ (6- *!E5!4("(+B X+" +/*+ %(#") &"&!5 9*0"& *(#!!"#* ("*) +/" >)&+ *))0*6&B F 3*)L +/"&" 5(#+(& ( ( 9*0"& 966," '"(")*+"#B O/" 9*0"6"+ & 9" 5*( 5(56%#" +/*+ +/" at? 3)!*6&! '0"& * &!+/"# +/" &"5(# #")0*+0" 3 * Y5.") 9*0"6"+ 9+/ * #!(*(+ &"&!')*!L *6+/%'/ + & (+.(9( 9/*+.(# 3 *0")*'(' 3)"=%"(5-3 *,%+ ZR [; 8+/& 5))"&4(#& + * 9*0"6"('+/ 3 &/%6#," *446"# +/" Realizations ("D+ &"5+(L ( of 9/5/ +/" AQ!T. 3)M., +/" ' 9*0"<B 3%6>6 +/" &+*,6+*(# Müller, and S. 1%)+/")!)"L A. Shapiro.9"001. Most Probable Seismic Pulses8&"" in *6& Single Two)"6*+( + 5!!( *0")*'(' 4)5"#%)"& & #&5%&&"#<B #&4")&( 5)+")* )"=%)"# 3) +/" )+*+"# &+*''")"# ')# *+ and Three-dimensional Random Media. Geophysical Journal International 144 (1): 83 95. u=e( ) e

Scattering Attenuation 0 lnfla(tu>)i); f=loo; data=. theory=fat line 0 I e! local =!!L ln A 0 I N 0 I w 0 I L 0 I VI 0 100 ZOO 300 400 500 800 distance [m] #! local =! s! k " cos (# 3D L / k)" n # d# 0 Shapiro, S. A., and G. Kneib. 1993. Seismic Attenuation By Scattering: Theory and Numerical Results. Geophysical Journal International 114 (): 373 391.

Phase Dispersion v = L dt =!L! = "L! o L +! ( L) 1.4 0.8 0.6 0.4 theory (10%) - expenment (10%) 0 theory (5%) experiment (5%) + theory (3%) - expenment (3%) 0 1 1.5.5 3 3.5 4 4.5 5 5.5 Wa Figure 8. Velocity shift of an initially plane wave in a -D exponential random medium versus normalized travel distance for different standard deviations of fluctuations and constant frequency (A/a = 0.6). & sin " L / k v 3D! c o ( 1" 4k! % '(!L 0 3D ) # n (!)d! +k" ln k +!, % * + k "! -. 0 / 3D # n (!)! d! 1 01 "1 Shapiro, S. A., R. Schwarz, and N. Gold. 1996. The Effect of Random Isotropic Inhomogeneities on the Phase Velocity of Seismic Waves. Geophysical Journal International 17 (3): 783 794.

Inverting for Distribution Parameters } Estimate fractal exponent (β) and amplitude (ε) from travel time deviations } Inverting for ε is stable and fast } Inverting for β is difficult and highly dependent on starting parameters Figure Deviations of field travel times from the reference travel-time curve. Klimeš, L. 00. Estimating the Correlation Function of a Self-affine Random Medium. Pure and Applied Geophysics 159 (7-8) (July 1): 1833 1853.

Issues with Born and Rytov Approximation } Single scattering } Does not conserve energy } Does not take into account near-field effects } Effective shear energy ~10% of compressional wave energy is not accounted for (My research is looking into this) } Other methods: } Radiative Transfer Theory } Finite Difference / Finite Element Sato, Haruo, Michael C. Fehler, and Takuto Maeda. 01. Seismic Wave Propagation and Scattering in the Heterogeneous Earth : Second Edition. Springer.

Radiative Transfer Theory } Heuristic solution developed to model scattering of light through the Earth s atmosphere } Models energy transport through a heterogeneous medium } Conserves energy } Multiple scattering } Efficient for calculating seismogram envelopes Energy transfer equations: 1 I P (x, k, t) + k gradi P (x, k, t) α 0 t = 1 ( g ) pp k, k I ( P x, k, t ) dk g 0 pp 4π I P (x, k, t) + 1 ( g ) sp k, k I ( S x, k, t ) dk g 0 ps 4π I P (x, k, t) + Q P (x, k, t) Scattering Coefficient Energy 1 I S (x, k, t) + k gradi S (x, k, t) β 0 t = 1 ( g ) ss k, k I ( S x, k, t ) dk g 0 ss 4π I S (x, k, t) + 1 ( g ) ps k, k I ( P x, k, t ) dk g 0 sp 4π I S (x, k, t) + Q S (x, k, t). (1) Przybilla, Jens, and M. Korn. 008. Monte Carlo Simulation of Radiative Energy Transfer in Continuous Elastic Random Media three-component Envelopes and Numerical Validation. GJI173 (): 566 576.

Finite Difference Newton s nd : Hooke s Law: Isotropy:!!u i = T ij, j + f i = ( C ijkl! ) ij, j + f i = (!" ij u k,k + µ ( u i, j + u )) j,i + f i, j Taylor Expansion: u( x +!x) = =! ( ij!, j u k,k +!u ) k,kj + µ ( u i, jj + u ) j,ij + µ (, j u i, j + u ) j,i + f i u ( 1) x N!x " i ( x) + O!x N+1 i=0 i! u(i) = u ( x +!x ) " u( x "!x)!x + O (!x 3 ) u ( x) = u ( x +!x ) " u( x) + u( x "!x)!x + O!x 4

Finite Difference } Limitations: } Time step size (Courant) } Grid size (>10 points/wavelength) } Numerical Dispersion } High frequency problem } Boundary Effects } Reflection from quiet boundaries } Source representation } Computational Resources T simulation! 1 "t T simulation,3d! 1 3 # & % "x' ( Kang, Tae-Seob, and Chang-Eob Baag. 013. An Efficient Finite-Difference Method for Simulating 3D Seismic Response of Localized Basin Structures.. BSSA Vol 94 (9): 1690-1705.