Simple Theory of the Ballistic Nanotransistor

Similar documents
Physics of Nanoscale Transistors

Lecture 35: Introduction to Quantum Transport in Devices

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC)

OMEN an atomistic and full-band quantum transport simulator for post-cmos nanodevices

EECS130 Integrated Circuit Devices

Towards a Scalable EKV Compact Model Including Ballistic and Quasi-Ballistic Transport

nmosfet Schematic Four structural masks: Field, Gate, Contact, Metal. Reverse doping polarities for pmosfet in N-well.

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th

The Devices: MOS Transistors

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs

Technology Development for InGaAs/InP-channel MOSFETs

A Numerical Study of Scaling Issues for Schottky Barrier Carbon Nanotube Transistors

Electrostatics of Nanowire Transistors

Ultra-Scaled InAs HEMTs

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis

ECE-305: Spring 2016 MOSFET IV

Essential Physics of Carrier Transport in Nanoscale MOSFETs

Impact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study

Lecture 3: Density of States

Lecture 8: Ballistic FET I-V

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Computational Model of Edge Effects in Graphene Nanoribbon Transistors

Quantum-size effects in sub-10 nm fin width InGaAs finfets

Performance Analysis of 60-nm Gate-Length III-V InGaAs HEMTs: Simulations Versus Experiments

Part 4: Heterojunctions - MOS Devices. MOSFET Current Voltage Characteristics

The Future of CMOS. David Pulfrey. CHRONOLOGY of the FET. Lecture Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild)

Lecture 11: MOSFET Modeling

Lecture 9. Strained-Si Technology I: Device Physics

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Lecture 6: 2D FET Electrostatics

Prospects for Ge MOSFETs

ECE 305: Fall MOSFET Energy Bands

On the Validity of the Parabolic Effective-Mass Approximation for the I-V Calculation of Silicon Nanowire Transistors

The Prospects for III-Vs

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs

ECE-305: Fall 2017 MOS Capacitors and Transistors

MOS Transistor I-V Characteristics and Parasitics

Theory of Ballistic Nanotransistors

Diameter Optimization for Highest Degree of Ballisticity of Carbon Nanotube Field Effect Transistors I. Khan, O. Morshed and S. M.

Lecture #27. The Short Channel Effect (SCE)

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities

Quantum Corrections for Monte Carlo Simulation

Performance Analysis of Ultra-Scaled InAs HEMTs

Nanoscale CMOS Design Issues

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

Integrated Circuits & Systems

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Jan M. Rabaey

Towards Atomistic Simulations of the Electro-Thermal Properties of Nanowire Transistors Mathieu Luisier and Reto Rhyner

MOS Transistor Theory

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions


A Theoretical Investigation of Surface Roughness Scattering in Silicon Nanowire Transistors

Bandstructure Effects in Silicon Nanowire Electron Transport

A Tight-Binding Study of the Ballistic Injection Velocity for Ultrathin-Body SOI MOSFETs

A Compact Scattering Model for the Nanoscale Double-Gate MOSFET

The Devices. Devices

EE 560 MOS TRANSISTOR THEORY

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Two-Dimensional Quantum-Mechanical Modeling for Strained Silicon Channel of Double-Gate MOSFET

The Evolution of Theory on Drain Current Saturation Mechanism of MOSFETs from the Early Days to the Present Day

Lecture 04 Review of MOSFET

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Lecture 1 Nanoscale MOSFETs. Course Structure Basic Concepts (1-38)

Lecture 5: CMOS Transistor Theory

Semiconductor Physics Problems 2015

Non-equilibrium Green's function (NEGF) simulation of metallic carbon nanotubes including vacancy defects

Performance Comparisons of III-V and strained-si in Planar FETs and Non-planar FinFETs at Ultrashort Gate Length (12nm)

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Lecture 12: MOSFET Devices

A Multi-Gate CMOS Compact Model BSIMMG

ECE 342 Electronic Circuits. 3. MOS Transistors

MOSFET: Introduction

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

VLSI Design The MOS Transistor

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

Application II: The Ballistic Field-E ect Transistor

Typical example of the FET: MEtal Semiconductor FET (MESFET)

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

NANOSCALE MOSFETS: PHYSICS, SIMULATION AND DESIGN

Electrostatic Single-walled Carbon Nanotube (CNT) Field Effect Transistor Device Modeling

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Designing a Carbon Nanotube Field-Effect Transistor with High Transition Frequency for Ultra-Wideband Application

Simulating quantum transport in nanoscale MOSFETs: Ballistic hole transport, subband engineering and boundary conditions

FIELD-EFFECT TRANSISTORS

Negative Capacitance Tunnel Field Effect Transistor: A Novel Device with Low Subthreshold Swing and High ON Current

Chapter 5 MOSFET Theory for Submicron Technology

Three-Dimensional Electrostatic Effects of Carbon Nanotube Transistors

Chapter 3 Device Physics and Performance Potential of III-V Field-Effect Transistors

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Subband engineering for p-type silicon ultra-thin layers for increased carrier velocities: An atomistic analysis. Abstract

Long-channel MOSFET IV Corrections

A Compact Analytical Modelling of the Electrical Characteristics of Submicron Channel MOSFETs

EE105 - Fall 2005 Microelectronic Devices and Circuits

Section 12: Intro to Devices

Transcription:

Simple Theory of the Ballistic Nanotransistor Mark Lundstrom Purdue University Network for Computational Nanoechnology

outline I) Traditional MOS theory II) A bottom-up approach III) The ballistic nanotransistor IV) Discussion V) Summary

nanoscale MOSFETs 130 nm technology (L G = 60 nm) Low V T I DS (ma/µm) Intel Technical J., Vol. 6, May 16, 00.

MOSFET IV: low V DS 0 V G V D I D V GS Q i ( x) = "C ox V GS "V T "V(x) ( ) I D = W Q i ( x)" x (x) = W Q i ( 0)" x (0) V DS I D = W C ox ( V GS "V T )µ eff E x E x = V DS L I D = W L µ effc ox ( V GS "V T )V DS

MOSFET IV: high V DS 0 V G V D I D V GS V ( x) = ( V GS "V T ) I D = W Q i ( x)" x (x) = W Q i ( 0)" x (0) V DS I D = W C ox ( V GS "V T )µ eff E x E x " V GS! V L T I D = W L µ eff C ox ( V GS "V T )

velocity saturation V DS 1.5V 5 10 4 V/cm L = 60 nm! " velocity cm/s ---> 10 7 " = µe " = " sat 10 4 electric field V/cm --->

MOSFET IV: velocity saturation 0 V G V D E >>10 4 x I D = W Q i ( x)" x (x) = W Q i ( 0)" x (0) 0 0.4 0.8 1. 1.4 I D = W C ox V GS "V T ( )# sat I = W C! ( V " V ) D ox sat GS T

MOSFET IV: velocity overshoot µ Position along Channel (µm) Position along Channel (mm) Frank, Laux, and Fischetti, IEDM Tech. Dig., p. 553, 199

the MOSFET as a BJT electron energy vs. position S G D V D 0V V GS I D V DS V D = V DD E.O. Johnson, RCA Review, 34, 80, 1973

the MOSFET as a BJT BJT Theory: J C = q D MOSFET n Theory: e qv BE /k BT! e qv BC /k BT W B n i N A ( ) = q D n W B n i e qv BE /k BT N A ( 1! e qv CE /k BT ) V BE! " " W # " k S W B! L I DS! W t inv t inv k bt # q( V ) BT q ( ) ( ) GS! VT / mkbt qvds / kbt I D == µ eff Cox $ % m! 1 $ % e 1! e & L ' & q ' E S C V CE! V qn SD! E S = A S = ox V G = V G C ox + C D m (m! 1)C ox! n D n! k T B i $ q µ eff " # % & = e 'q( B /k T B = e 'qv T /m k B T Yuan Taur and Tak Ning, Cambridge Univ. Press, 1998. eqn. (3.36) on p. 18 of Fundamentals of Modern VLSI Devices, N A

the MOSFET as a BJT log 10 I DS ( V! V ) ~ GS T above threshold: ( ) Q = C V! V i ox GS T Q e! i q S / kbt ~ q( V! V )/ mk T GS T B ~ e! ~ ln( V " V ) S GS T ( " ) I e V V! S / B ~ k T D ~ GS T V GS E.O. Johnson, RCA Review, 34, 80, 1973

Outline I) Traditional MOS theory II) A bottom-up approach III) The ballistic nanotransistor IV) Discussion V) Summary

a general view of nano-devices Gate E F1 D( E! U SCF ) E F1 -qv D! 1 = h " = h " 1 #

top of the barrier model U = E " q! FB SCF C S energy E F1 LDOS E F1 -qv D E C (0) device L ε(x) contact 1 contact h h! 1 =! = = " L/ # x position

filling states from the left contact Gate E F1 D( E! U SCF )! 1 = h " 1 N ( E) = D( E! U ) f ( E) 0 1 SCF 1 0 d N( E) N1 ( E) " N = dt! 1

filling states from the right contact Gate D( E! U SCF ) Eµ F1 -qv D N ( E) = D( E! U ) f ( E) 0 SCF 0 d N( E) N ( E) " N = dt! " = h #

steady-state 0 0 d N( E) N1 " N N " N = + = dt!! 1 0 (ballistic) [ ( ) ( ) ( ) ( )] N =! D1 E f1 E + D E f E de D1 E! D E U " D E U!! " " ( ) 1 # ( $ ) = ( $ ) SCF 1 + 1 + SCF

steady-state current I D 1 ( 0 N ) N 0 N1 " N " " = =!! q I ( ) ( ) D = " M E f1( E)! f( E) de h hd( E) 1 M ( E) $ = " D( E )!! # + #! +! ( ) 1 1

NEGF theory Gate E F1 [" 1 ] [H] device [" S ] [" ] E F Non-equilibrium Green s Function Approach (NEGF) S. Datta, IEDM Tech. Dig., 00

outline I) Traditional MOS theory II) A Bottom-up approach III) The ballistic nanotransistor IV) Discussion V) Summary

assumptions 1) D, planar MOSFET ) 1 subband occupied energy E F1 LDOS E F1 -qv D U " E = E # q! FB SCF C C S L contact 1 contact! 1 =! = L " x ε(x) position 3) parabolic E(k) * D( E) = WL m " E # E C! h 1 ( ) D ( E) = D ( E) = D( E)! 1 M ( E) = L = = L ( ) " * x E m /# W! h * m E

procedure 1) assume a ψ S (sets top of the barrier energy) ) fill states energy E F1 LDOS L E F1 -qv D ε(x) +! N = N + N 3) self-consistent electrostatics contact 1 contact! 1 =! = L " x position 4) evaluate current q I D = M ( E) ( f1( E)! f( E) ) de h "

filling states (ballistic) N =![ D 1 (E) f 1 (E) + D (E) f (E)] de * m N = WL [ f1( E) f( E) ] de! h " + N [ ( ) ( )] D N = W L F0! F1 + F0! F N at the top of the barrier depends on: V G (through ψ S ) V D (through E F ) E(k) h k m * N * m kbt D =! h ( ) k b T! F1 = E F1 " E C FB + q# S E F1 FB E " q! S C k E F ( ) k b T! F = E F1 " qv D " E C FB + q# S

filled states in equilibrium 1 f ( E) = # e = e $ e ( E" EF )/ kbt 1+ e * ( k + k )/ m k T x y B f ( k, k ) e x y! h * F " B ( EF " EC )/ kbt! B ( E E)/ k T m / k T f 0 f (k x, k y )

filling states under bias ε 1 vs. x for V GS = 0.5V f (k x, k y ) ε 1 (ev) ---> Increasing V DS -10-5 0 5 10 X (nm) --->

the ballistic current q I D = M ( E) * [ f1( E)! f( E) ] de m " W M ( E) =! h * m E I = qn W! " # " [ F ( ) F ( )] D D T 1/ F1 1/ F alternatively: I " W Q! D Q n n N = W L! "% T T = k B T * " m (! ) ( ) kbt $ F % 1/ F1 = * # m & 0! ' ( F F1 ) " "% # 1 % F (! ) / F (! ) $ 1/ F 1/ F1 = T & ' 1 + F0(! F ) / F0(! F1) ( )

carrier velocity in a ballistic MOSFET ε 1 vs. x for V GS = 0.5V E C (ev) ---> Increasing V DS Increasing V DS -10-5 0 5 10 X (nm) --->

velocity saturation in a ballistic MOSFET ε 1 vs. x for V GS = 0.5V "(0) # " T ε 1 (ev) ---> Increasing V DS υ inj (10 7 cm/s) ---> υ(0) -10-5 0 5 10 X (nm) ---> V DS ---> injection velocity "% T (! ) ( ) kbt $ F % 1/ F1 = * # m & 0! ' ( F F1 )

IV of a ballistic MOSFET N Key equations [ ( ) ( )] D N = W L F0! F1 + F0! F I = qn W! " # " [ F ( ) F ( )] D D T 1/ F1 1/ F FB ( E E q ) k T FB ( )! = # + " F1 F1 C S b! = E # qv # E + q" k T F F1 D C S b We must express ψ S in terms of or V G (1D electrostatics) V G and V D (D electrostatics)

1D MOS electrostatics (above threshold) Key equations N [ ( ) ( )] D N = W L F0! F1 + F0! F I = qn W! " # " [ F ( ) F ( )] D D T 1/ F1 1/ F (1) () ( ) C V! V = ox GS T qn WL (3) equations (1), (), and (3) give

1D MOS electrostatics (above threshold) I W C V V % $ F1/ (! F1 # qvds / kbt ) % 1# & F (! ) & 1/ F1 DS = ox ( GS # T )" T ' ( F0(! F1 # qvds / kbt ) ) & 1+ & F (! ) & & * 0 F1 + N Cox VG VT 0 F1 0 F1 qvds kbt D ( " ) = [ F (! ) + F (! " / )] for non-degenerate statistics: " qvds / kbt # $ 1" e IDS = W Cox ( VGS " VT )! T % " qvds / kbt & ' 1+ e (

the ballistic MOSFET I W C V V % $ F1/ (! F # U DS ) % 1# & F (! ) & 1/ F DS = ox ( GS # T )" T ' F0(! F # U DS ) ( & 1+ & F (! ) & & ) 0 F * ideal electrostatics ( ) I DS (on) =W C ox " T V GS #V T quantum conductance " M q h I DS ( V G! V T ) " K. Natori, JAP, 76, 4879, 1994. V DS

electrostatics (subthreshold and D) V G C G C S C D V S Q = "qn V D! S! = V # C $ + V # C $ + V # C $ % ( ) ( ) ( ) qn G D S S G & ' D & ' S & ' C" C" C" C" (! ) S

procedure for a given V G, V D: 1) guess ψ S ) fill states 3) compute improved ψ S! = V # C $ + V # C $ + V # C $ qn % ( ) ( ) ( ) G D S S G & ' D & ' S & ' C" C" C" C" 4) iterate between () and (3) 5) compute current (! ) S see FETToy at www.nanohub.org I = qn W! " # " [ F ( ) F ( )] D D T 1/ F1 1/ F 6) select new V G, V D, and go to 1

outline I) Traditional MOS theory II) A Bottom-up approach III) The ballistic nanotransistor IV) Discussion V) Summary

the quantum capacitance ( ) Q = C V! V C Gate Gate G T = C C C inc ins Q + C ( qn ) Q " # C q D E m ( ) S * Q = = D F ~ "! S if C >> C, C! C Q ins Gate ins C ins C S V G = C Q! S I D Q! i nj

bandstructure effects in nano-mosfets (001) (111) -tight binding model (sp 3 d 5 s*) (Boyken, Klimeck, et al.) (100) a (110) (010) -Si, Ge, SiGe, GaAs, InAs, (strained or unstrained) (heterostructure channels) -bulk, UTB, nanowire MOSFETs Top-of-the-barrier model k E( k) = h E( k) : tabulated * m analytical numerical

scattering in nano-mosfets measured ballistic Intel 30nm bulk MOSFET Chau et al, IEDM Technical Digest, 000, pp 45-48 MOSFETs operate at 50% of their ballistic limit

relation to traditional MOSFET theory I D = W L µ C V eff ox( "V GS T )V DS I = W C V V L µ! ( ) D eff ox GS T low V DS high V DS (long channel) ballistic MOSFET I W C V V % $ F1/ (! F1 # qvds / kbt ) % 1# & F (! ) & 1/ F1 DS = ox ( GS # T )" T ' ( F0(! F1 # qvds / kbt ) ) & 1+ & F (! ) & & * 0 F1 +

relation to traditional MOSFET theory q " hd ( E) # I D = ) % & f ( E) $ f ( E) de h!! D ( ) ( ) 1 + ' 1 ( ballistic transport: L! =! = = 1 L ( ) " * x E m /# diffusive transport:! =! = L 1 D eff see: The Ballistic MOSFET, unpublished notes by M.S. Lundstrom, 005

Outline I) Traditional MOS theory II) A Bottom-up approach III) The ballistic nanotransistor IV) Discussion V) Summary

summary 1) A ballistic, top-of-the barrier model for the MOSFET is easy to formulate. ) The ballistic model provides new insights into the physics of nanoscale MOSFETs. 3) Although not comprehensive, the top-of-the-barrier ballistic model should prove useful in exploring new materials and structures for ultimate CMOS.

references the ballistic model: Mark Lundstrom, The Ballistic Nanotransistor, unpublished notes, 005. Anisur Rahman, Jing Guo, Supriyo Datta, and Mark Lundstrom, Theory of Ballistic Nanotransistors, IEEE Trans. Electron. Dev., 50, 1853-1864, 003. scattering in nanotransistors: Mark Lundstrom and Zhibin Ren, Essential Physics of Carrier Transport in Nanoscale MOSFETs, IEEE Trans. Electron Dev., 49, pp. 133-141, 00.