Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures

Similar documents
Mesoscopic Spintronics

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik

Enhanced spin orbit torques by oxygen incorporation in tungsten films

MSE 7025 Magnetic Materials (and Spintronics)

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

An Overview of Spintronics in 2D Materials

Ferromagnetism and Anomalous Hall Effect in Graphene

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material

0.002 ( ) R xy

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface

Spin orbit torques and Dzyaloshinskii-Moriya interaction in dualinterfaced

Spin injection and absorption in antiferromagnets

Expecting the unexpected in the spin Hall effect: from fundamental to practical

SUPPLEMENTARY INFORMATION

Spin injection. concept and technology

Hidden Interfaces and High-Temperature Magnetism in Intrinsic Topological Insulator - Ferromagnetic Insulator Heterostructures

Mesoscopic Spintronics

Spatiotemporal magnetic imaging at the nanometer and picosecond scales

SUPPLEMENTARY INFORMATION

Physics in Quasi-2D Materials for Spintronics Applications

Spin-torque nano-oscillators trends and challenging

Optical studies of current-induced magnetization

THEORY OF SPIN HALL EFFECT AND INTERFACE SPIN-ORBIT COUPLING

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

Gauge Concepts in Theoretical Applied Physics

Electron spins in nonmagnetic semiconductors

Spin Funneling for Enhanced Spin Injection into Ferromagnets: Supplementary Information

Nanoscale magnetic imaging with single spins in diamond

SUPPLEMENTARY INFORMATION

Coupling of heat and spin currents at the nanoscale in cuprates and metallic multilayers

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

Room temperature spin-orbit torque switching induced by a

Strong Spin Hall Effect in the Antiferromagnet PtMn. Abstract

Angular and temperature dependence of current induced spin-orbit effective fields in Ta/CoFeB/MgO nanowires

Dynamical spin injection and spin-to-charge interconversion using spin orbit coupling, and Topological Insulators

Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices

Spin transfer torque devices utilizing the giant spin Hall effect of tungsten

Ultrafast MOKE Study of Magnetization Dynamics in an Exchange-Biased IrMn/Co Thin Film

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction. devices. Cornell University, Ithaca, NY 14853

Fermi level dependent charge-to-spin current conversion by Dirac surface state of topological insulators

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Spin-orbit effects in graphene and graphene-like materials. Józef Barnaś

Lecture I. Spin Orbitronics

FIG. 1: (Supplementary Figure 1: Large-field Hall data) (a) AHE (blue) and longitudinal

Emerging spintronics-based logic technologies

Spin Transfer Torque Generated by the Topological Insulator Bi 2 Se 3. Cornell University, Ithaca, NY 14853

Cover Page. The handle holds various files of this Leiden University dissertation

Time - domain THz spectroscopy on the topological insulator Bi2Se3 (and its superconducting bilayers)

Critical switching current density induced by spin Hall effect in magnetic structures with firstand second-order perpendicular magnetic anisotropy

Center for Spintronic Materials, Interfaces, and Novel Architectures. Voltage Controlled Antiferromagnetics and Future Spin Memory

Physics of Semiconductors

Outline. Spin polarized current vs pure spin current!

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

Recent developments in spintronic

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES

Magnetoresistance of 2D and 3D Electron Gas in LaAlO 3 /SrTiO 3. Heterostructures: Influence of Magnetic Ordering, Interface Scattering and

Persistent spin helix in spin-orbit coupled system. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR)

Effect of heavy metal layer thickness on spin-orbit torque and current-induced. switching in Hf CoFeB MgO structures 90095, USA USA.

SUPPLEMENTARY INFORMATION

Spin-orbit proximity effects in graphene on TMDCs. Jaroslav Fabian

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

T he exciting physics of topological insulators (TIs) has been under intense study since their theoretical

Lecture 6: Spin Dynamics

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Spin transport and relaxation mechanism in disordered organic film

Wouldn t it be great if

An Intrinsic Spin Orbit Torque Nano-Oscillator

P. Khatua IIT Kanpur. D. Temple MCNC, Electronic Technologies. A. K. Majumdar, S. N. Bose National Centre for Basic Sciences, Kolkata

Magnetism of ultrathin films: Theory and Experiment

Picosecond spin caloritronics

Skyrmions in symmetric bilayers

Observation of the intrinsic inverse spin Hall effect in Ni 80 Fe 20. Yuichiro Ando, Teruya Shinjo and Masashi Shiraishi * #

All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes.

Current-induced switching in a magnetic insulator

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Perpendicular MTJ stack development for STT MRAM on Endura PVD platform

Giant Magnetoresistance

High-frequency measurements of spin-valve films and devices invited

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of

HALL EFFECT AND MAGNETORESISTANCE MEASUREMENTS ON PERMALLOY Py THIN FILMS AND Py/Cu/Py MULTILAYERS

Putting the Electron s Spin to Work Dan Ralph Kavli Institute at Cornell Cornell University

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES

110 Substrate H? e ( Co - Gd alloy 1401??? ( 12 ) Patent Application Publication ( 10 ) Pub. No.: US 2018 / A1

Current-driven ferromagnetic resonance, mechanical torques and rotary motion in magnetic nanostructures

Lecture I. Spin Orbitronics

Spin Torque and Magnetic Tunnel Junctions

Skyrmion Dynamics and Topological Transport Phenomena

4.5 YIG thickness dependence of the spin-pumping effect in YIG/Pt heterostructures

Magneto-Seebeck effect in spin-valve with in-plane thermal gradient

Energy Spectroscopy. Ex.: Fe/MgO

Observation of the intrinsic inverse spin Hall effect from ferromagnet

Dynamically-generated pure spin current in single-layer graphene

GROWTH OF QUANTUM WELL FILMS OF TOPOLOGICAL INSULATOR BI 2 SE 3 ON INSULATING SUBSTRATE

Fundamental concepts of spintronics

Skyrmions in quasi-2d chiral magnets

Heusler compounds: Tunable materials with non trivial topologies. Claudia Felser

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES

Transcription:

Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures Hyunsoo Yang Electrical and Computer Engineering, National University of Singapore eleyang@nus.edu.sg

Outline Spin-orbit torque (SOT) engineering Heusler alloy Oxygen manipulation of SOT SOT in Co/Pd and Co/Ni multilayers AHE & SOT in LaAlO 3 /SrTiO 3 oxide heterostructures SOT in topological insulators (Bi 2 Se 3 /ferromagnet) 2

Charge electronics Spin electronics Information transfer = electron transfer Spin waves MTJs http://imechanica.org/taxonomy/term/118?page=3 Information processing = processing electron flow Spin transistor Charge transfer and processing energy loss is huge All spin electroinics 3

Spin-orbit torques (SOT) Miron et al. Nature 476, 189 (2011) Liu et al. PRL 109, 096602 (2012) Heavy metal/ferromagnetic material/oxide layer. Current induced magnetization switching is observed (longitudinal field needed). Magnetization states depend on both current and field directions. Possible mechanisms: Rashba effect & spin Hall effect (SHE). 5

Perpendicularly magnetized trilayer structures Oxide Ferromagnet (FM) Heavy Metal (HM) M Strong Rashba field arises from asymmetric interfaces Spin Hall effect arises from HM SOT In-plane currents can switch the magnetization STT FM2 MgO FM1 7

Spin Hall vs. interfacial Rashba Reverse switching polarity by oxygen engineering SH 0 SH 0 -Sign of spin Hall angle changes across a transition thickness of SiO 2 (t = 1.5 nm) -Cannot be understood by spin Hall physics suggest the role of interface Nat. Nanotech. 10, 333 (2015) 8

Spin-orbit torque switching currents STT I 2 SOT Free FM spacer Pinned FM I 1 I I c c 2e MV S H P e M t A H SFM HM SH -No damping term great flexibility for choosing FM, high speed -No spin polarization term no need to use MgO -Can use thick MgO eliminate MgO breakdown issue -Large spin Hall angle ( SH ) or effective field (H eff ) is the key eff eff STT SOT K.J.Lee, APL (2013) H eff = ħ SH j e /(2 e M S t F ) 19

Large spin Hall angles from various materials FePt/Au spin Hall angle ( SH ) = 0.1 (Takanashi group) CuBi SH = -0.24 (Otani group) Phys. Rev. Lett. 109, 156602 (2012) Nat. Mater. 7, 125 (2008) Co/Pd multilayer SH = 4 (NUS) β-w SH = 0.3 (Cornell) Appl. Phys. Lett. 101, 122404 (2012) Phys. Rev. Lett. 111, 246602 (2013) 20

Spin orbit torque from Heusler alloy Pt/Co 2 FeAl 0.5 Si 0.5 (0.8 nm)/mgo Perpendicular anisotropy CFAS Both H L and H T exist with a large SH Appl. Phys. Lett. 107, 022405 (2015) 22

Single magnetic layer vs. magnetic multilayer systems cap PMA Pt MgO Substrate A better choice for structural engineering Perpendicular magnetic anisotropy (PMA) originates from Pt/FM interface. Low damping (~0.02) Spin polarization (~50%) Low thermal stability (not enough volume) Co/Pd or Co/Ni interfaces contribute to PMA. Lower damping (~0.01) Higher spin polarization (~80%) Good thermal stability [ =K u V/(k B T)] 30

Spin orbit torques in Co/Pd multilayers Ta (4nm) Co (0.2nm) Pd (0.7nm) Co (0.2nm) Pd (0.7nm) 22 times Ru (20nm) Ta (4nm) Phys. Rev. Lett. 111, 246602 (2013) 31

Structural asymmetry can be added up TEM data Ta (4nm) Co (0.2nm) Pd (0.7nm) Co (0.2nm) Maesaka, IEEE Trans. Magn. 38, 2676 (2002) Pd (0.7nm) -Two successive Co/Pd and Pd/Co interfaces are structurally dissimilar. -Lattice mismatch (9%) between Pd and Co 33

LAO/STO 2DEG formation LaAlO 3 SrTiO 3 Nat. Comm. 4:1838 LaAlO 3 grown on TiO 2 terminated SrTiO 3 (100) SrTiO 3 (Insulator 3.2 ev) LaAlO 3 (Insulator 5.6 ev) LAO (2 nm) 2 DEG STO 2 DEG formed inside the STO side 34

Magnetism in LaAlO 3 /SrTiO 3 heterostructures In-plane angular measurements 2 DEG LAO (2 nm) LIA-1 LIA-2 STO I 5 0-5 Data Fit Idc + Iac AMR ( ) -10-15 -20 AMR measurements at H = 9 T, T = 4 K R XX = a 0 +a 1 cos 2 ( + ) + a 2 cos 4 ( + ) -25 0 90 180 270 360 Angle (deg) a 0, a 1, a 2 are constants Appl. Phys. Lett. 105, 162405 (2014) 36

Asymmetric spin-orbit fields H EFF 2310 1680 H R β α H A AMR ( ) 2280 2250 I dc = +250 A 1665 1650 AMR ( ) I dc 2220 I dc = -250 A 0 90 180 270 360 Angle (deg) 1635 H H H 2H H cos 2 2 2 EFF A R A R R b b H cos b H cos 2 4 XX 0 1 EFF 2 EFF H R (+I) = 1.26 T H R (-I) = -1.48 T H R, H A H EFF are Rashba, applied and effective fields b 0, b 1, b 2 are constants Appl. Phys. Lett. 105, 162405 (2014) 37

Current induced spin-orbit fields in 2DEG 3 H R (T) 2 1 0 H = +8 T H = -8 T I ac = 20 A Assuming thickness of 2DEG t 2DEG = 7 nm Nat. Mater. 7, 621 (2008) current density = 7.14 10 8 A/m 2 2.35 T @ 200 µa 32.9 Tesla/10 6 A/cm 2 0 100 200 I dc ( A) The highest current induced torque reported in metallic system is only 0.5 T. 3 *2 so PRL 111, 246602 (2013) eh / m H so = 1.48 T, α R = 12 mev Å, spin splitting = 3 mev (~30 T) R cf. Co/Pd multilayer α R =360 mev Å Appl. Phys. Lett. 105, 162405 (2014) 38

Magnetism imaging in LAO/STO by Squid Squid data 10 u.c. LaAlO 3 TiO 2 -terminated 001 STO substrates n-type similar to our samples Nat. Phys. 7, 771 (2011) Magnetic dipoles from LAO/STO Squid magnetometry is sensitive to the stray field.

Magnetism imaging in LAO/STO structures by MFM MFM images Nat. Comm. 5, 5019 (2014). 12 unit cell LAO films on TiO 2 -terminated (001) STO substrates Ferromagnetism arises at lower gate voltages when the 2DEG is depleted.

Microscopic mechanism of the anomalous Hall effect 1. Intrinsic Berry Phase Electrons have an anomalous velocity perpendicular to the electric field related to their Berry s phase curvature 2. Extrinsic Side jump deflection by the opposite electric fields experienced upon approaching and leaving an impurity. Skew Asymmetric scattering due to the effective spin-orbit coupling of the electron or the impurity. 47

Topological insulators (TIs) Physics 3, 62 (2010) ARPES spectra showing a linear band structure of the surface states on a 3D TI arxiv:1304.5693 Nobel Symposium 2010, Shoucheng Zhang Spin polarized surface currents Linear dispersion 66

Spin pumping Enhancement of Gilbert damping A schematic describing spin pumping J. Appl. Phys. 108, 113925 (2010) Spin pumping is a process in which a precessing magnetization induces spin currents into an adjacent magnetic layer Tserkovnyak et al., Phys. Rev. Lett. 88, 117601 (2002) 67

Experimental setup Magnetization oscillation provides high density spin currents into TI and a transverse voltage is detected in TI spin detector. V - Signal generator to excite magnetization dynamics in NiFe through a coplanar waveguide - Voltmeter to measure spin pumping induced ISHE - Vector network analyzer for FMR measurements Phys. Rev. B 90, 094403 (2014) 69

Characterization of Bi 2 Se 3 Resistivity of 20 QL Bi 2 Se 3 Carrier concentration of 20 QL Bi 2 Se 3 ( cm) 750 700 650 600 550 1 QL 1 nm n 2D (10 13 /cm 2 ) 13 12 11 10 500 9 450 1 10 100 T(K) 8 0 50 100 150 200 250 300 T (K) Show a typical Bi 2 Se 3 feature of saturation below 30 K. Appl. Phys. Lett. 103, 213114 (2013) 70

FMR measurements FMR signal (norm.) 1.0 0.8 0.6 0.4 0.2 0.0 Bi 2 Se 3 /Py Py -1 0 1 2 f - f 0 (GHz) Linewidth (Oe) 80 60 40 20 Py linewidth linear fit for Py Bi 2 Se 3 /Py linewidth linear fit for Bi 2 Se 3 /Py H H f 0 4 3 4 5 6 7 Frequency (GHz) Increase in linewidth is indicative of spin pumping. g Md g 4 r Py B gr = 1.514 10 19 m -2 Phys. Rev. B 90, 094403 (2014) 72

ISHE measurements V R ISHE V ISHE ( V) 10 8 6 4 2 0-2 0.0 0.2 0.4 0.6 B (koe) θ sh = 0.01 λ sf = 6.2 nm 3 GHz 4 GHz 5 GHz 6 GHz fitting 2 2 2 2 2 2e gr hrf M M 4 sf d BiSe shwdbise tanh 2 2 2 2 8 M 4 d BiSe 2 sf (c) V ISHE /R ( V/ ) 0.30 0.25 0.20 0.15 0.10 Data Fitting 0 5 10 15 20 25 30 35 40 Bi 2 Se 3 thickness (nm) V ISHE ~ R J s SH R is resistance of the film J s is induced spin current θ SH is spin Hall angle Phys. Rev. B 90, 094403 (2014) 73

Weak anti-localization in Bi 2 Se 3 0.00 Data HLN fitting 2 e 1 G B ln B 2 2 h 4eL B 2 4eL B 2 G (e 2 /h) -0.02-0.04-0.06-8 -4 0 4 8 Magnetic field (T) c q 2 G c H 0 2 2 2 e 1 3e 1 q 24 h Bso Be 48 h 4 3 Bso B B so 4el 2 so 2 B e 4el 2 e Taking l e = 10 nm, spin orbit length l so was found to be 6.9 nm l so ~ λ sf suggest that spin-orbit coupling is dominant source of spin scattering Phys. Rev. B 90, 094403 (2014) 75

Temperature dependence sh (%) 2.4 2.0 1.6 1.2 0.8 10 9 8 sf (nm) 7 6 5 0 50 100 150 200 250 300 Temperature (K) Both spin Hall angle and spin diffusion length increase at low temperature θ sh = 0.022 and λ sf = 9.5 nm at 15 K Phys. Rev. B 90, 094403 (2014) 76

Bulk spin relaxation time in Bi 2 Se 3 Time-resolved magneto optical Kerr effect 20 + Kerr rotation (a.u.) 15 10 5 0 - + - - (a.u.) 10 5 0 0 1 2 3 4 5 Delay (ps) 0 1 2 3 4 5 Delay (ps) - Signal sensitive to bulk due to large penetration depth of light - Oscillation frequency is 2.13 THz from coherent vibrations of the A 1g longitudinal optical phonons of Bi 2 Se 3 - Exponentially decay with a characteristic time of 1.3 ps Jean Besbas et al. (under review) 79

No spin momentum locking (a) 2.4 2.0 (b) 12 sh (%) 1.6 1.2 0.8 Surface ( sh1 ) Bulk ( sh2 ) 0 50 100 150 200 250 300 Temperature (K) sf (nm) 10 8 6 0 50 100 150 200 250 300 Temperature (K) - Assumed spin Hall angle at opposite surfaces was taken to be of opposite signs. - Spin Hall angle does not show any clear distinction between the surface and bulk value - Momentum locking signature is not detected. Phys. Rev. B 90, 094403 (2014) 80

Comparison with other reports Nature 511, 449 (2014) Nat. Mater. 13, 699 (2014) Spin torque ferromagnetic resonance measurements θ SH = 2.0 3.5 Magnetization switching by current induced spin orbit torque θ SH = 140 425 In these experiments, a charge current flows through the TI material, unlike ours. 81

Properties of Bi 2 Se 3 and Bi 2 Se 3 /Co 40 Fe 40 B 20 R xx ( ) 400 300 200 Bi 2 Se 3 20 QL 1 10 100 T(K) M/area ( emu/cm 2 ) 400 CFB 5 nm CFB 4 nm CFB 3 nm 200 CFB 2 nm CFB 1.5 nm 0-200 -400 M/area 400 MDL = 1.36 nm 300 200 100 0 1 2 3 4 5 CFB (nm) -200 0 200 400 H (Oe) 20 QL Bi 2 Se 3 films on Al 2 O 3 (0001) by MBE. A typical feature of resistivity saturation below 30 K for Bi 2 Se 3. The Co 40 Fe 40 B 20 (CFB) dead layer ~1.36 nm. Wang et al., PRL 114, 257202 (2015) 83

ST-FMR measurement of Bi 2 Se 3 /CoFeB 6 300 K 50 K 200 K 20 K 100 K f = 8 GHz 4 V ( V) 2 0-2 -4-1000 0 1000 H (Oe) ST-FMR measurements with a lock-in amplifier at H = 35. ST-FMR signal (V mix ) can be fitted by a sum of symmetric and antisymmetric Lorentzian functions: V V F ( H ) V F ( H ) mix s sym ext a asym ext V s : in-plane torque on CFB V a : total out-of-plane torque PRL 114, 257202 (2015) 84

Two analysis methods 1 st method: from V s /V a If only Oersted field induced out-of-plane torque ( Oe ) contributes to V a ( V / V )( e M td/ )[1+(4 M / H )] s a 0 s eff ext 12 / Thickness of Bi 2 Se 3 2 nd method: from only V s and only V a separately V ( I cos /4)( dr/ d ) (1/ ) F ( H ) s rf H H sym ext s J s/ E Mt s / E / s a 12 / rf H H Oe 0 eff ext asym ext V ( I cos /4)( dr/ d )( ){[1 ( M / H )] / } F ( H ) s Js E s / Mt/ E s / Liu et al.,phys. Rev. Lett. 106, 036601 (2011) Mellnik et al., Nature 511, 449 (2014) Wang et al., Phys. Rev. Lett. 114, 257202 (2015) 85

In-plane spin-orbit torque ratio in Bi 2 Se 3 /CoFeB R xx ( ) 400 300 200 Bi 2 Se 3 20 QL 1 10 100 T(K) 0.4 0.3 By V s Only D 1 D 2 D 3 By V s /V a D 1 D 2 D 3 0.2 0.1 0.0 0 50 100 150 200 250 300 T (K) ( ǁ ) increases steeply and nonlinearly to ~0.42at low temperature and could be almost 10 times larger than that at 300 K. The polarization direction of is consistent with spin-momentum-locked TSS. by 1 st and 2 nd methods shows a significant difference below ~ 50 K, other out-of-plane torque may contribution besides Oe. Wang et al., PRL 114, 257202 (2015) 87

In-plane spin-orbit torque (ratio) in Bi 2 Se 3 150 Pt Pt (Oe) 100 50 0 0 50 100 150 200 250 300 T (K) Wang et al., PRL 114, 257202 (2015) Ta Wang et al., APL 105, 152412 (2014) CuIr Spin Hall mechanism from Bi 2 Se 3 bulk is not the main mechanism for the nonlinear increase of ( ǁ )inbi 2 Se 3. Hao et al., PRB 91, 224413 (2015) Niimi et al., PRL 106, 126601 (2011) The direction of spin polarization is consistent with TSS of TIs. 88

Out-of-plane spin-orbit torque ratio in Bi 2 Se 3 /CoFeB (Oe) 3 2 1 D 1 D 2 D 3 0.4 0.3 0.2 0.1 D 1 D 2 D 3 0 0 50 100 150 200 250 300 T (K) 0.0 0 50 100 150 200 250 300 T (K) ( ) also increases at low temperature similar to ( ǁ ). Rashba-split state in 2DEG of Bi 2 Se 3 is not the main mechanism for. Hexagonal warping in the TSS of Bi 2 Se 3 can account for ( ). Wang et al., PRL 114, 257202 (2015) 90

Is Rashba effect responsible for out-of-plane spin-orbit torque? Metal & 2DEG in semiconductor: H / (z ˆ ) T R k Nat. Mater. 9 230 (2010) Ta GaAs/AlGaAs InSb/InAlSb Sci. Rep. 4, 4491 (2014) PRB 77, 125344 (2008) JPCM 23 035801 (2011) Previous Rashba reports showed a smaller effect at low temperatures. But, we observed larger effects ( ) at low temperatures. Rashba effect might not be the main mechanism for and. 91

Out-of-plane torque in Bi 2 Se 3 Bi 2 Se 3 Wang et al., PRL 107, 207602 (2011) Nomura et al., PRB 89, 045134 (2014) -Recent reports showed there is substantial out-of-plane spin polarization due to Hexagonal warping. -Hexagonal warping in the TSS of Bi 2 Se 3 can account for ( ). 92

Estimation of from topological surface states (TSS) I BiSe /I CFB 1.2 0.9 0.6 n 2D (10 13 /cm 2 ) 13 12 11 10 9 8 Bi 2 Se 3 0 50 100 150 200 250 300 T (K) k F-TSS ~ 0.14 0.17 Å -1 k F-2DEG ~ 0.1 0.12 Å -1 n = 2 n + 2 n + n d 2D TSS 2DEG bulk n TSS ~ 1.56 2.3 10 13 cm -2 n 2DEG ~ 1.59 2.3 10 13 cm -2 n bulk ~ 1 3.1 10 19 cm -3 (~ 1 3.1 10 13 cm -2 ) k F-bulk ~ 0.066 0.097 Å -1 0 50 100 150 200 250 300 T (K) k F-bulk < k F-2DEG < k F-TSS and n 2DEG < 2 n TSS By estimating I TSS :I 2DEG :I bulk, from only TSS at low temperature is ~2.1± 0.39 (with bulk contribution) ~ 1.62 ± 0.18 (without bulk contribution) If we assume TSS thickness ~ 1 nm, the 2D spin orbit torque efficiency SOT ~ 0.8-1.05 nm. IREE ~ 0.2-0.33 nm in Ag/Bi interface [Nat. Commun. 4, 2944 (2013)] Wang et al., PRL 114, 257202 (2015) 95

Exotic spin Hall angles from topological insulators spin Hall angle ( SH ) = 2~3.5 ST-FMR (Cornell) SH = 2 (low temp) ST-FMR (NUS) SH = 140-425 (low temp) spin-orbit switching (UCLA) Nature 511, 449 (2014) SH = 0.01 Spin-pumping (Tohoku) PRL 114, 257202 (2015) SH = 0.01 Spin-pumping (NUS) Nat. Mater. 13, 699 (2014) SH = 0.01-0.4 Spin-pumping (Minnesota) PRL 113, 196601 (2014) PRB 90, 094403 (2014) Nano Lett 15, 7126 (2015) 97

LAO/STO (NUS) BiSbTe (UCLA) 3000 T 480~1460 T Co/Pd (NUS) 4 Ta Bi 2 Se 3 (Cornell, NUS) 5 koe Spin orbit torque (koe per 10 8 A/cm 2 ) Switching current density (MA/cm 2 ) 3 2 1 0 10 20 30 W Pd Pt 0.0 0.2 0.4 Ta W Pt =2 SH 2 4.4 140 BiSbTe (UCLA) 8.9E4 A/cm 2 θ SH 113

Open questions Why is the spin Hall angle so different from spin pumping, ST- FMR, and optical imaging measurements? Spin pumping, photovoltage bulk dominant ST-FMR surface dominant Are spin currents from TI big enough to switch 3d ferromagnets? Is there any compensation of spin orbit torques from the surface states and Rashba 2DEG? Can we realize a room temperature spin orbit torque TI devices? 116

Coexistence of surface states and Rashba bands 117

Dr. Yi Wang Praveen Deorani Dr. Xuepeng Qiu Dr. K. Narayanapillai Li Ming Loong Jiawei Yu T. Venkatesan (NUS) Seah Oh (Rutgers) Aurelien Manchon (KAUST) K-J. Lee (Korea Univ.) 118