Erzeugung und Anwendung ultrakurzer Laserpulse. Generation and Application of Ultrashort Laser Pulses

Similar documents
Kurzpuls Laserquellen

Ultrafast laser oscillators: perspectives from past to futures. New frontiers in all-solid-state lasers: High average power High pulse repetition rate

E( t) = e Γt 2 e iω 0t. A( t) = e Γt 2, Γ Γ 1. Frontiers in ultrafast laser technology. Time and length scales. Example: Gaussian pulse.

High average power ultrafast lasers

Ultrafast Laser Physics

Ultrafast Laser Physics

SESAM modelocked solid-state lasers Lecture 2 SESAM! Semiconductor saturable absorber

Introduction/Motivation/Overview

New Concept of DPSSL

Ultrafast Laser Physics!

Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities

Linear pulse propagation

ULTRAFAST laser sources have enormous impact on many

Graphene mode-locked Cr:ZnS chirped-pulse oscillator

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Blue-green Emitting Semiconductor Disk Lasers with Intra-Cavity Frequency Doubling

Design and operation of antiresonant Fabry Perot saturable semiconductor absorbers for mode-locked solid-state lasers

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015

Q-switching stability limits of continuous-wave passive mode locking

Semiconductor Disk Laser on Microchannel Cooler

Microjoule mode-locked oscillators: issues of stability and noise

γ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Engineering Medical Optics BME136/251 Winter 2017

Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers

Attosecond laser systems and applications

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering

Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti:Sapphire Laser Cavities by Using Nonlinear ABCD Matrices

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

The Generation of Ultrashort Laser Pulses

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Self-Mode-Locked Vertical-External-Cavity Surface-Emitting Laser

High-Harmonic Generation II

Graphene Based Saturable Absorber Modelockers at 2µm

Multipulse Operation and Limits of the Kerr-Lens Mode-Locking Stability

Consistent characterization of semiconductor saturable absorber mirrors with single-pulse and pump-probe spectroscopy

Ultrafast Wavelength Tuning and Scaling Properties of a Noncollinear Optical Parametric Oscillator (NOPO)

SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds

Noise Correlations in Dual Frequency VECSEL

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland Chapter 4b: χ (2) -nonlinearities with ultrashort pulses.

Steady state mode-locking of the Nd:YVO 4 laser operating on the 1.34 µm transition using intracavity SHG in BIBO or PPMgSLT

High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation

Exploring ultrafast negative Kerr effect for mode-locking vertical external-cavity surfaceemitting

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Development of a compact Yb optical lattice clock

Highly Nonlinear Fibers and Their Applications

1 Mathematical description of ultrashort laser pulses

Physical Optics. Lecture 8: Laser Michael Kempe.

Bound-soliton fiber laser

Effects of resonator input power on Kerr lens mode-locked lasers

Looking into the ultrafast dynamics of electrons

Simulation of Kerr Lens Behavior in a Ti:Sapphire Oscillator with Symmetric and Asymmetric Resenator

Ultrashort Phase Locked Laser Pulses for Asymmetric Electric Field Studies of Molecular Dynamics

Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber

3.5 Cavities Cavity modes and ABCD-matrix analysis 206 CHAPTER 3. ULTRASHORT SOURCES I - FUNDAMENTALS

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

Lasers & Holography. Ulrich Heintz Brown University. 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1

Chapter9. Amplification of light. Lasers Part 2

CW and mode-locked operation of Yb 3+ -doped Lu 3 Al 5 O 12 ceramic laser

Optical Self-Organization in Semiconductor Lasers Spatio-temporal Dynamics for All-Optical Processing

IN RECENT YEARS, Cr -doped crystals have attracted a

High-power Cryogenic Yb:YAG Lasers and Optical Particle Targeting for EUV Sources *

Generation of high-energy, few-cycle optical pulses

Optical phase noise and carrier-envelope offset noise of mode-locked lasers

Generation and Applications of High Harmonics

Lasers and Electro-optics

High-power Cryogenic Yb:YAG Lasers and Optical Particle Targeting for EUV Sources *

Study on Bose-Einstein Condensation of Positronium

THz Electron Gun Development. Emilio Nanni 3/30/2016

Optical solitons and its applications

1. Introduction. 2. New approaches

The spectrum of electromagnetic waves stretches from radio waves to gamma rays (Fig. VIII-1).

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Multi-cycle THz pulse generation in poled lithium niobate crystals

Dark Soliton Fiber Laser

The structure of laser pulses

XUV frequency comb development for precision spectroscopy and ultrafast science

ULTRA-SHORT OPTICAL PULSE GENERATION WITH SINGLE-LAYER GRAPHENE

time is defined by physical processes

Laserphysik. Prof. Yong Lei & Dr. Yang Xu. Fachgebiet Angewandte Nanophysik, Institut für Physik

Hiromitsu TOMIZAWA XFEL Division /SPring-8

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

Survey on Laser Spectroscopic Techniques for Condensed Matter

Coherent control of light matter interaction

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

X-ray Free-electron Lasers

The Generation of Ultrashort Laser Pulses II

Quantum Electronics Laser Physics PS Theory of the Laser Oscillation

SECOND HARMONIC GENERATION IN PERIODICALLY POLED NONLINEAR CRYSTALS WITH 1064 nm GAUSSIAN LASER PULSES

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Nonlinear effects and pulse propagation in PCFs

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

DEVELOPMENT OF HIGH-POWER PICOSECOND FIBER-BASED ULTRAVIOLET SOURCE

Beam manipulation with high energy laser in accelerator-based light sources

Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates/fibers and their application to mode-locked fiber lasers

Nonlinear Dynamics of Quantum Cascade Laser in Ring Cavity

Final laser project. Two approaches. Case- study: pick a specific laser design, model. Survey: pick a general class of lasers

B 2 P 2, which implies that g B should be

Transcription:

Erzeugung und Anwendung ultrakurzer Laserpulse Generation and Application of Ultrashort Laser Pulses Prof. Ursula Keller ETH Zurich, Switzerland Festvortrag zur akademischen Feier aus Anlass der erstmaligen Verleihung des Young Researcher Award Erlangen Graduate School in Advanced Optical Technologies 7. Januar 2008 Ultrafast Laser Physics ETH Zurich

Keller group: Thank you Ultrafast solid-state lasers: High average power (ML thin-disk laser) Sergio Marchese, Cyrill Bär, Anna Enquist, Oliver Heckl, Dr. Thomas Südmeyer Ultrafast solid-state lasers: High pulse repetition rate Max Stumpf, Andreas Oehler, Selina Pekarek, Dr. Thomas Südmeyer Ultrafast surface-emitting semiconductor lasers (ultrafast VECSELs and MIXSELs) Deran Maas, Aude-Reine Bellancourt, Benjamin Rudin, Andreas Rutz, Martin Hoffmann, Dr. Yohan Barbarin, Dr. Thomas Südmeyer MBE and MOVPE growth in ETH clean room facility (FIRST-lab) Dr. Matthias Golling ETH FIRST Lab staff: Dr. Silke Schön (MBE), Dr. Emilio Gini (MOVPE) High field laser physics, attosecond pulse generation and science Dr. Lukas Gallmann, Dr. Amelle Zair, Dr. Claudio Cirelli Christian Erny, Petrissa Eckle, Mirko Holler, Florian Schlapper, Matthias Weger

Ultrafast laser physics (ULP) Time 1as 1 femtosecond = 1 fs = 10 15 s 1 attosecond = 1 as = 10 18 s Length 1am

Ultrafast laser physics (ULP) Time 1 femtosecond = 1 fs = 10 15 s 1 attosecond = 1 as = 10 18 s Pulse generation directly from laser oscillators: milliseconds to femtosecond regime 1as λ/c = 2.7 fs @800 nm Length 1am

Ultrafast laser physics (ULP) Time 1 femtosecond = 1 fs = 10 15 s 1 attosecond = 1 as = 10 18 s Pulse generation directly from laser oscillators: milliseconds to femtosecond regime 1as λ/c = 2.7 fs @800 nm Attosecond regime: High Harmonic Generation (HHG) VUV to soft-x-ray regime Strength plateau cutoff Harmonic order

Applications of ultrafast lasers Good time resolution (short pulses) measurements of fast processes High pulse repetition rates optical communication clocking and interconnects High peak intensity at moderate energies nonlinear optics precise material processing high field physics Broad optical spectrum frequency metrology (frequency comb) optical coherence tomography (OCT)

Applications of ultrafast lasers Good time resolution (short pulses) measurements of fast processes Time resolution limited by pulse duration similar to flash photography: High pulse repetition rates optical communication clocking and interconnects High peak intensity at moderate energies nonlinear optics precise material processing high field physics Broad optical spectrum frequency metrology (frequency comb) optical coherence tomography (OCT) Triggered flash lamps for 1 µs exposure time 1964 by Harold E. Edgerton, MIT

Applications of ultrafast lasers Good time resolution (short pulses) measurements of fast processes Time resolution limited by pulse duration (e.g. flash photography) Harold E. Edgerton, MIT High pulse repetition rates optical communication clocking and interconnects High peak intensity at moderate energies nonlinear optics precise material processing high field physics Broad optical spectrum frequency metrology (frequency comb) optical coherence tomography (OCT)

Applications of ultrafast lasers Good time resolution (short pulses) measurements of fast processes Laser display (RGB source): High pulse repetition rates optical communication clocking and interconnects Optical communication: High peak intensity at moderate energies nonlinear optics precise material processing high field physics Optical clocking and interconnects: Broad optical spectrum frequency metrology (frequency comb) optical coherence tomography (OCT)

Applications of ultrafast lasers Good time resolution (short pulses) measurements of fast processes Precise material processing: High pulse repetition rates optical communication clocking and interconnects High field physics: attosecond science intensity spectral comb High peak intensity at moderate energies nonlinear optics precise material processing high field physics + ν pulse train t Broad optical spectrum frequency metrology (frequency comb) optical coherence tomography (OCT) + just 1 (or few) recollision(s)

Applications of ultrafast lasers Good time resolution (short pulses) measurements of fast processes OCT: High pulse repetition rates optical communication clocking and interconnects 30 fs Pulsdauer -> 10 µm axiale Auflösung High peak intensity at moderate energies nonlinear optics precise material processing high field physics 10 fs Pulsdauer -> 3 µm axiale Auflösung Broad optical spectrum frequency metrology (frequency comb) optical coherence tomography (OCT) Prof. J. G. Fujimoto, MIT OCT image of retina (around fovea) Early detection of retinal detachment

Applications of ultrafast lasers Good time resolution (short pulses) measurements of fast processes Optical clock (>100 THz): time is defined by a certain number of oscillations within a given time interval: the higher the frequency the more accurately the time interval is defined High pulse repetition rates optical communication clocking and interconnects 0.001 Hz: Sand clock 1 Hz: Mechanical clock High peak intensity at moderate energies nonlinear optics precise material processing high field physics Broad optical spectrum frequency metrology (frequency comb) optical coherence tomography (OCT) 10 MHz: Quartz oscillator Piezoelectric crystal resonator 9 GHz: Atomic clock GPS

Applications of ultrafast lasers Good time resolution (short pulses) measurements of fast processes High pulse repetition rates optical communication clocking and interconnects High peak intensity at moderate energies nonlinear optics precise material processing high field physics Optical clock (>100 THz): time is defined by a certain number of oscillations per fixed time interval: higher frequency more accurate clock optical frequency: too high for counting frequency comb of ultrafast laser: detector measures the difference in frequency = beating signal beating signal measures the distance of unknown frequency to the lines in the frequency comb optical frequency becomes measurable Potential measurements: are fundamental constants constant? Frequency comb Detector Broad optical spectrum frequency metrology (frequency comb) optical coherence tomography (OCT) Unknown frequency Detector

Ultrashort pulse generation with modelocking A. J. De Maria, D. A. Stetser, H. Heynau Appl. Phys. Lett. 8, 174, 1966 200 ns/div 50 ns/div Nd:glass first passively modelocked laser Q-switched modelocked 1960 1970 1980 1990 2000 Year Flashlamp-pumped solid-state lasers Diode-pumped solid-state lasers (first demonstration 1963)

Ultrashort pulse generation with modelocking FWHM pulse width (sec) 10 ps 1 ps 100 fs 10 fs 1 fs 1960 Science 286, 1507, 1999 1970 dye laser 27 fs with!10 mw 1980 Year compressed 1990 Ti:sapphire laser!5.5 fs with!200 mw 2000 1960 1970 1980 1990 2000 Year A. J. De Maria, D. A. Stetser, H. Heynau Appl. Phys. Lett. 8, 174, 1966 Nd:glass first passively modelocked laser Q-switched modelocked 200 ns/div 50 ns/div E. P. Ippen, C. V. Shank et al, Appl. Phys. Lett. 21, 348, 1972 J. A. Valdmanis et al., Opt. Lett. 10, 131, 1985 (27 fs) R. L. Fork et al., Opt. Lett. 12, 483, 1987 (6 fs)

Ultrashort pulse generation with modelocking FWHM pulse width (sec) 10 ps 1 ps 100 fs 10 fs 1 fs 1960 Science 286, 1507, 1999 1970 dye laser 27 fs with!10 mw 1980 Year compressed 1990 Ti:sapphire laser!5.5 fs with!200 mw 2000 1960 1970 1980 1990 2000 Year A. J. De Maria, D. A. Stetser, H. Heynau Appl. Phys. Lett. 8, 174, 1966 KLM 200 ns/div 50 ns/div Kerr lens modelocking (KLM): D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 16, 42, 1991 Nd:glass first passively modelocked laser Q-switched modelocked

Kerr Lens Modelocking (KLM) First Demonstration: D. E. Spence, P. N. Kean, W. Sibbett, Optics Lett. 16, 42, 1991 Explanation: U. Keller et al., Optics Lett. 16, 1022, 1991 Advantages of KLM very fast thus shortest pulses very broadband thus broader tunability Disadvantages of KLM not self-starting critical cavity adjustments (operated close to the stability limit) saturable absorber coupled to cavity design (limited application)

FWHM pulse width (sec) 100 fs 10 fs 1 fs 1960 Frontier: Ultrashort pulse generation First ML Laser 1970 Ti:Sapphire 1980 Year KLM 1990 Chirped Mirror CEO control 1960 1970 1980 1990 2000 10 ps dye laser 27 fs with!10 mw Ti:sapphire laser!5.5 fs with!200 mw 1 ps Science 286, 1507, 1999 compressed 2000 c

Carrier-Envelope Offset (CEO) Phase H.R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller Appl. Phys. B 69, 327 (1999) Mode-locked Pulse Train CEO Phase or CEP t Controlled in laser oscillator

Historical evolution for SESAMs First intracavity saturable absorber - April 1, 1992 R top A-FPSA Antiresonant Fabry-Perot Saturable Absorber U. Keller et al., Optics Lett., vol. 17, 505, 1992

KLM vs. Soliton modelocking loss loss gain gain pulse pulse time Kerr lens modelocking (KLM) Fast saturable absorber D. E. Spence, P. N. Kean, W. Sibbett Opt. Lett. 16, 42, 1991 time Soliton modelocking not so fast saturable absorber F. X. Kärtner, U. Keller, Opt. Lett. 20, 16, 1995

Ultrashort pulse generation with modelocking A. J. De Maria, D. A. Stetser, H. Heynau Appl. Phys. Lett. 8, 174, 1966 Q-switching instabilities continued to be a problem until 1992 Nd:glass first passively modelocked laser Q-switched modelocked 200 ns/div 50 ns/div KLM SESAM First passively modelocked (diode-pumped) solid-state laser without Q-switching U. Keller et al. Opt. Lett. 17, 505, 1992 IEEE JSTQE 2, 435, 1996 Nature 424, 831, 2003 1960 1970 1980 1990 2000 Year Flashlamp-pumped solid-state lasers Diode-pumped solid-state lasers (first demonstration 1963)

SESAM technology a key technical know-how U. Keller et al. Opt. Lett. 17, 505, 1992 IEEE JSTQE 2, 435, 1996 Progress in Optics 46, 1-115, 2004 Nature 424, 831, 2003 Gain Output coupler SESAM SEmiconductor Saturable Absorber Mirror self-starting, stable, and reliable modelocking of diode-pumped ultrafast solid-state lasers

High pulse repetition rate Gain Output coupler SESAM Short cavity length = high pulse repetition rate Pulse repetition rate is given by the cavity round trip time. 1 GHz: cavity round trip time 1 ns and a cavity length 15 cm. 1 THz: cavity round trip time 1 ps and a cavity length 150 µm. No high speed electronics needed.

Compact high repetition rate lasers Diode-pumped solid-state lasers: 77-GHz SESAM modelocked Er:Yb:glass laser Electron. Lett. 43, 32, 2007 Autocorr. signal (a.u.) 1.0 0.5 3.2 ps 0.0-20 -10 0 10 Time delay (ps) (Optically pumped) semiconductor lasers: Physics Report 429, 67-120, 2006 Spectral intensity (db) 0-10 -20-30 -40-50 -60 1532 1534 1536 1538 Wavelength (nm) Vertical integration of gain and absorber into the same wafer Appl. Phys. B 88, 493, 2007 (b) 1540 Passively modelocked VECSEL vertical external cavity surface emitting laser MIXSEL modelocked integrated external-cavity surface emitting laser

High average power lasers DP-SSL: diode-pumped solid-state lasers 11 µj pulse energy from a SESAM modelocked Yb:YAG thin disk laser: >10 000 times improvement in diode-pumped lasers during the last 15 years

Challenges for high power femtosecond oscillators Femtosecond pulse formation at high power levels pulse forming element must sustain high intracavity power prevent instabilities (e.g. Q-switched modelocking) SESAM for pulse formation stable modelocking Q-switched modelocking Laser technology operating at >100 W with Gaussian transverse beam profile (TEM 00 ) prevent aberrations, provide cooling, Resonator design for stability towards thermal lensing Thin disk laser head for high power levels

Progress in high power modelocked lasers First cw modelocked thin-disk laser (Yb:YAG): 16 W, 730 fs, 0.5 MW J. Aus der Au et al., Opt. Lett. 25, 859 (2000) Power scaling 80 W, 705 fs, 1.75 MW E. Innerhofer et al., Laser Phys. Lett. 1, 1 2004

Yb:YAG Thin-Disk Laser Head A. Giesen et al., Appl. Phys. B 58, 365, 1994 constructed by TRUMPF Laser GmbH+Co. KG (Germany) Thickness of Yb:YAG disk: 100 µm (absorption length a few mm - need multiple passes of pump for efficient absorption) Diameter of pump spot: 2.8 mm Pump power: up to 370 W @ 940 nm 16 passes of pump radiation through disk

Thin disk laser: 57-MHz setup Thin disk as folding mirror SESAM and output coupler as end mirror Brewster plate for linear polarization Negative group delay dispersion from GTItype dispersive mirrors

80 W from Yb:YAG Laser Autocorrelation Optical spectrum SH intensity 705 fs -4-2 0 2 Time delay (ps) Spectral intensity 1.57 nm 1027 1030 1033 Wavelength (nm) P avg = 80 W τ p = 705 fs = 57 MHz f rep E p = 1.4 µj P peak = 1.75 MW Δν τ p = 0.32 First modelocked (ML) thin-disk, 16 W: Optics Lett. 25, 859, 2000 60 W ML Thin Disk: E. Innerhofer et al., Optics Lett. 28, 367, 2003 80 W ML Thin Disk: F. Brunner et al., Optics Lett. 29, 1921, 2004

Laser setup and results

Laser setup and results MPC-dimensions 80 x 15 cm 2

Laser setup and results MPC-dimensions 80 x 15 cm 2 Yb:YAG laser head 9% Yb-doped YAG d disk 200 µm, w pump 1.4 mm P pump up to 230 W @ 940 nm (TGSW, Stuttgart, Germany) SESAM F sat 115 µj/cm 2 R 0.5 % 13 dispersive mirrors -550/1000 fs 2 GDD per bounce -20000 fs 2 GDD per roundtrip Brewster plate (SPM + linear pol.) 1 mm thick fused silica Output coupler 10% at 1030 nm

Laser setup and results in air atmosphere no stable mode locking achieved instabilities & multiple pulses

Laser setup and results in air atmosphere no stable mode locking achieved instabilities & multiple pulses helium flooding in helium atmosphere P avg = 45 W f rep = 4 MHz E p =11.3 µj pulse energy limited by: strong saturation of the SESAM air-tightness of the helium box

Laser setup and results in air atmosphere no stable mode locking achieved instabilities & multiple pulses helium flooding in helium atmosphere P avg = 45 W f rep = 4 MHz E p =11.3 µj pulse energy limited by: strong saturation of the SESAM air-tightness of the helium box λ = 1030 nm Δλ = 1.56 nm M 2 = 1.1 P peak = 12.5 MW τ p = 791 fs τ p Δν = 0.35 (ideal 0.315)

Progress in high power modelocked lasers First cw modelocked thin-disk laser (Yb:YAG): 16 W, 730 fs, 0.5 MW J. Aus der Au et al., Opt. Lett. 25, 859 (2000) Power scaling 80 W, 705 fs, 1.75 MW E. Innerhofer et al., Laser Phys. Lett. 1, 1 2004 Pulse duration reduced with different laser material Yb:KYW 22 W, 240 fs, 3.3 MW F. Brunner et al., Opt. Lett. 27, 1162 (2002)

Yb-doped tungstate laser: Yb:KYW {Yb:KY(WO 4 ) 2 } N. V. Kuleshov et al., Opt. Lett. 22, 1317 (1997) Emission cross section (10-20 cm 2 ) Yb:KYW Yb:YAG Yb:GdCOB Yb:glass Wavelength (nm) broad emission spectrum potential for 100-fs pulse large emission cross section lower tendency for QML small quantum defect (4%) reduced heating effects good thermal conductivity, κ = 3.3 W/Km efficient cooling

Yb-doped tungstate laser: Yb:KYW {Yb:KY(WO 4 ) 2 } N. V. Kuleshov et al., Opt. Lett. 22, 1317 (1997) Emission cross section (10-20 cm 2 ) Yb:KYW Yb:YAG Yb:GdCOB Yb:glass Wavelength (nm) broad emission spectrum potential for 100-fs pulse large emission cross section lower tendency for QML small quantum defect (4%) reduced heating effects good thermal conductivity, κ = 3.3 W/Km efficient cooling

High power SESAM modelocked Yb:KYW laser F. Brunner et al., Opt. Lett. 27, 1162 (2002) Autocorrelation Optical spectrum SH Intensity τ p = 240 fs Spectral intensity 6.9 nm Time delay (ps) Wavelength (nm) P avg = 22 W E p = 0.9 µj τ p = 240 fs P peak = 3.3 MW f rep = 25 MHz linear polarisation M 2 = 1.1 P pump = 100 W

Progress in high power modelocked lasers First cw modelocked thin-disk laser (Yb:YAG): 16 W, 730 fs, 0.5 MW J. Aus der Au et al., Opt. Lett. 25, 859 (2000) Power scaling 80 W, 705 fs, 1.75 MW E. Innerhofer et al., Laser Phys. Lett. 1, 1 2004 Pulse duration reduced with different laser material Yb:KYW 22 W, 240 fs, 3.3 MW F. Brunner et al., Opt. Lett. 27, 1162 (2002) even shorter pulse duration? No laser material

Yb:YAG thin disk laser Fiber compression system ORC Southampton Incident on fiber P peak = 1.2 MW τ p = 760 fs E p_inc = 1 µj After compression P peak = 16 MW τ p = 24 fs E p_inc = 0.6 µj T. Südmeyer et al, Optics Lett. 28, 1951 (2003), E. Innerhofer, TuA3, ASSP 2004

Applications of Multi-GHz Picosecond Laser Sources Frequency doubling, RGB Systems Optical Clocking Telecommunications

High pulse repetition rate Gain Output coupler SESAM Short cavity length = high pulse repetition rate Pulse repetition rate is given by the cavity round trip time. 1 GHz: cavity round trip time 1 ns and a cavity length 15 cm. 1 THz: cavity round trip time 1 ps and a cavity length 150 µm. No high speed electronics needed.

High pulse repetition rate sources 10 4 Average Power, mw 10 3 10 2 10 1 10 0 solid-state lasers harmonically modelocked fiber lasers Semiconductor diode lasers 1 10 100 1000 Pulse repetition rate, GHz

High pulse repetition rate sources 10 4 Average Power, mw 10 3 10 2 10 1 10 0 solid-state lasers Nd:Vanadate harmonically modelocked fiber lasers Semiconductor diode lasers 1 10 100 1000 Pulse repetition rate, GHz

Quasi-Monolithic Cavity Setup L. Krainer et al., Electron. Lett. 35, 1160, 1999 (29 GHz) APL 77, 2104, 2000 (up to 59 GHz), Electron. Lett. 36, 1846, 2000 (77 GHz) IEEE J. Quant. Electron. 38, 1331, 2002 (10 to 160 GHz) 4 Crystal lengths: 440 µm - 2.3 mm (FSR ~ 160-29 GHz) Nd:YVO 4 doping: 3 % (90 µm absoption length)

High pulse repetition rate sources 10 4 Average Power, mw 10 3 10 2 10 1 10 0 solid-state lasers Nd:Vanadate harmonically modelocked fiber lasers Semiconductor diode lasers 1 10 100 1000 Pulse repetition rate, GHz ERGO (Er,Yb:glass)

All-optical 77-GHz pulse generation Autocorr. signal (a.u.) 1.0 0.5 3.2 ps 0.0-20 -10 0 10 Time delay (ps) 77 GHz at 1538.8 nm (standing wave cavity length 1.9 mm) 3.2 ps with average output power of 10 mw, TBP 0.37 (nearly transform limited) S. C. Zeller et al, Electron. Lett., vol. 43, pp. 32, 2007 Spectral intensity (db) 0-10 -20-30 -40-50 -60 1532 1534 1536 1538 Wavelength (nm) (b) 1540

Motivation for semiconductor lasers: Wafer scale integration D. Lorenser et al., Appl. Phys. B 79, 927, 2004 Passively modelocked VECSEL vertical external cavity surface emitting laser Review: Physics Reports 429, 67-120, 2006 SESAM MIXSEL modelocked integrated external-cavity surface emitting laser

High pulse repetition rate sources Average Power, mw 10 4 10 3 10 2 10 1 10 0 VECSEL solid-state lasers Nd:Vanadate harmonically modelocked fiber lasers Semiconductor diode lasers 1 10 100 1000 Pulse repetition rate, GHz ERGO (Er,Yb:glass)

How to Achieve High Powers Edge-emitting lasers Stripe width is limited by beam quality requirements for mode locking Nonlinearity and facet damage limit the peak powers Surface-emitting lasers Electrical pumping: ring electrode limits size Optical pumping: large area with homogeneous inversion External cavity needed (repetition rate 1-100 GHz) Optically pumped Vertical-External-Cavity Surface-Emitting Laser (VECSEL)

CW optically pumped VECSEL OP-VECSEL = Optically Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Laser M. Kuznetsov et al., IEEE Photon. Technol. Lett. 9, 1063 (1997) Semiconductor gain structure with reduced thickness Pump: high power diode bar External cavity for diffraction-limited output

4.4 W cw VECSEL (950-960 nm) Output vs. Input M 2 measurement MOVPE, 7 InGaAs/GaAsP strain-compensated Output coupling 1.5% Heat sink temperature -5 ºC 4.4 W out at 16.6 W pump power, 26% efficiency 34% slope efficiency M 2 = (1.13,1.02) in (x,y) direction 8-W VECSEL with M 2 < 1.8 from Osram: S. Ludgen et al., APL 82 (21), 3620 (2003)

Electrical or optical pumping? Medium to high powers with good beam quality (COHERENT) (NOVALUX) Electrically pumped Medium power: up to 500 mw (TEM 00 ) Optically pumped High power: up to 30 W (M 2 = 3)

OP-VECSEL milestones First room temperature VECSEL: 20 µw average power: J.V. Sandusky et al., IEEE Photon. Technol. Lett. 8, 313 (1996) High-power cw operation: 0.5 W in TEM 00 beam: M. Kuznetsov et al., IEEE Photon. Technol. Lett. 9, 1063 (1997) 1.5 W: W. J. Alford et al., J. Opt. Soc. Am. B 19, 663 (2002) 30 W: J. Chilla et al., Proc. SPIE 5332, 143 (2004) Passive mode locking with SESAM: 20 mw: S. Hoogland et al., IEEE Photon. Technol. Lett. 12, 1135 (2000) 200 mw: R. Häring et al., Electron. Lett. 37, 766 (2001) 950 mw: R. Häring et al., IEEE JQE 38, 1268 (2002) 2.1 W, 4.7 ps, 4 GHz, 957 nm: A. Aschwanden et al., Opt. Lett. 30, 272 (2005) Modelocked VECSEL review: Physics Reports 429, 67, 2006

VECSEL Modelocking < 20 GHz gain structure QW-SESAM loss gain up to 50 GHz demonstrated gain structure QD-SESAM pulse time First passively mode-locked VECSEL: S. Hoogland et al., IEEE Phot. Tech. Lett., vol. 12, pp. 1135-1138, 2000. Highest output power (2.1 W): A. Aschwanden et al., Opt. Lett., vol. 30, pp. 272-274, 2005. MIXSEL

VECSEL Modelocking < 20 GHz gain structure QW-SESAM up to 50 GHz demonstrated gain structure QD-SESAM First passively mode-locked VECSEL: S. Hoogland et al., IEEE Phot. Tech. Lett., vol. 12, pp. 1135-1138, 2000. Highest output power (2.1 W): A. Aschwanden et al., Opt. Lett., vol. 30, pp. 272-274, 2005. QD-SESAM modelocking (50 GHz): D. Lorenser et al., IEEE J. Quantum Electron., vol. 42, pp. 838-847, 2006. MIXSEL

From VECSEL to MIXSEL < 20 GHz gain structure QW-SESAM up to 50 GHz demonstrated gain structure QD-SESAM QDs QWs MIXSEL modelocked integrated external-cavity surface emitting laser

Review June 2006: U. Keller et al., Physics Reports 429, 67, 2006 High-power ML VECSELs (up to 2.1 W at 4 GHz) High peak power (100 W) due to short pulses (few ps) ML VECSELs at 1.3 µm and 1.5 µm InGaAsP-based: 3 GHz, 120 mw, 3.2 ps All GaInNAs-based: 6 GHz, 57 mw, 18.7 ps High-repetition-rate ML VECSELs (up to 100 mw at 50 GHz) Much higher average output power directly from oscillator than ML edge-emitting semiconductor lasers Demonstration of 1:1 mode locking proves the feasibility of integrating absorber and gain in same structure Applications: optical clocking of integrated circuits Future work Integration of absorber into gain structure Electrical pumping

What is special about ultrafast solid-state lasers? FWHM pulse width (sec) 10 ps 1 ps 100 fs 10 fs 1 fs 1960 1970 dye laser 27 fs with!10 mw 1980 Year compressed 1990 Ti:sapphire laser!5.5 fs with!200 mw 2000 c Mode-locked pulse train Pulse envelope A(t) Electric field: λ/c = 2.7 fs @800 nm E t ( ) = A t ( ) ( )exp i! c t + i" 0 (t) T R CEO phase Δϕ 0 f CEO =!" 0 2#T R t World record results in ultrashort pulse generation: two-optical-cycle regime ( 5 fs) using KLM and chirped mirrors, Science 286, 1507, 1999 Carrier envelope offset (CEO) control and stabilization using frequency combs: Appl. Phys. B 69, 327, 1999 and IEEE JSTQE 9, 1030, 2003 f 1 = f CEO + nf rep

What is special about ultrafast solid-state lasers? U. Keller et al. Opt. Lett. 17, 505, 1992 IEEE JSTQE 2, 435, 1996 Progress in Optics 46, 1-115, 2004 Nature 424, 831, 2003 Gain SESAM SEmiconductor Saturable Absorber Mirror self-starting, stable, and reliable modelocking of diode-pumped ultrafast solid-state lasers Output coupler Solved Q-switching problem for passively modelocked diode-pumped solid-state lasers (after more than 25 years) - important for real-world applications Pushed pulse energy of diode-pumped ultrafast solid-state lasers by four orders of magnitude: Latest result 11 µj, 791 fs, 45 W, 4 MHz Pushed pulse repetition rate of diode-pumped solid-state lasers by more than two orders of magnitude: 160 GHz at 1 µm and 77 GHz at 1.5 µm Passively modelocked vertical external-cavity surface-emitting laser (VECSEL): for high pulse repetition rates, power scaling to 2.1 W, full wafer-scale integration Invited review paper in Physics Reports 429, pp. 67-120, 2006 MIXSEL - a new class of ultrafast semiconductor lasers

Keller group: Thank you Ultrafast solid-state lasers: High average power (ML thin-disk laser) Sergio Marchese, Cyrill Bär, Anna Enquist, Oliver Heckl, Dr. Thomas Südmeyer Ultrafast solid-state lasers: High pulse repetition rate Max Stumpf, Andreas Oehler, Selina Pekarek, Dr. Thomas Südmeyer Ultrafast surface-emitting semiconductor lasers (ultrafast VECSELs and MIXSELs) Deran Maas, Aude-Reine Bellancourt, Benjamin Rudin, Andreas Rutz, Martin Hoffmann, Dr. Yohan Barbarin, Dr. Thomas Südmeyer MBE and MOVPE growth in ETH clean room facility (FIRST-lab) Dr. Matthias Golling ETH FIRST Lab staff: Dr. Silke Schön (MBE), Dr. Emilio Gini (MOVPE) High field laser physics, attosecond pulse generation and science Dr. Lukas Gallmann, Dr. Amelle Zair, Dr. Claudio Cirelli Christian Erny, Petrissa Eckle, Mirko Holler, Florian Schlapper, Matthias Weger