Quantum Information and Metrology with RF Traps at NIST D. J. Wineland, NIST, Boulder, CO

Similar documents
Quantum information processing with trapped ions

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

Ion trap quantum processor

Motion and motional qubit

Zero-point cooling and low heating of trapped 111 Cd + ions

Kenneth Brown, Georgia Tech

Quantum Logic Spectroscopy and Precision Measurements

Lecture 11, May 11, 2017

Trapped ion quantum control. Jonathan Home IDEAS league school,

arxiv: v1 [quant-ph] 10 Jul 2007

Ion trap quantum processor

Which technology? Quantum processor. Cavity QED NMR. Superconducting qubits Quantum dots. Trapped atoms/ions. A. Ekert

The trapped-ion qubit tool box. Roee Ozeri

arxiv: v2 [quant-ph] 4 Nov 2012

Cooling Using the Stark Shift Gate

Single atom laser-based clocks D. J. Wineland, NIST, Boulder. Hg + ion

Quantum information processing with trapped ions

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS

Quantum computation with trapped ions

A SINGLE-ION STOCHASTIC QUANTUM PROCESSOR

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions

Brian King. SQuInT summer school June, Dept. Physics and Astronomy, McMaster University

Rydberg excited Calcium Ions for quantum interactions

Quantum information processing with trapped atoms

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

Towards Quantum Computation with Trapped Ions

DEMONSTRATION OF A SCALABLE, MULTIPLEXED ION TRAP FOR QUANTUM INFORMATION PROCESSING

«Demonstration of a small programmable quantum computer with atomic qubits» Philip Rhyner, Colin Kälin

Quantum computer: basics, gates, algorithms

Quantum Computation with Neutral Atoms

Cold Ions and their Applications for Quantum Computing and Frequency Standards

arxiv: v2 [quant-ph] 18 Mar 2011

arxiv:quant-ph/ v1 29 Apr 2003

arxiv: v1 [quant-ph] 9 May 2011

Ion crystallisation. computing

Quantum computing hardware

Precision measurements in ion traps using slowly moving standing waves

Quantum Computing with Trapped Ion Hyperfine Qubits

Optimum electrode configurations for fast ion separation in microfabricated surface ion traps

The Nobel Prize in Physics 2012

QuAMP Towards large scale quantum informa4on processing: Sta4c magne4c field gradient quantum gates and microfabricated ion traps

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions

1. Introduction. 2. New approaches

arxiv: v3 [quant-ph] 30 Jun 2011

arxiv:quant-ph/ v2 22 Nov 2005

High-fidelity simulations of ion trajectories in miniature ion traps using the boundary-element method

Reliable transport through a microfabricated X-junction surface-electrode ion trap

Toward scalable ion traps for quantum information processing

Driving Qubit Transitions in J-C Hamiltonian

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Electron EDM Searches

Short Course in Quantum Information Lecture 8 Physical Implementations

Distributing Quantum Information with Microwave Resonators in Circuit QED

Primary Frequency Standards at NIST. S.R. Jefferts NIST Time and Frequency Division

Optomechanics and spin dynamics of cold atoms in a cavity

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

A central problem in cryptography: the key distribution problem.

Rydberg excited Calcium Ions for quantum interactions. Innsbruck Mainz Nottingham

Why ultracold molecules?

Quantum Computing with neutral atoms and artificial ions

Error Compensation of Single-Qubit Gates in a Surface Electrode Ion Trap Using Composite Pulses. Abstract

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

Investigating a qubit candidate: Spectroscopy on the S 1/2 to D 5/2 transition of a trapped calcium ion in a linear Paul trap

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara

Experimental Demonstration of Spinor Slow Light

Quantum Computation with Neutral Atoms Lectures 14-15

arxiv: v1 [quant-ph] 15 Jul 2010

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris

Errors in trapped-ion quantum gates due to spontaneous photon scattering

Advanced Workshop on Nanomechanics September Quantum Measurement in an Optomechanical System

arxiv: v2 [quant-ph] 9 Jan 2009

Lecture 8, April 12, 2017

Ultracold molecules - a new frontier for quantum & chemical physics

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks

Quantum Entanglement Generation in Trapped Ions Using Coherent and Dissipative Methods

The Magnetic Moment of the Proton. A. Mooser for the BASE collaboration

Superconducting Resonators and Their Applications in Quantum Engineering

Scalable creation of multi-particle entanglement

Supercondcting Qubits

High-Fidelity Entangling Gates with Trapped-Ions

Controlling the Interaction of Light and Matter...

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations.

Non-linear driving and Entanglement of a quantum bit with a quantum readout

arxiv:quant-ph/ v2 6 Jul 2005

In-Situ Observation of the Phase of a Microwave Field using Single-Atom Nonlinear Optics

Single Microwave-Photon Detector based on Superconducting Quantum Circuits

Graduate Class, Atomic and Laser Physics: Rabi flopping and quantum logic gates

ION TRAPS STATE OF THE ART QUANTUM GATES

arxiv: v2 [physics.atom-ph] 16 Feb 2017

Ion-trap quantum information processing: experimental status

Joint Quantum Centre Durham/Newcastle. Durham

arxiv:quant-ph/ v3 19 May 1997

Quantum simulation of spin models on an arbitrary lattice with trapped ions

Single Atom wants to meet Single Photon Controlled Processes with Neutral Atoms

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Controlling Spin Qubits in Quantum Dots. C. M. Marcus Harvard University

Manipulating Single Atoms

Transcription:

Quantum Information and Metrology with RF Traps at NIST D. J. Wineland, NIST, Boulder, CO

NIST- Boulder ions: J. Amini (PostDoc, Berkeley) J. C. Bergquist (NIST) S. Bickman (PostDoc, Yale) & M. Biercuk (GTRI) % R. B. Blakestad (student, CU) J. J. Bollinger (NIST) R. Bowler (student, CU) J. Britton (PostDoc, CU) K. Brown (PostDoc, U. Md.) J. Chou (PostDoc, Cal Tech) Y. Colombe (PostDoc, ENS) D. Hanneke (PostDoc, Harvard) J. Home (PostDoc, Oxford) @ D. Hume (student, CU) W. Itano (NIST) J. D. Jost (PostDoc, CU) E. Knill (NIST)* D. Leibfried (NIST) D. Leibrandt (PostDoc, MIT) Y. Lin (student, CU) C. Ospelkaus (PD, Hamburg) T. Rosenband (NIST) T R Tan (Student, CU) M. Thorpe (PostDoc, CU) H. Uys (PostDoc, U. Arizona) # A. VanDevender (PD, U. Illinois) U. Warring (PD, Heidelberg) A. Wilson (guest researcher) D. J. Wineland (NIST) J. Yao (student, CU) * NIST computation division, Boulder Current address: Optical freq. meas. group, NIST Current address: Georgia Tech. Res. Inst. # Current address: CSIR, South Africa % Current address: University of Sydney & Current address: Vescent Photonics, Denver @ Current address: ETH, Zürich Current address: JQI, U. Md.

Summary: scaling to larger systems (increase fidelity and number) - best 2-qubit gates (Innsbruck) ε < 0.01 - ion arrays * transporting quantum information * trap fabrication & steps toward simulation * qubit detection (integrated optics) * low-temperature traps * scaling with gates - alternate strategies?, e.g., microwave gates metrology, e.g. atomic clocks prospects

Multiplexed trap arrays Scale up? Mode competition example: axial modes, N = 4 ions a (C.O.M.) b (stretch) c (Egyptian) d (stretch-2) Fluorescence counts 60 40 20 b+c 2b,a+c d a+b c 2a b c-a a b-a carrier axial modes only b-a a c-a b 2a c a+b d 2b,a+c b+c mode amplitudes artiste: D. Leibfried -15-10 -5 0 5 10 15 Raman Detuning δ R (MHz)

Examples: Linear arrays: NIST (M. Rowe et al., Quant. Inf. Comp. 2, 257 (2002)) Traps with junctions (2-D): S. A. Schulz et al., New J. Phys. 10, 045007 (2008) Schmidt-Kaler group W. Hensinger et al., (Monroe group) Appl. Phys. Lett. 88, 034101 (2006) R. Blakestad et al., (NIST) PRL 102, 153002 (2009)

Pseudopotential near junction 0.3 ev Maxwell: harmonic confinement pseudopotential bumps (J. H. Wesenberg, PRA 78, 063410 (2008)) primary (R. heating Blakestad mechanisms et al., identified PRL RF noise 102, 153002 at Ω RF (2009)) ± ω z DAC updating rate heating < 1 quantum/transfer (R. Blakestad et al., PRL 102, 153002 (2009))

Surface-electrode traps repeatable component library two-layer construction with vias backside loading transport in linear sections and through Y junctions Gold on Quartz 1 mm ~150 zone racetrack (J. Amini et al. New J. Phys. 12, 033031 (2010))

Surface traps one route to complex simulations More general Heisenberg/Ising-type couplings : like two qubit-gates R. Schmied, J. Wesenberg, D. Leibfried PRL 102, 233002 (2009)

Integrated Optics Problem with ions: charging of optics evaporated gold quartz substrate quartz fiber NA = 0.37, 2.1% collection η(fiber) = 0.3 x η(multi-element lens, NA = 0.5) photo Control height with differential RF Aaron VanDevender, Yves Colombe et al., PRL 105, 023001 (2010) (in collaboration with Sandia National Labs)

Cold Trap (4 K) Kenton Brown, Christian Ospelkaus, Yves Colombe, Andrew Wilson LHe Reservoir Radiation shield Ion trap Laser beam ports Schwarzschild (reflective) imaging optics vacuum Pillbox (bake at 150 C) CCD and detection (PMT)

~ 20 cm ion lifetime ((Be + )*+ H 2 BeH + + H apparently eliminated) good (RF) qubit flopping (F = 2,m F = -2 F = 1,m F = -1 ) 8 after ~ 500 flops 6 5-zone test trap (Au on X-tal 4 quartz) 2 40 µm 0 25 50 75 100 τ (µs) 4900 4925 4950 4975 5000 (backside illumination)

Low heating (sometimes) S E (ω): spectral density of electric-field fluctuations GaAS U. Mich. Be +, Mg + (NIST) surface electrode traps Cadmium T = 150 K U. Mich. Strontium @ T = 4 K (MIT) NIST 4 K surface trap X-trap Deslauriers et al. PRL 97 (2006) and R. J. Epstein, et al. PRA 76 033411-1 (2007)

Coupling ions in separate wells τ exchange d 3 d 5-zone 4-wire surface-electrode test trap (Au on crystaline quartz) 40 µm generalization of quantum-logic spectroscopy (D. Heinzen, DJW, PRA 42 2977 (1990)) step towards coupling to other quantum systems new entanglement schemes precursor to arrays for simulation (e.g. Schmied, Wesenberg, Leibfried PRL 102, 233002 (09)) trap photo, PPT ions (backside illumination) T 4 K 4.125 4.12 Be + ions, d = 40 µm, f z = 4.1 MHz 6 thermal state transfer n destination ion 4.115 4.11 3 khz n 3 4.105 4.1 τ coupling (µs) 400 800

Scaling with gates Scale up? Mode competition example: axial modes, N = 4 ions a (C.O.M.) b (stretch) c (Egyptian) d (stretch-2) Fluorescence counts 60 40 20 b+c 2b,a+c d a+b c 2a b c-a qubit packet 24 Mg + 9 Be + a b-a carrier axial modes only qubit ion refrigerator ion -15-10 -5 0 5 10 15 Raman Detuning δ R (MHz) b-a a c-a b 2a c a+b d 2b,a+c b+c mode amplitudes

hybrid qubit system F, m F 9 Be + 2 S 1/2 Hyperfine levels B = 119.64 G ~1.0 GHz 103 MHz 69 MHz

hybrid qubit system qubit for memory, transport, rotations Magnetic-fieldindependent manifold Coherence time ~ 15 s C. Langer, et al, Phys. Rev. Lett. 95 060502 (2005)

hybrid qubit system qubit for two-qubit (phase) gates

Programmable (universal) 2-qubit quantum processor (David Hanneke, Jonathan Home, John Jost et al., Nature Physics 6, 13 (2010).) Theory: arbitrary unitary U (SU4): B. Kraus and J. I. Cirac, Phys. Rev. A 63 062309 (2001) V. V. Shende, et al, Phys. Rev. A 69 062321 (2004) qubit 1 qubit 2 Experiment: phase gates A B plus, laser cooling 160 randomly chosen operators U, apply to average final state fidelity = 79.1(4.5)

extension: entangled mechanical oscillators 240 μm 4 μm A B John Jost, Jonathan Home, Jason Amini, David Hanneke et al., Nature, 459, 683 (2009)

Alternateive strategies: RF magnetic field gates? Why? Get rid of the lasers! static magnetic field gradient: Wunderlich group (Siegen): Adv. At. Mol. Opt. Phys. 49, 295 (2003) M. Johanning et al., PRL 102, 073004 (2009) Chuang group (MIT): S. Wang et al., Appl. Phys. Lett. 94, 094103 (2009) Meschede group (Bonn): L. Förster et al., PRL 103, 233001 (2009) AC magnetic field gradient Dehmelt g-2 AC Stern Gerlach effect NIST: Christian Ospelkaus et al., PRL 101, 090502 (2008)

5-wire surface-electrode trap (Christian Ospelkaus, Ulrich Warring, ) (2,-2) (2,-1) (2,0) (2,+1) τ π ~ 20 ns 25 Mg + 0.02 0.04 τ(µs) (F,m F ) ~1.7 GHz (field independent, B 220 gauss) (3,+1) 40 µm (3,-1) (3,0) Trap RF Trap RF (3,-2) (3,-3) Lamb-Dicke parameter η ~ 1/3000 trap photo, PPT ion

1 P 1 Applications to metrology: Al + quantum-logic clock (James Chou, David Hume, Mike Thorpe, Till Rosenband ) Coulomb interaction 2 P 3/2 3 P 0 λ = 167 nm 1 S 0 Al + optical qubit λ = 267 nm Be + hyperfine qubit (F=1, m F = -1) (F=2, m F = -2) 2 S 1/2 motion

Shopping list: More and better reduce gate errors further scale to many qubits couple ion qubits to other quantum systems * e.g., macroscopic systems simulations, applications in spectroscopy smaller structures everything gets better but, solve heating problem!

Ion trapology workshop (NIST Boulder, February 16, 17, 2011)) NIST- Boulder ions: J. Amini (Postdoc, Berkeley) J. C. Bergquist (NIST) S. Bickman (PD, Yale) & M. Biercuk (GTRI) % R. B. Blakestad (student, CU) J. J. Bollinger (NIST) R. Bowler (student, CU) J. Britton (Postdoc, CU) K. Brown (Postdoc, U. Md.) J. Chou (Postdoc, Cal Tech) Y. Colombe (Postdoc, ENS) D. Hanneke (Postdoc, Harvard) J. Home (Postdoc, Oxford) @ D. Hume (student, CU) W. Itano (NIST) J. D. Jost (Postdoc, CU) E. Knill (NIST)* D. Leibfried (NIST) D. Leibrandt (PD, MIT) Y. Lin (student, CU) C. Ospelkaus (PD, Hamburg) T. Rosenband (NIST) T R Tan (Student, CU) M. Thorpe (PD, CU) H. Uys (Postdoc, U. Arizona) # A. VanDevender (PD, U. Illinois) U. Warring (PD, Heidelberg) A. Wilson (guest researcher) D. J. Wineland (NIST) J. Yao (student, CU) * NIST computation division, Boulder Current address: Optical freq. meas. group, NIST Current address: Georgia Tech Res. Inst. # Current address: CSIR, South Africa % Current address: University of Sydney & Current address: Vescent Photonics, Denver @ Current address: ETH, Zürich Current address: JQI, U. Md.