THE L 2 -HODGE THEORY AND REPRESENTATION ON R n

Similar documents
SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction

Sobolev Spaces. Chapter 10

Variable Exponents Spaces and Their Applications to Fluid Dynamics

BLOWUP THEORY FOR THE CRITICAL NONLINEAR SCHRÖDINGER EQUATIONS REVISITED

Week 6 Notes, Math 865, Tanveer

SELF-ADJOINTNESS OF SCHRÖDINGER-TYPE OPERATORS WITH SINGULAR POTENTIALS ON MANIFOLDS OF BOUNDED GEOMETRY

SOLUTION OF POISSON S EQUATION. Contents

arxiv: v1 [math.ap] 12 Mar 2009

Sobolev Spaces. Chapter Hölder spaces

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

HOMEOMORPHISMS OF BOUNDED VARIATION

GRAND SOBOLEV SPACES AND THEIR APPLICATIONS TO VARIATIONAL PROBLEMS

Laplace s Equation. Chapter Mean Value Formulas

Partial Differential Equations

LORENTZ SPACE ESTIMATES FOR VECTOR FIELDS WITH DIVERGENCE AND CURL IN HARDY SPACES

New estimates for the div-curl-grad operators and elliptic problems with L1-data in the half-space

Inequalities of Babuška-Aziz and Friedrichs-Velte for differential forms

Theory of PDE Homework 2

The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition

Math The Laplacian. 1 Green s Identities, Fundamental Solution

On non negative solutions of some quasilinear elliptic inequalities

On the p-laplacian and p-fluids

ON A CERTAIN GENERALIZATION OF THE KRASNOSEL SKII THEOREM

ESTIMATES FOR ELLIPTIC HOMOGENIZATION PROBLEMS IN NONSMOOTH DOMAINS. Zhongwei Shen

ON BOUNDEDNESS OF MAXIMAL FUNCTIONS IN SOBOLEV SPACES

On pointwise estimates for maximal and singular integral operators by A.K. LERNER (Odessa)

EXISTENCE OF WEAK SOLUTIONS FOR A NONUNIFORMLY ELLIPTIC NONLINEAR SYSTEM IN R N. 1. Introduction We study the nonuniformly elliptic, nonlinear system

Wavelets and modular inequalities in variable L p spaces

CHAPTER II HILBERT SPACES

and finally, any second order divergence form elliptic operator

Euler Equations: local existence

Existence and Continuation for Euler Equations

HARMONIC ANALYSIS. Date:

THE HARDY LITTLEWOOD MAXIMAL FUNCTION OF A SOBOLEV FUNCTION. Juha Kinnunen. 1 f(y) dy, B(x, r) B(x,r)

Weak Convergence Methods for Energy Minimization

arxiv: v1 [math.ap] 18 May 2017

NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES

Title: Localized self-adjointness of Schrödinger-type operators on Riemannian manifolds. Proposed running head: Schrödinger-type operators on

Jordan Journal of Mathematics and Statistics (JJMS) 9(1), 2016, pp BOUNDEDNESS OF COMMUTATORS ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT

New estimates for the div-curl-grad operators and elliptic problems with L1-data in the whole space and in the half-space

Some lecture notes for Math 6050E: PDEs, Fall 2016

JUHA KINNUNEN. Harmonic Analysis

On the distributional divergence of vector fields vanishing at infinity

THE FORM SUM AND THE FRIEDRICHS EXTENSION OF SCHRÖDINGER-TYPE OPERATORS ON RIEMANNIAN MANIFOLDS

Analysis in weighted spaces : preliminary version

A NEW PROOF OF THE ATOMIC DECOMPOSITION OF HARDY SPACES

PERTURBATION THEORY FOR NONLINEAR DIRICHLET PROBLEMS

NONHOMOGENEOUS ELLIPTIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT AND WEIGHT

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

Sobolev spaces. May 18

Wave equation on manifolds and finite speed of propagation

A Concise Course on Stochastic Partial Differential Equations

Real Analysis Notes. Thomas Goller

Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus.

The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition

WEYL S LEMMA, ONE OF MANY. Daniel W. Stroock

Remarks on localized sharp functions on certain sets in R n

Unbounded operators on Hilbert spaces

MINIMAL GRAPHS PART I: EXISTENCE OF LIPSCHITZ WEAK SOLUTIONS TO THE DIRICHLET PROBLEM WITH C 2 BOUNDARY DATA

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

Math 209B Homework 2

Follow links Class Use and other Permissions. For more information, send to:

1. Subspaces A subset M of Hilbert space H is a subspace of it is closed under the operation of forming linear combinations;i.e.,

THEOREMS, ETC., FOR MATH 515

NONLINEAR FREDHOLM ALTERNATIVE FOR THE p-laplacian UNDER NONHOMOGENEOUS NEUMANN BOUNDARY CONDITION

für Mathematik in den Naturwissenschaften Leipzig

DIV-CURL TYPE THEOREMS ON LIPSCHITZ DOMAINS Zengjian Lou. 1. Introduction

ON A MAXIMAL OPERATOR IN REARRANGEMENT INVARIANT BANACH FUNCTION SPACES ON METRIC SPACES

On the Brezis and Mironescu conjecture concerning a Gagliardo-Nirenberg inequality for fractional Sobolev norms

Appendix A Functional Analysis

1 Riesz Potential and Enbeddings Theorems

SHARP L p WEIGHTED SOBOLEV INEQUALITIES

On Liouville type theorems for the steady Navier-Stokes equations in R 3

COMBINED EFFECTS FOR A STATIONARY PROBLEM WITH INDEFINITE NONLINEARITIES AND LACK OF COMPACTNESS

Derivatives of Harmonic Bergman and Bloch Functions on the Ball

Functional Analysis Exercise Class

Sobolevology. 1. Definitions and Notation. When α = 1 this seminorm is the same as the Lipschitz constant of the function f. 2.

Extension and Representation of Divergence-free Vector Fields on Bounded Domains. Tosio Kato, Marius Mitrea, Gustavo Ponce, and Michael Taylor

Problem Set 6: Solutions Math 201A: Fall a n x n,

CONVERGENCE THEORY. G. ALLAIRE CMAP, Ecole Polytechnique. 1. Maximum principle. 2. Oscillating test function. 3. Two-scale convergence

EXISTENCE AND REGULARITY OF SOLUTIONS FOR STOKES SYSTEMS WITH NON-SMOOTH BOUNDARY DATA IN A POLYHEDRON

Introduction and Preliminaries

Lecture 3. Vector fields with given vorticity, divergence and the normal trace, and the divergence and curl estimates

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

Stationary mean-field games Diogo A. Gomes

arxiv: v1 [math.ap] 28 Mar 2014

2 BAISHENG YAN When L =,it is easily seen that the set K = coincides with the set of conformal matrices, that is, K = = fr j 0 R 2 SO(n)g: Weakly L-qu

ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS. Tian Ma. Shouhong Wang

Partial Differential Equations, 2nd Edition, L.C.Evans Chapter 5 Sobolev Spaces

Propagation of Smallness and the Uniqueness of Solutions to Some Elliptic Equations in the Plane

M ath. Res. Lett. 16 (2009), no. 1, c International Press 2009

Sobolev Spaces 27 PART II. Review of Sobolev Spaces

EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC SCHRÖDINGER EQUATIONS

ON SOME ELLIPTIC PROBLEMS IN UNBOUNDED DOMAINS

Duality of multiparameter Hardy spaces H p on spaces of homogeneous type

Second Order Elliptic PDE

A generalised Ladyzhenskaya inequality and a coupled parabolic-elliptic problem

1 Math 241A-B Homework Problem List for F2015 and W2016

NOTE ON A REMARKABLE SUPERPOSITION FOR A NONLINEAR EQUATION. 1. Introduction. ρ(y)dy, ρ 0, x y

COMPACT EMBEDDINGS ON A SUBSPACE OF WEIGHTED VARIABLE EXPONENT SOBOLEV SPACES

Transcription:

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n BAISHENG YAN Abstract. We present an elementary L 2 -Hodge theory on whole R n based on the minimization principle of the calculus of variations and some basic results of real analysis and Sobolev spaces. We also use the elementary and self-contained proofs to provide some representation results on curl-free and divergence-free fields in terms of local functions.. Introduction The classical Hodge theory deals with decomposition of a differential form into closed and coclosed forms [4, 5]. For vector fields on R n, the closed forms become the curl-free fields and coclosed forms become divergence-free fields. These fields also present a useful tool in studying many important physical and applied problems, such as the Maxwell equations, in particular, the electro-magnetics, and the sourceless or incompressible fluids. It is wellknown that the classical L p Hodge theory on the whole Euclidean space can be established by the Riesz transforms and potentials [3, 5, 7]. In this short note, we present an elementary L 2 -Hodge theory on whole R n based only on the minimization principles of the calculus of variations and some basic results of real analysis and Sobolev spaces. Let X = L 2 (R n ; R n ) denote the Hilbert space of real functions u = (u,, u n ), u i L 2 (R n ), with the inner product and norm defined by (u,v) = (u v + + u n v n )dx = u v dx; u = (u,u) /2. R n R n For u L 2 (R n ; R n ), we define divu, Curlu = (Curlu) ij as distributions as follows: divu, ϕ = (u ϕ x + + u n ϕ xn )dx = R n u ϕ dx; R n (Curlu) ij, ϕ = (u i ϕ xj u j ϕ xi )dx, R n ϕ C (R n ). 2 Mathematics Subject Classification. 49J45, 49J2, 35G3. Key words and phrases. Hodge decomposition, divergence-free, curl-free.

2 BAISHENG YAN If we denote u = (u i x j ) to be the n n matrix of distributional derivatives of u, where u i x j = u i / x j denotes the distributional partial derivative, then divu = tr u = u = n i= ui x i ; Curlu = u ( u) T = (u i x j u j x i ) n i,j=. Note that in the sense of distribution, the Laplacian operator of any L 2 -field m (defined for each component of the field) can be written as (.) m = (divm) + Div(Curlm), where, for any matrix-valued distribution A = (a ij ), Div A denotes the vector-valued distribution defined by (Div A) i = n j= (a ij) xj. In the case n = 2 or n = 3, the operator Curlu can be identified as follows: Curlu u = u = div(u ) = u x 2 u 2 x (n = 2); Curlu curlu = u = (u 3 x 2 u 2 x 3, u x 3 u 3 x, u 2 x u x 2 ) (n = 3). Define the subspaces of divergence-free and curl-free fields as follows: X div = {u L 2 (R n ; R n ) divu = in the sense of distribution}; X Curl = {u L 2 (R n ; R n ) Curlu = in the sense of distribution}. Then we have that X div X Curl = {} (see Lemma 2.) and the well-known Hodge decomposition theorem: L 2 (R n ; R n ) = X div X Curl (see Theorem 2.5). One of the main purposes of this paper is to characterize the space X Curl, which, in the case n = 2, also characterize the space X div. Another main result is to provide a similar result for X div when n = 3. To do so, we introduce the linear function spaces: and, for n = 3, Y = {f L 2 loc (Rn ) f X} M = {m L 2 loc (R3 ; R 3 ) curlm = m L 2 (R 3 ; R 3 )}. It is easy to see that f X Curl for all f Y and, for n = 3, curlm X div for all m M. The converse is also true; we have the following results. Theorem.. There exists a uniform constant C n > such that, for every v X Curl, there exists a f Y satisfying that (.2) (a) v = f; (b) sup R R n+2 f 2 dx C n v R 2 dx, n B R () where B R (y) = {x R n x y < R} denotes the ball centered y of radius R.

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n 3 Theorem.2. Let n = 3. There exists a uniform constant C > such that, for every w X div, there exists a m M satisfying that (.3) (a) w = m; (b) sup R R 3 m 2 dx C w 2 dx, R n Q R () where Q R (y) = {x R 3 x i y i < R, i =, 2, 3} denotes the cubes centered y of side-length 2R. The estimate (.2b) in Theorem. above is not sharp as we will obtain some better estimates later. However, the estimate (b) in both (.2) and (.3) does provide a way to represent a curl-free or divergence-free field v or w by some local function f or m, with f being viewed as the potential function of v and m the velocity of w; initially, these local functions have only been defined as the Schwartz distributions [4, 5]. The estimate (.2b) also suggests that we equip the space Y with the norm f defined by (.4) f 2 = R n f(x) 2 dx + sup R Let Y be the subspace of Y defined by R n+2 f(x) 2 dx. B R Y = {f H loc (Rn ) f < }. It can be easily shown that Y is indeed a Banach space with the norm defined. In what follows, we shall try to find the minimal subspace Z of Y for which the gradient operator : Z X Curl is bijective. In fact such a Z can be completely determined when n 3. Theorem.3. Let Y 2 be the closure of C (Rn ) in Y. Then, for n 3, Y 2 = {f L 2n n 2 (R n ) f L 2 (R n ; R n )}. Furthermore, Y 2 has the equivalent norms f f L 2 (R n ) f Y 2, and the gradient operator : Y 2 X Curl is bijective. The proof of this theorem relies on the Sobolev-Gagliardo-Nirenberg inequality for H (R n ) functions when n 3 (see [2]); note that in this case the finite number 2 = 2n n 2 is the Sobolev conjugate of n. In the case n = 2, there is no such a Sobolev-Gagliardo-Nirenberg inequality; instead, there is a John-Nirenberg-Trudinger type of BMO-estimates for functions with gradient in L 2 (R 2 ) (see [2, 7]). However, we shall try to avoid the BMO-estimates. One of the minimal subspaces of Y on which the gradient operator is bijective can be characterized as follows.

4 BAISHENG YAN Theorem.4. Let n = 2 and Z be the closure in Y of the subspace S = {ϕ ϕ ρ ϕ H (R 2 )}, where ϕ ρ = R ϕ(x)ρ(x)dx and ρ(x) is the weight function defined by 2 (.5) ρ(x) = ( χ 2π { x } + ) x 4 χ { x >}. Then Z has the equivalent norms f f L 2 (R 2 ) f Z, and the gradient operator : Z X Curl is bijective. 2. Variational principles and the Hodge decomposition We first prove the following useful result. Lemma 2.. Let X div, X Curl be defined as above. Then X div X Curl = {}. Proof. Let m X div X Curl. Then Curlm = divm = in the sense of distributions. Hence, by (.) above, m = also in the sense of distributions. Hence m C (R n ; R n ) is harmonic and each of its components m i is a harmonic function in R n which also belongs to L 2 (R n ). Then the mean value property and Hölder s inequality imply that m i (x) B R (x) B R (x) m i dy c R n/2 m 2 for any x R n and R >, where B R (x) = {y R n y x < R} denotes the ball of radius R and center x. Letting R shows m i = and hence m =. Let Ω be any bounded domain in R n and denote by H (Ω) the usual Sobolev space that is the closure of C (Ω) under the usual H (Ω)-norm. We always consider functions in H (Ω) as extended on the whole Rn by zero outside Ω. Given any u X = L 2 (R n ; R n ), for each R >, let B R = B R () and consider the following minimization problem: (2.) inf ϕ u 2 dx. ϕ H (B R) B R Standard direct method of the calculus of variations shows that this problem has a unique solution, which we denote by ϕ R, also extended to all R n. This sequence {ϕ R } is of course uniquely determined by u X. It also satisfies the following properties: (2.2) (2.3) ϕ R L 2 (R n ) u, R n ( ϕ R u) ζ dx = ζ H (Ω), Ω B R.

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n 5 Theorem 2.2. Given u X, it follows that ϕ R v in X as R and that v X Curl is uniquely determined by u. Moreover, this v satisfies v u = therefore, v = u if u X Curl. min v u ; v X Curl Proof. First of all, we claim ϕ R v weakly in X as R. Let v,v be the weak limits of any two subsequences { ϕ R } and { ϕ R }, where R, R are two sequences going to. We would like to show v = v, which shows that ϕ R v as R. Note that v,v X Curl and, by (2.3) above, for all bounded domains Ω R n, (2.4) (v u) ζ dx = (v u) ζ dx = R n R n for all ζ H (Ω). This implies div(v v ) =. Hence v v X div X Curl = {} by Lemma 2. above. We denote this weak limit by v X Curl. Note that, by (2.4), div(v u) =. Hence if Curlu = then v u X div X Curl = {}; hence v = u. We now prove ϕ R v in X as R. Taking ζ = ϕ R H (B R) in (2.4) and letting R we have (2.5) (v u) v dx =. R n Using ζ = ϕ R in (2.3), taking R and by weak limit, we have lim R R n ϕ R 2 dx = R n v u = R n v 2 dx. This implies ϕ R v strongly in L 2 (R n ; R n ). Finally, let us show (2.6) v u = min v X Curl v u. Given any v X Curl, choose the sequence ϕ R corresponding to v v. Since div(v u) =, it easily follows that (v v,v u) = lim R ( ϕ R,v u) =. Hence v u 2 = v v 2 + 2(v v,v u) + v u 2 v u 2 ; this proves (2.6). The proof is completed. Corollary 2.3. For every u X, there exist unique elements v X Curl, w X div such that u = v + w. Proof. Given u X, let v X Curl be defined as above, and let w = u v. Then u = v +w and, by (2.4) above, w X div. We now show that v,w are unique. Suppose u = v + w for another pair v X Curl and w X div. Then m = v v = w w X Curl X div. Hence v = v and w = w. Corollary 2.4. X Curl = X div, X div = X Curl.

6 BAISHENG YAN Proof. It suffices to prove X Curl = Xdiv. Given any v X Curl and w X div, let ϕ R H (B R) be the sequence determined by u = v as above. Since ϕ R v and (w, ϕ R ) = w(x) ϕ R (x) =, R n it follows easily that (w,v) = ; hence v Xdiv. This shows X Curl Xdiv. Assume u Xdiv. We will show u X Curl. Let u = v + w, v X Curl, w X div, be the Hodge decomposition in the previous corollary. Then = (u,w) = (v,w) + w 2 = w 2 ; hence w = and u = v X Curl. This proves X Curl = Xdiv. Finally, the following Hodge decomposition theorem is the combination of Corollaries 2.3 and 2.4 above. Theorem 2.5. X = L 2 (R n ; R n ) = X div X Curl. 3. Proofs of Theorem. and Theorem.2 In this section we prove Theorem. and Theorem.2. We state Theorem. slightly differently as follows. Theorem 3.. Let Y be the space with the norm defined above. Then Y is a Banach space. Moreover, the gradient operator : Y X Curl is surjective; more precisely, for any v X Curl, there exists a f Y such that v = f, f C n v. Proof. The proof that Y is a Banach space follows directly by the definition and will not be given here. We prove the rest of the theorem. Given v X Curl, let v ǫ = v ρ ǫ be the smooth approximation of v. Then v ǫ X Curl C (R n ; R n ). Define f ǫ (x) = v ǫ (tx) x dt. Then one can easily verify that f ǫ (x) = v ǫ (x) for all x R n. Therefore, for all x, y R n, Hence f ǫ (x + y) f ǫ (y) = f ǫ (x + y) f ǫ (y) 2 = v ǫ (y + tx) x dt. v ǫ (y + tx) x dt x 2 v ǫ (y + tx) 2 dt. 2

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n 7 Integrating this inequality over x B R () = B R, we obtain ( ) f ǫ (z) f ǫ (y) 2 dz R 2 v ǫ (y + tx) 2 dx dt B R (y) B R ( ) = R 2 v ǫ (z) 2 dz t n dt B tr (y) ( ) = R n+2 v ǫ (z) 2 dz dt B tr (y) R n+2 M( v ǫ 2 )(y), B tr (y) where M(h) is the maximal function of h (see Stein [7]). Since v ǫ 2 L (R n ), it follows that m{y R n M( v ǫ 2 )(y) > α} 5n v ǫ 2 dx 5n v 2 dx. α R n α R n Let where we choose E ǫ = {y B M( v ǫ 2 )(y) α }, α = 2 5n B R n v 2 dx. Then it follows that E ǫ 2 B for all ǫ. Therefore, it is a simple exercise to show that there exists a sequence ǫ k and a point y B such that y k= E ǫ k ; that is, M( v ǫk 2 )(y ) α = 2 5n B v 2, k =, 2,. Using this y we define a new sequence Then, for all R, we have g k (z) 2 dz B R g k (z) = f ǫk (z) f ǫk (y ), z R n. B 2R (y ) g k (z) 2 dz (2R) n+22 5n B v 2. By using diagonal subsequences, there exists a subsequence g kj and a function f L 2 loc (Rn ) such that g kj f weakly as k j on all balls B R (), R >. This function f must satisfy f = v L 2 (R n ; R n ) and sup R R n+2 B R f(x) 2 dx C n hence f C v. This completes the proof. R n v(x) 2 dx; We now prove Theorem.2. The proof is similar to that of Theorem..

8 BAISHENG YAN Proof of Theorem.2. Given w X div, let w ǫ = w ρ ǫ be the smooth approximation of w. Then w ǫ X div C (R 3 ; R 3 ). Define where (3.) (3.2) m ǫ (x, c) = (p ǫ (x, c), q ǫ (x, c), ), x R 3, c [, ], p ǫ (x, c) = q ǫ (x, c) = x3 c x3 c x2 wǫ(x 2, x 2, s)ds w ǫ(x, x 2, s)ds. Since divw ǫ =, one can easily verify that We now estimate w ǫ (x) = m ǫ (x, c), c [, ]. w 3 ǫ(x, t, c)dt; x3 q ǫ (x, c) 2 ( x 3 + ) 2 + wǫ(x, x 2, s) 2 ds. x 3 Integrating this inequality over the cube Q R () = {x R 3 x i < R, i =, 2, 3}, we obtain (3.3) q ǫ (x, c) 2 dx 2R(R + ) R 2 wǫ(x) 2 dx. 3 Q R () Next we write p ǫ (x, c) = g ǫ (x, c) f ǫ (x, c) with x = (x, x 2 ), where (3.4) g ǫ (x, c) = x3 c w 2 ǫ(x, x 2, s)ds; f ǫ (x, c) = x2 For g ǫ (x, c), we have the same estimate as q ǫ (x, c): (3.5) g ǫ (x, c) 2 dx 2R(R + ) R 2 wǫ(x) 2 2 dx. 3 Q R () w 3 ǫ(x, t, c)dt. For f ǫ (x, c), we easily estimate that (3.6) f ǫ (x, c) 2 dx 2R 2 x i <R wǫ(x 3, c) 2 dx = 2R 2 H ǫ (c). R 2 Note that H ǫ (c) = R wǫ(x 3, c) 2 dx L (R). It follows that 2 m{c R H ǫ (c) > α} H ǫ (c)dc = w α R α ǫ(x) 3 2 dx. R 3 Let E ǫ = {c [, ] H ǫ (c) α }, where α = R wǫ(x) 3 2 dx. Then it 3 follows that E ǫ for all ǫ. Therefore, as above, there exists a sequence ǫ k and a point c [, ] such that c k= E ǫ k ; that is, H ǫk (c ) wǫ(x) 3 2 dx k =, 2,. R 3

Hence by (3.6) (3.7) THE L 2 -HODGE THEORY AND REPRESENTATION ON R n 9 Q R () Using this c we define a new sequence f ǫ (x, c ) 2 dx 4R 3 R 3 w 3 ǫ(x) 2 dx. u k (x) = m ǫk (x, c ). Then we have w ǫk = curlu k and, for all R, by (3.3)-(3.6), (3.8) u k (x) 2 dx CR 3 w 2. Q R () By using diagonal subsequences, there exists a subsequence u kj and a function m L 2 loc (R3 ) such that u kj m weakly as k j on all cubes x i < R, R >. This field m must satisfy w = curlm L 2 (R 3 ; R 3 ); hence m M. Moreover, by (3.8), sup R R 3 m(x) 2 dx C w(x) 2 dx. R 3 This completes the proof. Q R () 4. Proof of Theorem.3 In this section, we prove Theorem.3. As above, let Y 2 be the closure of C (Rn ) in Y under the norm defined above. When extended by zero outside Ω, functions in H (Ω) belong to Y 2 for all bounded domains Ω R n. In what follows, let n 3 and 2 = 2n n 2. Let W = {f L 2 (R n ) f L 2 (R n ; R n )}. We prove Theorem.3 through several lemmas. Lemma 4.. Y 2 W. Moreover (4.) f C f L 2 (R n ) f Y 2. Proof. Let f Y 2. Then there exists a sequence f j C (Rn ) such that f j f as j. Therefore f j L 2 f L 2. By Sobolev- Galiardo-Nirenberg inequality, f j L 2 (R n ) C f j L 2 (R n ) j. Hence f j g L 2 (R n ). Since f j f in L 2 (B R ) for all R >. We have f = g. Hence f W. Furthermore, by Hölder s inequality, f j L 2 (B R ) c n R 2 f j L 2 (B R ) C R2 f j L 2 (R n ). Hence, by taking limits as j, it follows that sup R R n+2 f 2 dx C f(x) 2 dx, B R R n which proves (4.).

BAISHENG YAN Lemma 4.2. W Y 2. Proof. Let f W. Define f j = fρ j, where ρ j W, (R n ) defined by ρ j (x) = on x j, ρ j (x) = on x 2j and ρ j (x) is linear in x for j x 2j. Then f j Y 2. It can be easily shown that lim f j f =, j which proves f Y 2 and hence W Y 2. Lemma 4.3. : Y 2 X Curl is surjective. Proof. Given any v X Curl, let ϕ R H (B R) be the function determined as in the minimization problem (2.) above with u = v. Then ϕ R v in X = L 2 (R 2 ; R 2 ) as R. Lemma 4. implies that {ϕ R } is a Cauchy sequence in Y 2 and hence its limit f belongs to Y 2 and satisfies f = v. This completes the proof. We first prove the following result. 5. Proof of Theorem.4 Lemma 5.. Let ρ(x) be defined as above. Then for all ϕ H (R 2 ), (5.) ϕ(x) ϕ ρ 2 ρ(x)dx β ϕ(x) 2 dx. R 2 R 2 Proof. First of all, by Poincaré s inequality, (5.2) ψ(x) (ψ) 2 dx C ψ(x) 2 dx B B for all ψ H (B ), where (ψ) is the average value of ψ on B ; that is, (ψ) = ψ(x)dx = 2 ψ(x)ρ(x) dx. π B { x <} Given ϕ H (R 2 ), let ψ(x) = ϕ( x ). Then ψ H (B x 2 ). Using the above Poincaré inequality for this ψ, after change of variable, one obtains that (5.3) ϕ(y) (ψ) 2 y 4 dy C ϕ(y) 2 dy, where (ψ) = π { y >} B ψ(x)dx = π { y >} { y >} ϕ(y) y 4 dy = 2 ϕ(x)ρ(x) dx. { x >} Combining (5.2) for ψ(x) = ϕ(x) with (5.3) we obtain (5.). Note that, for all f Y, (5.4) sup R R 4 f(x) 2 dx 2π B R R 2 f(x) 2 ρ(x)dx.

Let THE L 2 -HODGE THEORY AND REPRESENTATION ON R n S = {ϕ ϕ ρ ϕ H (R 2 )}. Then the previous lemma and (5.4) imply sup R R 4 f 2 dx 2π f 2 ρ dx C f 2 dx f S. B R R 2 R 2 We have thus proved the following result. Proposition 5.2. Let Z be the closure of S in Y. Then f f L 2 for all f Z. Furthermore, for all f Z, f(x)ρ(x)dx =, f(x) 2 ρ(x)dx C f 2 dx, R 2 R 2 R 2 where C is a constant independent of f. Note that the weighted Sobolev estimates of type (5.) resemble the general ones studied in [6]. Finally, we prove the following result to complete the proof of Theorem.4. Proposition 5.3. : Z X Curl is surjective. Proof. The proof is similar to that of Lemma 4.3 above. Given any v X Curl, let ϕ R H (B R) be the function determined as in the minimization problem (2.) above with u = v. Let f R = ϕ R ϕ R ρ. Then f R S and f R = ϕ R v in X = L 2 (R 2 ; R 2 ) as R. Proposition 5.2 implies that {f R } is a Cauchy sequence in Y and hence its limit f belongs to the closure Z of S and satisfies f = v. This completes the proof. References [] J. Bourgain and H. Brezis, On the equation div Y = f and application to control of phases, Journal of Amer. Math. Soc., 6(2) (22), 393 426. [2] L.C. Evans, Partial Differential Equations, A.M.S., Providence, 998. [3] D.Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin, 984. [4] T. Iwaniec, p-harmonic tensors and quasiregular mappings, Ann. Math., 36 (992), 589 624. [5] T. Iwaniec and G. Martin, Quasiregular mappings in even dimensions, Acta Math., 7 (993), 29 8. [6] C. Pérez, Sharp L p -weighted Sobolev inequalities, Ann. de l institut Fourier, 45(3) (995), 89 824. [7] E. Stein, Harmonic Analysis, Princeton University Press, Princeton, 993. Department of Mathematics, Michigan State University, East Lansing, MI 48824 E-mail address: yan@math.msu.edu