Math 5440 Problem Set 3 Solutions

Similar documents
Math 5440 Problem Set 3 Solutions

Consequently, the temperature must be the same at each point in the cross section at x. Let:

PDE Notes. Paul Carnig. January ODE s vs PDE s 1

The Wave Equation I. MA 436 Kurt Bryan

1 1D heat and wave equations on a finite interval

1 2-D Second Order Equations: Separation of Variables

Conservation Law. Chapter Goal. 5.2 Theory

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

Math 124A October 04, 2011

The Regulated and Riemann Integrals

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

Review of Calculus, cont d

PHYSICS 116C Homework 4 Solutions

Summary: Method of Separation of Variables

Heat flux and total heat

Theoretical foundations of Gaussian quadrature

Math Fall 2006 Sample problems for the final exam: Solutions

Line Integrals. Partitioning the Curve. Estimating the Mass

Kinematic Waves. These are waves which result from the conservation equation. t + I = 0. (2)

Differential Equations 2 Homework 5 Solutions to the Assigned Exercises

STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS

Improper Integrals, and Differential Equations

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

Math 100 Review Sheet

Math& 152 Section Integration by Parts

Reversing the Chain Rule. As we have seen from the Second Fundamental Theorem ( 4.3), the easiest way to evaluate an integral b

ODE: Existence and Uniqueness of a Solution

Name Solutions to Test 3 November 8, 2017

AM1 Mathematical Analysis 1 Oct Feb Exercises Lecture 3. sin(x + h) sin x h cos(x + h) cos x h

1 The fundamental theorems of calculus.

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

1 The fundamental theorems of calculus.

(4.1) D r v(t) ω(t, v(t))

Week 10: Line Integrals

Section 3.2 Maximum Principle and Uniqueness

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

Green function and Eigenfunctions

MATH , Calculus 2, Fall 2018

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

Math 8 Winter 2015 Applications of Integration

Math 473: Practice Problems for the Material after Test 2, Fall 2011

The Riemann Integral

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 1 - Thurs 28th Sept 17 Review of trigonometry and basic calculus

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED

(9) P (x)u + Q(x)u + R(x)u =0

Taylor Polynomial Inequalities

. Double-angle formulas. Your answer should involve trig functions of θ, and not of 2θ. sin 2 (θ) =

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.

4181H Problem Set 11 Selected Solutions. Chapter 19. n(log x) n 1 1 x x dx,

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

df dt f () b f () a dt

Definite integral. Mathematics FRDIS MENDELU

Conservation Law. Chapter Goal. 6.2 Theory

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

Review of basic calculus

u t = k 2 u x 2 (1) a n sin nπx sin 2 L e k(nπ/l) t f(x) = sin nπx f(x) sin nπx dx (6) 2 L f(x 0 ) sin nπx 0 2 L sin nπx 0 nπx

Chapter 28. Fourier Series An Eigenvalue Problem.

Math 426: Probability Final Exam Practice

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

RAM RAJYA MORE, SIWAN. XI th, XII th, TARGET IIT-JEE (MAIN + ADVANCE) & COMPATETIVE EXAM FOR XII (PQRS) INDEFINITE INTERATION & Their Properties

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

Overview of Calculus I

Integration Techniques

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

Abstract inner product spaces

Problem set 1: Solutions Math 207B, Winter 2016

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

Math 231E, Lecture 33. Parametric Calculus

Math 115 ( ) Yum-Tong Siu 1. Lagrange Multipliers and Variational Problems with Constraints. F (x,y,y )dx

Math 554 Integration

2. THE HEAT EQUATION (Joseph FOURIER ( ) in 1807; Théorie analytique de la chaleur, 1822).

Note 16. Stokes theorem Differential Geometry, 2005

a n+2 a n+1 M n a 2 a 1. (2)

Chapter 5. , r = r 1 r 2 (1) µ = m 1 m 2. r, r 2 = R µ m 2. R(m 1 + m 2 ) + m 2 r = r 1. m 2. r = r 1. R + µ m 1

Notes on length and conformal metrics

INTRODUCTION TO INTEGRATION

Indefinite Integral. Chapter Integration - reverse of differentiation

Section 6.1 Definite Integral

Integrals - Motivation

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Line Integrals. Chapter Definition

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

4. Calculus of Variations

( ) 2. ( ) is the Fourier transform of! ( x). ( ) ( ) ( ) = Ae i kx"#t ( ) = 1 2" ( )"( x,t) PC 3101 Quantum Mechanics Section 1

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

. Double-angle formulas. Your answer should involve trig functions of θ, and not of 2θ. cos(2θ) = sin(2θ) =.

Evaluating Definite Integrals. There are a few properties that you should remember in order to assist you in evaluating definite integrals.

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

F (x) dx = F (x)+c = u + C = du,

Transcription:

Mth 544 Mth 544 Problem Set 3 Solutions Aron Fogelson Fll, 25 1: Logn, 1.5 # 2) Repet the derivtion for the eqution of motion of vibrting string when, in ddition, the verticl motion is retrded by dmping force proportionl to the velocity of the string. Obtin the dmped wve eqution u tt c x) 2 u xx ku t where k is the constnt dmping coefficient. Let ux, t) be the verticl displcement of the string, nd θx, t) be the ngle between the tngent to the curve y ux, t) t x nd the positive x-xis. The steps from the book tht re the sme in this cse re: tn θx, t) u x x, t), nd ρx, t) q 1 + u x x, t) 2 ρ x), Tx, t) cosθx, t)) τt), Tb, t) sinθb, t)) T, t) sinθ, t)) τt)u x x, t). The derivtion chnges in tht the eqution for conservtion of momentum is d dt b ρx, t)u t x, t) q 1 + u x x, t) 2 dx Tb, t) sinθb, t)) T, t) sinθ, t)) b ku t x, t)ρx, t) where ku t x, t) is the dmping force per unit mss. This cn be rewritten s b ρ x)u tt x, t)dx τt)u x b, t) τt)u x, t) b τt) u xx x, t)dx b b q 1 + u x x, t) 2 dx, ku t x, t)ρ x)dx ku t x, t)ρ x)dx. Since the intervl [, b] is rbitrry, the integrnds must mtch so we obtin ρ x)u tt x, t) τt)u xx x, t) ku t x, t)ρ x). Assuming s before tht τt) c x)) 2 τ /ρ x), we obtin τ is constnt, dividing by ρ x), nd reclling tht u tt x, t) c x)) 2 u xx x, t) ku t x, t). 1

2: Logn, 1.5 # 5) Consider string whose motion is governed by the eqution ρ u tt τ u xx for x l with boundry conditions u, t) nd ul, t). Let the energy be defined by 1 2 ρ u 2 1 t + 2 τ u 2 x dx. l Et) Show tht the energy is constnt for ll t. l E t) ρ u t u tt + τ u x u xt ) dx. From ρ u tt τ u xx, we see tht ρ u t u tt τ u t u xx, so E t) l τ u t u xx + τ u x u xt ) dx l τ x u tu x )dx τ u t l, t)u x l, t) u t, t)u x, t)). The lst equlity follows becuse u, t) for ll t implies tht u t, t) for ll t, nd similrly u t l, t). 2

3: Logn, 1.5 # 8) At the end x ) of long tube x ), the density of ir chnges ccording to the formul 1 cos2t) t, ρ, t), t <. Find solution for the wve eqution ρ tt c 2 ρ xx in the domin x > nd < t < in the form of right-trveling wve tht stisfies the given boundry conditions. Tke c 1 nd plot the solution surfce. The generl solution to the 1-D wve eqution tells us tht ρx, t) Fx ct) + Gx + ct) for some functions F nd G. The term Gx + ct) represents wve trvelling to the left, nd we drop it. Hence ρx, t) Fx ct), nd our gol is to determine the fucntion F so tht the boundry condition t x is stisfied. Since ρ, t) F ct), we wnt 1 cos2t), t, F ct), t <. Letting z ct, we see tht we wnt 1 cos 2z/c), z, Hence, or Fz), z >. 1 cos 2x ct)/c), x ct, ρx, t) Fx ct), x ct >, 1 cos2x ct)/c), x ct, ρx, t), x ct >. 3

2 1.5 1.5 1 8 6 t 4 2 5 1 x 15 2 Figure.1: Plot of solution for x 2 nd t 1. 4: Logn, 1.7 # 3) Suppose tht u ux, y, z) is solution of the Neumnn boundry vlue problem K4u f x, y, z) x, y, z) 2, Kru n gx, y, z) Show tht f nd g must stisfy the reltion f dv x, y, z) 2. gda. Suppose tht solution ux, y, z) to this problem exists. Integrte the PDE over the domin to get f x, y, z)dv K4u dv Kr ru dv Kn ru da gx, y, z) da. Hence we see tht R f x, y, z)dv R gx, y, z)da must be true for solution to this problem to exist. The physicl interprettion is tht for stedy-stte het flow with Neumnn boundry conditions, the net source of het in the domin equls the net flux of het cross the boundry of the domin. 4

5: Logn, 1.7 # 5) Prove tht if the Dirichlet problem 4u λu, x, y, z) 2, u, x, y, z) 2, hs nontrivil solution u ux, y, z), then λ must be negtive. λ u 2 dv u4u dv ur ru dv r uru) ru ru) dv n uru) da ru ru dv. ru ru dv Since ux, y, z) is nonzero for some points in, the integrl multiplying λ is positive, nd so R ru ru dv λ R. u2 dv The only wy tht the expression on the right-side could be zero is if the integrnd of the integrl in the numertor were lwys, tht is, rux, y, z) for ll x, y, z) 2. But then u would hve to be constnt for ll x, y, z) 2, nd since u is zero on nd u is continuous, this constnt would hve to be. Since we ssumed tht u is not identiclly zero, this cnnot hppen, nd so λ <. 5

6: Suppose tht ux, t) is solution of the diffusion eqution u t βu xx. Show tht ech of the following is lso solution of the diffusion eqution: ) vx, t) u x x, t) b) vx, t) u t x, t) c) vx, t) ux R s, t) for ny constnt s d) vx, t) gs)ux s, t)ds for ny function g. e) vx, p t) u x, t) for ny positive constnt. ) Let vx, t) u x x, t). Then v t x, t) u xt x, t) nd v xx x, t) u xxx x, t), so v t βv xx u xt βu xxx u t βu xx ) x ) x. b) Let vx, t) u t x, t). Then v t x, t) u tt x, t) nd v xx x, t) u txx x, t), so v t βv xx u tt βu xxt u t βu xx ) t ) t. c) Let vx, t) ux s, t) for constnt s. Then v t x, t) u t x s, t) nd v xx x, t) u xx x s, t), so v t βv xx u t x s, t) βu xx x s, t), since u stisfies the diffusion eqution for llrsptil points. d) Let vx, t) gs)ux s, t)ds. Then v R tx, t) gs)u tx s, t)ds nd v xx x, t) R gs)u R xx x s, t)ds, so v t βv xx gs)u R tx s, t) βu xx x s, t))ds ds. e) Let vx, p t) u x, t) for constnt >. Then, v t x, t) u p t x, t), v x x, t) u p x x, p t), nd v xx x, t) u p xx x, t). So v t βv xx u t βu xx ). 6