The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure

Similar documents
The EOS of neutron matter and the effect of Λ hyperons to neutron star structure

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure

Nuclear structure IV: Nuclear physics and Neutron stars

Quantum Monte Carlo calculations of neutron and nuclear matter

Dense Matter and Neutrinos. J. Carlson - LANL

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

Quantum Monte Carlo calculations of medium mass nuclei

Neutron Matter: EOS, Spin and Density Response

PROGRESS IN UNDERSTANDING THE PROPERTIED OF MANY-BODY SYSTEMS BY QUANTUM MONTE CARLO SIMULATIONS

Nuclear structure I: Introduction and nuclear interactions

Hyperon equation of state for core-collapse simulations based on the variational many-body theory Hajime Togashi Outline

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018

Nuclear and Nucleon Matter Constraints on Three-Nucleon Forces

A Monte Carlo approach to the study of medium-light hypernuclei properties

Quantum Monte Carlo with

Nuclear equation of state with realistic nuclear forces

Small bits of cold, dense matter

Three-nucleon potentials in nuclear matter. Alessandro Lovato

Quantum Monte Carlo calculations with chiral Effective Field Theory Interactions

Neutron matter from chiral effective field theory interactions

Toward a unified description of equilibrium and dynamics of neutron star matter

From hypernuclei to the Inner Core of Neutron Stars: A Quantum Monte Carlo Study

International workshop Strangeness Nuclear Physics 2017 March, 12th-14th, 2017, Osaka Electro-Communication University, Japan. quark mean field theory

The Auxiliary Field Diffusion Monte Carlo Method for Nuclear Physics and Nuclear Astrophysics

Symmetry Energy within the Brueckner-Hartree-Fock approximation

Spin Orbit Interactions in Nuclear Matter with Auxiliary Field. Diffusion Monte Carlo. Jie Zhang

Local chiral NN potentials and the structure of light nuclei

A Quantum Monte Carlo study of the Hyperon-Nucleon interaction

Low- and High-Energy Excitations in the Unitary Fermi Gas

Quantum Monte Carlo calculations of two neutrons in finite volume

Baryon-Baryon interaction and neutron-star EOS. Y. Yamamoto

EFFECTIVE FIELD THEORY FOR LATTICE NUCLEI

Chiral forces and quantum Monte Carlo: from nuclei to neutron star matter

Nuclear Physics from Lattice Effective Field Theory

Nuclear symmetry energy and Neutron star cooling

NN-Correlations in the spin symmetry energy of neutron matter

Possibility of hadron-quark coexistence in massive neutron stars

TRIUMF. Three-body forces in nucleonic matter. Weakly-Bound Systems in Atomic and Nuclear Physics. Kai Hebeler (TRIUMF) INT, Seattle, March 11, 2010

Constraints on Compact Star Radii and the Equation of State From Gravitational Waves, Pulsars and Supernovae

Neutron Star Observations and Their Implications for the Nuclear Equation of State

E. Fermi: Notes on Thermodynamics and Statistics (1953))

Equation of state constraints from modern nuclear interactions and observation

The oxygen anomaly F O

Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties

Constraining the symmetry energy based on relativistic point coupling interactions and excitations in finite nuclei

Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics

Few Body Methods in Nuclear Physics - Lecture I

Constraining the nuclear EoS by combining nuclear data and GW observations

The Nuclear Equation of State

Nuclear few- and many-body systems in a discrete variable representation basis

New Frontiers in Nuclear Structure Theory

arxiv: v2 [nucl-th] 29 Apr 2015

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory

Light hypernuclei based on chiral and phenomenological interactions

The role of stangeness in hadronic matter (in)stability: from hypernuclei to compact stars

Ab Initio CALCULATIONS OF NUCLEAR STRUCTURE (AND REACTIONS)

Structure and cooling of neutron stars: nuclear pairing and superfluid effects

Metropolis/Variational Monte Carlo. Microscopic Theories of Nuclear Structure, Dynamics and Electroweak Currents June 12-30, 2017, ECT*, Trento, Italy

Quantum mechanics of many-fermion systems

Nuclear Structure and Reactions using Lattice Effective Field Theory

Constraining the Radius of Neutron Stars Through the Moment of Inertia

The crust-core transition and the stellar matter equation of state

Ab Initio Calculations of Charge Symmetry Breaking in Light Hypernuclei

1 Introduction. 2 The hadronic many body problem

Potential Model Approaches to the Equation of State

Symmetry Energy Constraints From Neutron Stars and Experiment

Introduction to nuclear structure

Hyperons and Resonances in Nuclei and Neutron Stars. H. Lenske Institut für Theoretische Physik, JLU Giessen and GSI Darmstadt

Quantum Monte Carlo calculations of the equation of state of neutron matter with chiral EFT interactions

Discerning the symmetry energy and neutron star properties from nuclear collective excitations

Neutron star Equa-ons of State: An ideal to aim towards

From few-body to many-body systems

Superfluid Heat Conduction in the Neutron Star Crust

Review of lattice EFT methods and connections to lattice QCD

Structure of Atomic Nuclei. Anthony W. Thomas

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Single-particle spectral function of the Λ-hyperon in finite nuclei

Constraints on neutron stars from nuclear forces

Strongly paired fermions

The Nuclear Many-Body Problem

arxiv: v2 [nucl-th] 19 Jan 2010

Chapter 7 Neutron Stars

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions

Nuclear & Particle Physics of Compact Stars

Equation of state for supernovae and neutron stars

EOS Constraints From Neutron Stars

Alexandros Gezerlis. Proton-neutron pairing and alpha-like quartet correlations in nuclei Workshop ECT*, Trento September 19, 2016

Superfluid Gap in Neutron Matter from a Microscopic Effective Interaction

Nuclear Structure for the Crust of Neutron Stars

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel,

Shape of Lambda Hypernuclei within the Relativistic Mean-Field Approach

The Magnificent Seven : Strong Toroidal Fields?

4. Effects of hyperon mixing on NS-EOS

Nuclear equation of state for supernovae and neutron stars

Equation of state for hybrid stars with strangeness

Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016

Gravitational waves from proto-neutron star evolution

Recent results in lattice EFT for nuclei

GFMC Calculations of Carbon

Transcription:

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure Stefano Gandolfi Los Alamos National Laboratory (LANL) 12th International Conference on Hypernuclear and Strange Particle Physics (HYP215) Tohoku University in Sendai, Japan, September 7-12, 215. www.computingnuclei.org Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 1 / 26

Neutron stars Neutron star is a wonderful natural laboratory D. Page Atmosphere: atomic and plasma physics Crust: physics of superfluids (neutrons, vortex), solid state physics (nuclei) Inner crust: deformed nuclei, pasta phase Outer core: nuclear matter Inner core: hyperons? quark matter? π or K condensates? Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 2 / 26

Nuclei and hypernuclei Few thousands of binding energies for normal nuclei are known. Only few tens for hypernuclei. Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 3 / 26

Homogeneous neutron matter Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 4 / 26

Outline The model and the method Equation of state of neutron matter Neutron star structure (I) - radius Λ-hypernuclei Λ-neutron matter Neutron star structure (II) - maximum mass Conclusions Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 5 / 26

Nuclear Hamiltonian Model: non-relativistic nucleons interacting with an effective nucleon-nucleon force (NN) and three-nucleon interaction (TNI). H = 2 2m A i=1 2 i + i<j v ij + i<j<k v ij NN (Argonne AV8 ) fitted on scattering data. Sum of operators: V ijk v ij = O p=1,8 ij v p (r ij ), O p ij = (1, σ i σ j, S ij, L ij S ij ) (1, τ i τ j ) Urbana Illinois V ijk models processes like π π π π π π π π π π + short-range correlations (spin/isospin independent). Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 6 / 26

Quantum Monte Carlo H ψ( r 1... r N ) = E ψ( r 1... r N ) ψ(t) = e (H E T )t ψ() Ground-state extracted in the limit of t. Propagation performed by ψ(r, t) = R ψ(t) = dr G(R, R, t)ψ(r, ) Importance sampling: G(R, R, t) G(R, R, t) Ψ I (R )/Ψ I (R) Constrained-path approximation to control the sign problem. Unconstrained calculation possible in several cases (exact). Ground state obtained in a non-perturbative way. Systematic uncertainties within 1-2 %. Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 7 / 26

Light nuclei spectrum computed with GFMC Energy (MeV) -2-3 -4-5 -6-7 -8-9 -1 + 4 He 6 He 1 + 2 + 3 + 1 + 6 Li 2 + + 7 Li 7/2 5/2 5/2 7/2 1/2 3/2 2 + + 4 + 2 + 2 + 8 He 1 + + Argonne v 18 with Illinois-7 GFMC Calculations 8 Li 3 + 1 + 2 + AV18 8 Be + 1 + 4 + 3 + 1 + 2 + 4 + 2 + + AV18 +IL7 9 Li 5/2 1/2 3/2 Expt. 9 Be 7/2 + 5/2 + 7/2 7/2 3/2 3/2 + 5/2 + 1/2 5/2 1/2 + 3/2 1 Be 4 + 2 + 3 + 2 + 1 + 3 + 3,2 + 1 + + 1 + 2 + 2 + + 1 B 3 + 4 + 2 + 3 + 2 + 1 + 1 + 3 + 12 C + 2 + + Carlson, et al., arxiv:1412.381, to appear in Rev. Mod. Phys. Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 8 / 26

Neutron matter equation of state Neutron matter is an exotic system. Why do we care? EOS of neutron matter gives the symmetry energy and its slope. The three-neutron force (T = 3/2) very weak in light nuclei, while T = 1/2 is the dominant part. No direct T = 3/2 experiments available. Determines radii of neutron stars. Theory Esym, L Neutron stars Experiments Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 9 / 26

What is the Symmetry energy? symmetric nuclear matter pure neutron matter Symmetry energy E = -16 MeV ρ =.16 fm -3 Nuclear saturation Assumption from experiments: E SNM (ρ ) = 16MeV, ρ =.16fm 3, E sym = E PNM (ρ ) + 16 At ρ we access E sym by studying PNM. Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 1 / 26

Neutron matter Equation of state of neutron matter using Argonne forces: Energy per Neutron (MeV) 1 8 6 4 2 E sym = 35.1 MeV (AV8 +UIX) E sym = 33.7 MeV E sym = 32 MeV E sym = 3.5 MeV (AV8 ).1.2.3.4.5 Neutron Density (fm -3 ) Gandolfi, Carlson, Reddy, PRC (212) Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 11 / 26

Neutron matter and neutron star structure TOV equations: dp dr = G[m(r) + 4πr 3 P/c 2 ][ɛ + P/c 2 ] r[r 2Gm(r)/c 2, ] dm(r) dr = 4πɛr 2, J. Lattimer Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 12 / 26

Neutron star matter Neutron star radius sensitive to EOS around ρ (1 2)ρ Maximum mass depends to higher densities Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 13 / 26

Neutron star structure M (M O ) 3 2.5 2 1.5 1.5 Causality: R>2.9 (GM/c 2 ) 32 error associated with E sym ρ central =3ρ E sym = 3.5 MeV (NN) ρ central =2ρ 33.7 35.1 1.97(4) M O 1.4 M O 8 9 1 11 12 13 14 15 16 R (km) Gandolfi, Carlson, Reddy, PRC (212). Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 14 / 26

Neutron stars Observations of the mass-radius relation are becoming available: 2.5 4U 168-52.12 2.5 EXO 1745-248.16.14 2.5 4U 182-3.16 2.1 2.12 2.14 M (M ) 1.5 1.8.6.4 M (M ) 1.5 1.1.8.6 M (M ) 1.5 1.12.1.8.6.5.2.5.4.2.5.4.2 2 4 6 8 1 12 14 16 18 R (km) 2 4 6 8 1 12 14 16 18 R (km) 2 4 6 8 1 12 14 16 18 R (km) M (M ) 2.4 2.2 2 1.8 1.6 1.4 M13.14.12.1.8.6 M (M ) 2.4 2.2 2 1.8 1.6 1.4 ω Cen -3 1.8.7.6.5.4.3 M (M ) 2.4 2.2 2 1.8 1.6 1.4-3 1.45.4.35.3.25.2.15 1.2.4 1.2.2 1.2.1 1.2 1.1 1 X7.5.8 6 8 1 12 14 16 18 R (km).8 6 8 1 12 14 16 18 R (km).8 6 8 1 12 14 16 18 R (km) Steiner, Lattimer, Brown, ApJ (21) Neutron star observations can be used to measure the EOS and constrain E sym and L. (Systematic uncertainties still under debate...) Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 15 / 26

Neutron star matter really matters! 2.5 2 E sym = 33.7 MeV E sym =32 MeV Polytropes Quark matter M (M solar ) 1.5 1.5 Steiner, Gandolfi, PRL (212) 8 9 1 11 12 13 14 15 R (km) Gandolfi, Carlson, Reddy, Steiner, Wiringa, EPJA (214) Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 16 / 26

High density neutron matter If chemical potential large enough (ρ 2 3ρ ), nucleons produce Λ, Σ,... Non-relativistic BHF calculations suggest that available hyperon-nucleon Hamiltonians support an EOS with M > 2M : Schulze and Rijken PRC (211). Vidana, Logoteta, Providencia, Polls, Bombaci EPL (211). Note: (Some) other relativistic model support 2M neutron stars. Hyperon puzzle (Bombaci, topical session) Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 17 / 26

Λ-systems, outline Λ-hypernuclei and hypermatter H = H N + 2 2m Λ A i=1 2 i + i<j v ΛN ij + i<j<k V ΛNN ijk Λ-binding energy calculated as the difference between the system with and without Λ. Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 18 / 26

Λ-nucleon interaction The Λ-nucleon interaction is constructed similarly to the Argonne potentials (Usmani). Argonne NN: v ij = p v p(r ij )O p ij, O ij = (1, σ i σ j, S ij, L ij S ij ) (1, τ i τ j ) Usmani ΛN: v ij = p v p(r ij )O p ij, O λj = (1, σ λ σ j ) (1, τ z j ) N N K, K N N Unfortunately... 45 NN data, 3 of ΛN data. Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 19 / 26

ΛN and ΛNN interactions ΛNN has the same range of ΛN N N N N N N Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 2 / 26

Λ hypernuclei B [MeV] 6. 5. 4. 3. 2. NN (I) N 6. 45. 3. 15.. 2 4 6 8 A 1. NN (II)...1.2.3.4.5 A -2/3 Lonardoni, Gandolfi, Pederiva, PRC (213) and PRC (214). V ΛNN (II) is a new form where the parameters have been readjusted. ΛNN crucial for saturation. see Lonardoni this afternoon Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 21 / 26

Λ hypernuclei Λ in different states: B Λ [MeV] 3. 25. 2. 15. 1. 5. 28 f g 89 d 4 28 s p 16 12 9 7 6 5 emulsion (K -,π - ) (π +,K + ) (e,e K + ) AFDMC 4 3...1.2.3.4.5 A -2/3 Pederiva, Catalano, Lonardoni, Lovato, Gandolfi, arxiv:156.442 see Lonardoni this afternoon Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 22 / 26

Hyper-neutron matter Neutrons and Λ particles: E HNM (ρ, x) = ρ = ρ n + ρ Λ, x = ρ Λ ρ ] ] [E PNM ((1 x)ρ)+m n (1 x)+ [E PΛM (xρ)+m Λ x +f (ρ, x) where E PΛM is the non-interacting energy (no v ΛΛ interaction), and ( ) α ( ) β ρ ρ E PNM (ρ) = a + b ρ ρ f (ρ, x) = c 1 x(1 x)ρ ρ + c 2 x(1 x) 2 ρ 2 ρ 2 All the parameters are fit to Quantum Monte Carlo results. Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 23 / 26

Λ-neutron matter EOS obtained by solving for µ Λ (ρ, x) = µ n (ρ, x) E [MeV] 14 12 1 8 6 4 n.2.3.4.5.6 [fm -3 ] 1 1-1 1-2 particle fraction PNM N + NN (I) N 2..1.2.3.4.5.6 [fm -3 ] Lonardoni, Lovato, Gandolfi, Pederiva, PRL (215) No hyperons up to ρ =.5 fm 3 using ΛNN (II)!!! Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 24 / 26

Λ-neutron matter 2.8 2.4 PNM 2. PSR J348+432 M [M ] 1.6 1.2 N + NN (II) N + NN (I) PSR J1614-223.8.4 N. 11 12 13 14 15 R [km] Lonardoni, Lovato, Gandolfi, Pederiva, PRL (215) Drastic role played by ΛNN. Calculations can be compatible with neutron star observations. Note: no v ΛΛ, no protons, and no other hyperons included yet... Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 25 / 26

Summary EOS of pure neutron matter qualitatively well understood. Λ-nucleon data very limited, but ΛNN seems very important. Role of Λ in neutron stars far to be understood. Conclusion of the conclusions? We cannot conclude anything for neutron stars with present models... We cannot solve the puzzle, too many pieces are missing! My wishes: More ΛN experimental data needed. Input from Lattice QCD? Light and medium Λ-nuclei measurements needed, especially N Z. Acknowledgments J. Carlson (LANL) D. Lonardoni, A. Lovato (ANL) F. Pederiva (Trento) Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 26 / 26

Extra slides Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 1 / 23

Nuclear Hamiltonian Model: non-relativistic nucleons interacting with an effective nucleon-nucleon force (NN) and three-nucleon interaction (TNI). H = 2 2m A i=1 2 i + i<j v ij + i<j<k v ij NN fitted on scattering data. Sum of operators: V ijk v ij = O p=1,8 ij v p (r ij ), O p ij = (1, σ i σ j, S ij, L ij S ij ) (1, τ i τ j ) NN interaction - Argonne AV8 and AV6. Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 2 / 23

Variational wave function E E = ψ H ψ ψ ψ = dr1... dr N ψ (r 1... r N )Hψ (r 1... r N ) dr1... dr N ψ (r 1... r N )ψ (r 1... r N ) Monte Carlo integration. Variational wave function: Ψ T = f c (r ij ) f c (r ijk ) 1 + u ijk f p (r ij )O p ij Φ i<j i<j<k i<j,p k where O p are spin/isospin operators, f c, u ijk and f p are obtained by minimizing the energy. About 3 parameters to optimize. Φ is a mean-field component, usually HF. Sum of many Slater determinants needed for open-shell configurations. BCS correlations can be included using a Pfaffian. Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 3 / 23

Quantum Monte Carlo Projection in imaginary-time t: H ψ( r 1... r N ) = E ψ( r 1... r N ) ψ(t) = e (H E T )t ψ() Ground-state extracted in the limit of t. Propagation performed by ψ(r, t) = R ψ(t) = dr G(R, R, t)ψ(r, ) dr dr 1 dr 2..., G(R, R, t) G(R 1, R 2, δt) G(R 2, R 3, δt)... Importance sampling: G(R, R, δt) G(R, R, δt) Ψ I (R )/Ψ I (R) Constrained-path approximation to control the sign problem. Unconstrained calculation possible in several cases (exact). Ground state obtained in a non-perturbative way. Systematic uncertainties within 1-2 %. Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 4 / 23

Overview Recall: propagation in imaginary-time e (T +V ) τ ψ e T τ e V τ ψ Kinetic energy is sampled as a diffusion of particles: e 2 τ ψ(r) = e (R R ) 2 /2 τ ψ(r) = ψ(r ) The (scalar) potential gives the weight of the configuration: Algorithm for each time-step: do the diffusion: R = R + ξ compute the weight w e V (R) τ ψ(r) = wψ(r) compute observables using the configuration R weighted using w over a trial wave function ψ T. For spin-dependent potentials things are much worse! Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 5 / 23

Branching The configuration weight w is efficiently sampled using the branching technique: Configurations are replicated or destroyed with probability int[w + ξ] (1) Note: the re-balancing is the bottleneck limiting the parallel efficiency. Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 6 / 23

GFMC and AFDMC Because the Hamiltonian is state dependent, all spin/isospin states of nucleons must be included in the wave-function. Example: spin for 3 neutrons (radial parts also needed in real life): GFMC wave-function: a a a a ψ = a a a a A correlation like 1 + f (r)σ 1 σ 2 can be used, and the variational wave function can be very good. Any operator accurately computed. AFDMC wave-function: [ ( ) ( ) ( )] a1 a2 a3 ψ = A ξ s1 ξ b s2 ξ 1 b s3 2 b 3 We must change the propagator by using the Hubbard-Stratonovich transformation: e 1 2 to2 = 1 dxe x2 2 +x to 2π Auxiliary fields x must also be sampled. The wave-function is pretty bad, but we can simulate larger systems (up to A 1). Operators (except the energy) are very hard to be computed, but in some case there is some trick! Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 7 / 23

Propagator We first rewrite the potential as: V = i<j [v σ (r ij ) σ i σ j + v t (r ij )(3 σ i ˆr ij σ j ˆr ij σ i σ j )] = 3N = i,j σ iα A iα;jβ σ jβ = 1 2 n=1 O 2 nλ n where the new operators are O n = jβ σ jβ ψ n,jβ Now we can use the HS transformation to do the propagation: 1 n λo2 n ψ = dxe x2 2 + λ τxo n ψ 2π e τ 1 2 Computational cost (3N) 3. n Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 8 / 23

Three-body forces Three-body forces, Urbana, Illinois, and local chiral N 2 LO can be exactly included in the case of neutrons. For example: O 2π = cyc [ {X ij, X jk } {τ i τ j, τ j τ k } + 1 ] 4 [X ij, X jk ] [τ i τ j, τ j τ k ] = 2 cyc {X ij, X jk } = σ i σ k f (r i, r j, r k ) The above form can be included in the AFDMC propagator. Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 9 / 23

The Sign problem in one slide Evolution in imaginary-time: ψ I (R )Ψ(R, t + dt) = dr G(R, R, dt) ψ I (R ) ψ I (R) ψ I (R)Ψ(R, t) note: Ψ(R, t) must be positive to be Monte Carlo meaningful. Fixed-node approximation: solve the problem in a restricted space where Ψ > (Bosonic problem) upperbound. If Ψ is complex: ψ I (R ) Ψ(R, t + dt) = dr G(R, R, dt) ψ I (R ) ψ I (R) ψ I (R) Ψ(R, t) Constrained-path approximation: project the wave-function to the real axis. Multiply the weight term by cos θ (phase of Ψ(R ) Ψ(R) ), Re{Ψ} > not necessarily an upperbound. Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 1 / 23

Unconstrained-path After some equilibration within constrained-path, release the constraint: 16 O, AV6 +Coulomb 16 O, AV7 +Coulomb -9-8 -92 E (MeV) -94-96 -98-1 -12-14 -16-18 E (MeV) -85-9 -95-11.5.1.15.2.25 τ (MeV -1 ) -1.25.5.75.1 τ (MeV -1 ) The difference between CP and UP results is mainly due to the presence of LS terms in the Hamiltonian. Same for heavier systems. Work in progress to improve Ψ and to fully include three-body forces. Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 11 / 23

Phase shifts, AV8 6 4 1 S Argonne V8 SAID 12 1 8 3 S1 Argonne V8 SAID 1 P1 Argonne V8 SAID δ (deg) 2 δ (deg) 6 4 δ (deg) -2 2-2 -4 1 2 3 4 5 6 E lab (MeV) 2 3 P -2 1 2 3 4 5 6 E lab (MeV) -1 3 P1 Argonne V8 SAID -4 1 2 3 4 5 6 E lab (MeV) 3 2 Argonne V8 SAID 3 P2 δ (deg) -2 Argonne V8 SAID δ (deg) -2-3 -4 δ (deg) 1-4 1 2 3 4 5 6 E lab (MeV) -1 3 D1 Argonne V8 SAID -5 1 2 3 4 5 6 E lab (MeV) 6 5 4 Argonne V8 SAID 3 D2-1 1 2 3 4 E lab (MeV) 8 6 ε 1 δ (deg) -2 δ (deg) 3 δ (deg) 4-3 2 2 Argonne V8 SAID -4 1 1 2 3 4 5 6 E lab (MeV) 1 2 3 4 5 6 E lab (MeV) 1 2 3 4 5 6 E lab (MeV) Difference AV8 -AV18 less than.2 MeV per nucleon up to A=12. Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 12 / 23

Scattering data and neutron matter Two neutrons have k E lab m/2, k F that correspond to k F ρ (E lab m/2) 3/2 /2π 2. E lab =15 MeV corresponds to about.12 fm 3. E lab =35 MeV to.44 fm 3. Argonne potentials useful to study dense matter above ρ =.16 fm 3 Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 13 / 23

Three-body forces Urbana Illinois V ijk models processes like π π π π π π π π π π + short-range correlations (spin/isospin independent). Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 14 / 23

What is the Symmetry energy? symmetric nuclear matter pure neutron matter Symmetry energy E = -16 MeV ρ =.16 fm -3 Nuclear saturation Assumption from experiments: E SNM (ρ ) = 16MeV, ρ =.16fm 3, E sym = E PNM (ρ ) + 16 At ρ we access E sym by studying PNM. Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 15 / 23

Neutron matter We consider different forms of three-neutron interaction by only requiring a particular value of E sym at saturation. 12 Energy per Neutron (MeV) 1 8 6 4 2 E sym = 33.7 MeV different 3N different 3N: V 2π + αv R V 2π + αv µ R (several µ) V 2π + αṽr V 3π + αv R.1.2.3.4.5 Neutron Density (fm -3 ) Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 16 / 23

Neutron matter Equation of state of neutron matter using Argonne forces: Energy per Neutron (MeV) 1 8 6 4 2 E sym = 35.1 MeV (AV8 +UIX) E sym = 33.7 MeV E sym = 32 MeV E sym = 3.5 MeV (AV8 ).1.2.3.4.5 Neutron Density (fm -3 ) Gandolfi, Carlson, Reddy, PRC (212) Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 17 / 23

Neutron matter and symmetry energy From the EOS, we can fit the symmetry energy around ρ using E sym (ρ) = E sym + L 3 ρ.16.16 + 7 65 AV8 +UIX L (MeV) 6 55 5 45 4 E sym =32. MeV E sym =33.7 MeV 35 AV8 3 3 31 32 33 34 35 36 E sym (MeV) Gandolfi et al., EPJ (214) Tsang et al., PRC (212) Very weak dependence to the model of 3N force for a given E sym. Chiral Hamiltonians give compatible results. Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 18 / 23

Neutron matter and neutron star structure TOV equations: dp dr = G[m(r) + 4πr 3 P/c 2 ][ɛ + P/c 2 ] r[r 2Gm(r)/c 2, ] dm(r) dr = 4πɛr 2, J. Lattimer Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 19 / 23

Neutron star structure EOS used to solve the TOV equations. M (M O ) 3 2.5 2 1.5 1.5 Causality: R>2.9 (GM/c 2 ) 32 error associated with E sym ρ central =3ρ E sym = 3.5 MeV (NN) ρ central =2ρ 33.7 35.1 1.97(4) M O 1.4 M O 8 9 1 11 12 13 14 15 16 R (km) Gandolfi, Carlson, Reddy, PRC (212). Accurate measurement of E sym put a constraint to the radius of neutron stars, OR observation of M and R would constrain E sym! Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 2 / 23

Neutron stars Observations of the mass-radius relation are becoming available: 2.5 4U 168-52.12 2.5 EXO 1745-248.16.14 2.5 4U 182-3.16 2.1 2.12 2.14 M (M ) 1.5 1.8.6.4 M (M ) 1.5 1.1.8.6 M (M ) 1.5 1.12.1.8.6.5.2.5.4.2.5.4.2 2 4 6 8 1 12 14 16 18 R (km) 2 4 6 8 1 12 14 16 18 R (km) 2 4 6 8 1 12 14 16 18 R (km) M (M ) 2.4 2.2 2 1.8 1.6 1.4 M13.14.12.1.8.6 M (M ) 2.4 2.2 2 1.8 1.6 1.4 ω Cen -3 1.8.7.6.5.4.3 M (M ) 2.4 2.2 2 1.8 1.6 1.4-3 1.45.4.35.3.25.2.15 1.2.4 1.2.2 1.2.1 1.2 1.1 1 X7.5.8 6 8 1 12 14 16 18 R (km).8 6 8 1 12 14 16 18 R (km).8 6 8 1 12 14 16 18 R (km) Steiner, Lattimer, Brown, ApJ (21) Neutron star observations can be used to measure the EOS and constrain E sym and L. Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 21 / 23

Neutron star matter Neutron star matter model: ( ) α ( ) β ρ ρ E NSM = a + b, ρ < ρ t ρ ρ (form suggested by QMC simulations), and a high density model for ρ > ρ t i) two polytropes ii) polytrope+quark matter model Neutron star radius sensitive to the EOS at nuclear densities! Direct way to extract E sym and L from neutron stars observations: E sym = a + b + 16, L = 3(aα + bβ) Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 22 / 23

Neutron star matter really matters! Here an astrophysical measurement Probability distribution Quarks, no corr. unc. 8 Quarks No corr. unc. 6 Fiducial Pb (p,p) 4 Masses HIC 2 PDR IAS 2 4 6 8 L (MeV) 1 M (M solar ) 2.5 2 1.5 1.5 E sym = 33.7 MeV E sym =32 MeV Polytropes Quark matter 8 9 1 11 12 13 14 15 R (km) 32 < E sym < 34 MeV, 43 < L < 52 MeV Steiner, Gandolfi, PRL (212). Stefano Gandolfi (LANL) - stefano@lanl.gov Effect of Λ in neutron matter and the neutron star structure 23 / 23