Chemistry 213. Electrochemistry

Similar documents
Chemistry 213. Electrochemistry I

ELECTROCHEMICAL CELLS NAME ROW PD

POTENTIOMETRIC TITRATIONS & SOLUBILITY EQUILIBRIA. Background

Lab #14: Electrochemical Cells

Name AP CHEM / / Collected Essays Chapter 17

POTENTIOMETRIC TITRATIONS & SOLUBILITY EQUILIBRIA

Practice Exam Topic 9: Oxidation & Reduction

EXPERIMENT 16 Electrochemical Cells: A Discovery Exercise 1. Introduction. Discussion

Electrochemistry. To use principles of electrochemistry to understand the properties of electrochemical cells and electrolysis.

Electrochemistry. Part I: Electrochemical Activity from Chemical Reactions. Part II. Electrochemical activity from cell potentials.

#13 Electrochemical Cells

What is the importance of redox reactions? Their importance lies in the fact that we can use the transfer of electrons between species to do useful

1.In which of the following is the oxidation number of the underlined element given incorrectly? oxidation number

CHEM N-12 November In the electrolytic production of Al, what mass of Al can be deposited in 2.00 hours by a current of 1.8 A?

Chemistry 1B Experiment 14 65

Electrochemical Cells

AP Chemistry Unit 2 Test (Chapters 3 and 4)

Unit 13 Redox Reactions & Electrochemistry Ch. 19 & 20 of your book.

Experiment 18: Galvanic Cells

To determine relative oxidizing and reducing strengths of a series of metals and ions.

Oxidation & Reduction (Redox) Notes

2002 D Required 2001 D Required

Chemistry 212 Lab, Spring Design of the Experiment: Standard and Non-Standard Reduction Potentials For Metal/Metal Ion Half-Cells

Page 1 Name: 2Al 3+ (aq) + 3Mg(s) 3Mg 2+ (aq) + 2Al(s) Fe 2 O 3 + 2Al Al 2 O 3 + 2Fe

Redox and Voltaic Cells

Ch : Electrochemistry and Radiochemistry AP Review Questions

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12

ElectroChemistry * Section I: Reactivity of Metals and Metal Ions PRELAB

Oxidation-Reduction Reactions and Introduction to Electrochemistry

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox

AP Questions: Electrochemistry

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

Voltaic Cells. 100 ml graduated cylinder Emery cloth 150 ml beakers, 3 Salt bridge Voltmeter Wires with alligator clips, 2

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders

Exercise 4 Oxidation-reduction (redox) reaction oxidimetry. Theoretical part

Electrochemistry. Pre-Lab Assignment. Purpose. Background. Experiment 12

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species.

General Chemistry 1412 Spring 2008 Instructor: Dr. Shawn Amorde Website:

What Do You Think? Investigate GOALS. Part A: Solutions That Conduct Electricity

11.1. Galvanic Cells. The Galvanic Cell

12.05 Galvanic Cells. Zn(s) + 2 Ag + (aq) Zn 2+ (aq) + 2 Ag(s) Ni(s) + Pb 2+ (aq) «Ni 2+ (aq) + Pb(s)

Chemical Behavior of Metals

Electrochemistry. Outline

Electrochemistry (Galvanic and Electrolytic Cells) Exchange of energy in chemical cells

Oxidation numbers are charges on each atom. Oxidation-Reduction. Oxidation Numbers. Electrochemical Reactions. Oxidation and Reduction

BATTERIES AND ELECTROLYTIC CELLS. Practical Electrochemistry

Chapter 19: Oxidation - Reduction Reactions

Electrochemistry. Electrochemical Process. The Galvanic Cell or Voltaic Cell

Provide oxidation numbers to complete the following table. Species Cu Zn ion Zinc ion Sulfate ion. Oxidation # S=

Electrochemistry and the Nernst Equation

ELECTROCHEMICAL CELLS

Chemistry 30 Review Test 3 Redox and Electrochemistry /55

Electrochemistry and the Nernst Equation

Electrochemistry and Concentration Effects on Electrode Potentials Prelab

Chemistry Potentiometric Titration of a Chloride-Iodide Mixture

Zn + Cr 3+ Zn 2+ + Cr. 9. neutrons remain the same: C. remains the same. Redox/Electrochemistry Regents Unit Review. ANSWERS

Redox and Voltaic Cells

Solubility of KHT and Common ion Effect

ph Measurement and its Applications

ELECTROCHEMICAL CELLS

Chapter 20 Electrochemistry

Chapter 19 ElectroChemistry

Electrochemistry. Chapter 19. Concept Check Concept Check Solution. Solution

Fig. Electrochemical Cell/ Potentiometric Titration

AP Chemistry Laboratory #21: Voltaic Cells. Lab day: Monday, April 21, 2014 Lab due: Wednesday, April 23, 2014

IB Topics 9 & 19 Multiple Choice Practice

Electrochem: It s Got Potential!

In this activity, you will observe and predict products for some simple

Electrochemistry Worksheets

mccord (pmccord) HW11 Electrochemistry I mccord (51520) 1

Chapter 18. Electrochemistry

11/3/09. Aqueous Solubility of Compounds. Aqueous Solubility of Ionic Compounds. Aqueous Solubility of Ionic Compounds

Introduction to electrochemistry

Stoichiometry ( ) ( )

Redox Reactions and Electrochemistry

CHAPTER 5 REVIEW. C. CO 2 D. Fe 2 O 3. A. Fe B. CO

Aim: What are electrochemical cells?

Zn+2 (aq) + Cu (s) Oxidation: An atom, ion, or molecule releases electrons and is oxidized. The oxidation number of the atom oxidized increases.

OXIDATION REDUCTION CHAPTER 24 AND. (Part 2) Corrosion Electrochemical Cells ACTIVE LEARNING IN CHEMISTRY EDUCATION NAME PER DATE DUE

Chemistry 12. Resource Exam B. Exam Booklet

Mathematics Education

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

CHEM J-14 June 2014

Determination of the K a of a Weak Acid and the K b of a Weak Base from ph Measurements

ELECTROCHEMICAL CELLS

Chapter 18 Electrochemistry

Chapter Nineteen. Electrochemistry

Types of Chemical Reactions and Predicting Products

Redox reactions & electrochemistry

We can use chemistry to generate electricity... this is termed a Voltaic (or sometimes) Galvanic Cell

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem.

05 Reduction potentials: Micro-voltaic cells. An electrochemical cell uses an oxidation reduction (redox) reaction to produce electrical energy.

Electrochemical Reactions

Experiment 6. Investigating Chemical Reactions

Part II. Cu(OH)2(s) CuO(s)

EXPERIMENT. Oxidation-Reduction Activity Series

Chapter 29. Simple chemical cells

I pledge, on my honor, that I have neither given nor received inappropriate aid on this examination

Electrochemical Cells

What Can Destroy a Metal?

Transcription:

Chemistry 213 Electrochemistry Part A: Electrochemical Cells Objective Oxidation/reduction reactions find their most important use in the construction of voltaic cells (chemical batteries). In this experiment, several such cells will be constructed and their properties studied. Introduction Electrochemistry is the detailed study of electron-transfer (or oxidation/reduction) reactions. Electrochemistry is a very wide field of endeavor, covering such subjects as batteries, corrosion and reactivities of metals, and electroplating. This experiment will briefly examine some of these topics. Consider the following reaction equation: Zn(s) + Cu 2+ (aq) _ Zn 2+ (aq) + Cu(s) In this process, metallic elemental zinc has been added to a solution of dissolved copper (II) ion. Reaction occurs, and the metallic zinc dissolves producing a solution of zinc ion. Concurrently, metallic elemental copper forms from the copper (II) ion that had been present in solution. To see what really is happening in this reaction equation, it is helpful to split the given equation into two half-reactions: Zn(s) Zn 2+ (aq) + 2e- Cu 2+ (aq) + 2e- Cu(s) oxidation reduction The zinc half-reaction is called an oxidation half-reaction. Oxidation is a process in which a species loses electrons to some other species. In the zinc half-reaction, metallic zinc loses electrons in becoming zinc (II) ions. The copper half-reaction is called a reduction half-reaction. Reduction is a process in which a species gains electrons from some other species. In the copper half-reaction, copper (II) ions gain electrons (i.e. the electrons that had been lost by the zinc atoms) and become metallic copper. In the zinc/copper reaction, metallic zinc has replaced copper (II) ion from a solution. This has happened because metallic zinc is more reactive than metallic copper, and zinc is more likely to be found combined in a compound rather than as the free elemental metal.

The common metallic elements have been investigated for their relative reactivities and have been arranged into what is called the electromotive series. A portion of this series follows: K, Na, Ba, Ca,Mg,Al, Mn, Zn, Cr, Cd, Fe, Co, Ni, Sn, Pb, H, Sb, Bi, As, Cu, Hg, Ag, Pt The more reactive elements are at the left of this series, and the elements become progressively less reactive moving toward the right of the series. For example, you will notice that zinc comes considerably before copper in the series, showing that zinc is more reactive than copper. Notice that H appears in the series. Metals to the left of H are capable of replacing hydrogen ion (H + ) from acids, with evolution of gaseous elemental hydrogen (H 2 ). In fact, the first four elements of the series are so reactive that they will even replace hydrogen from pure cold water. Elements in the series that come to the right of H will not replace hydrogen from acids and will consequently generally not dissolve in acids. You will note that the elements at the far right side of the series include the so-called noble metals: silver, platinum, and gold. These metals are used in jewelry because they have such low reactivities and can maintain a shiny, attractive appearance. In addition to hydrogen, an element at the left of the electromotive series can replace any element to its right While the fact that a reactive metal can replace a less reactive metal from its compounds might be interesting in itself, there is much more implied by the electromotive series. In the zinc/copper reaction discussed at the beginning of this introduction, we considered putting a piece of metallic zinc into direct contact with a solution of copper (II) ion so that electrons could flow directly from zinc atoms to copper ions. A far more useful version of this same experiment would be to set up the reaction so that the zinc metal and copper(ii) ion solution are physically separate from one another (in separate beakers, for example) but are connected electrically by a conducting wire. (See Figure) Since the reaction that occurs is a transfer of electrons, this can now occur through the wire, thereby producing an electrical current. We could place a motor or light bulb along the wire joining the zinc/copper beakers and make use of the electrical current produced by the reaction. We have constructed a battery (or voltaic cell) consisting of a zinc half-cell and a copper half-cell. A second connection will have to be made between the two beakers to complete the electrical circuit, however. In common practice, a glass tube containing a nonreactive salt solution is used to do this (a salt bridge), or alternatively a porous porcelain cup is used to contain one half-reaction, with the porcelain cup then being placed in a beaker containing the second ha1f-reaction. Reactions of voltaic cells are exergonic. They take place with the release of energy. This energy can be put to use if the cell is set up correctly. It was indicated earlier that gold is the least reactive metal in the electromotive series. This would mean that metallic gold could not be produced by some more active metal replacing gold ions from solution. Yet gold is quite 2

commonly electroplated from solutions of Au(III) ions onto more common, cheaper metals. The reduction of Au(III) ions to metallic gold is an endergonic process, requiring the input of energy from an external source to overcome the reluctance of Au(III) ions to undergo reduction. If an electrical current of sufficient voltage from an outside source is passed through a solution of Au(III) ions, it will provide the required energy, and metallic gold will be produced. When an electrical current is used to force a reaction to occur that would ordinarily not be capable of spontaneously occurring, electrolysis is said to be taking place. In this experiment, you will examine the relative reactivity of some metals and determine a small portion of the electromotive series. You will also set up several batteries and measure the voltage delivered by the cells. Apparatus/Reagents Required Equipment for voltaic cells (beakers, salt bridge, voltmeter), 1 M sulfuric acid, 1 M magnesium sulfate, 1 M copper(ii) sulfate, 1 M sodium sulfate, 1 M zinc sulfate, 0.1 M copper sulfate, 0.1 M zinc sulfate, small strips of metallic zinc and copper, magnesium turnings, 24-well plate, 4-inch strips of magnesium, copper, and zinc metals. Record all data and observations directly in your notebook in ink. Experimental Procedure A. The Electromotive Series In separate wells of the 24-well test plate, add 10 drops of solutions of one of the following: 1 M sulfuric acid, 1 M magnesium sulfate. 1 M copper(ii) sulfate, 1 M sodium sulfate, and 1 M zinc sulfate. Place a small strip of metallic zinc in each well so that the metal is partially covered by the solution in the test plate. Allow the solutions to stand for about 15 minutes. Examine the zinc strips for evidence of reaction, both during the 15-minute waiting period and after removing. Determine which ionic species zinc is capable of replacing from solution and write equations for the reactions that take place. Repeat the process using new 10-drop samples of the same solutions, but substituting first copper and then magnesium in place of the zinc metal. On the basis of your results, arrange the following elements in order of their activity: H, Mg, Cu, Zn, Na. B. Voltaic Cells Using strips of copper, zinc, and magnesium metals as electrodes, and solutions of the sulfates of these metals, you will set up three voltaic cells, and will measure the cell potentials (voltages). The following procedure is described in terms of a copper/zinc voltaic cells. You will also set up copper/magnesium and zinc/magnesium voltaic cells. Obtain a salt bridge from your instructor. Add 25 ml of 1 M CuS0 4 to a 100-mL beaker. Obtain a 4-inch strip of copper metal and clean it with sandpaper. Place the copper metal strip into the beaker containing the copper sulfate solution to serve as an electrode. Add 25 ml of 1 M ZnS0 4 to another beaker. Obtain a 4-inch strip of zinc metal and clean it with sandpaper. Place the zinc metal strip into the porous cup containing the zinc sulfate solution to serve as an electrode. Insert the salt bridge so that one leg is submerged in each beaker. Connect one lead of the voltmeter to the copper strip, and the other lead of the voltmeter to the zinc strip. Allow the cell to stand until the voltage reading on the voltmeter has stabilized, then record the highest voltage obtained. Using the table of standard reduction potentials in your textbook, calculate the standard potential for the 3

copper/zinc voltaic cell. Calculate the % difference between your experimentally determined voltage and the standard voltage. Using the same method as discussed for the copper/zinc cell, construct copper/magnesium and zinc/magnesium cells and measure their potentials. Calculate the standard cell potential for both of these cells, and the % difference between your experimental voltage and the standard voltage. C. Effect of Concentration on Cell Potential Prepare a copper/zinc voltaic cell as in Part B, using 1 M ZnS0 4 solution as before, but replace the 1 M CuS0 4 solution with 0.1 M CuS0 4 solution. Measure the voltage of the cell. How does the decrease in concentration affect the voltage of the cell? Prepare a copper/zinc voltaic cell as in Part B, using 1 M CuS0 4 solution as before, but replace the 1 M ZnS0 4 solution with 0.1 M ZnS0 4 solution. Measure the voltage of the cell. Does the decrease in concentration of Zn 2+ ion affect the voltage measured? Why? Part B: Potentiometric Titration of an Unknown Chloride Objective: The objectives of this experiment are to... illustrate how electrochemical cell potential measurements are made. perform the potentiometric titration of an unknown chloride sample with standard silver nitrate. graph a titration curve and determine an endpoint. calculate the percent chloride in an unknown sample. Background: In this experiment the percent chloride in an unknown solid is determined by a potentiometric titration (a titration in which the electrical potential of a cell is measured). A sample of dried unknown is weighed into a volumetric flask and dissolved. A pipetted portion of unknown solution is titrated with a standard silver nitrate solution. The titration reaction is the precipitation of silver chloride: Ag + + Cl - AgCl (s) Prior to the titration, a silver electrode is placed in the unknown solution and a reference (copper) electrode is place in a CuSO 4 solution (creating a cell) and connected to the voltmeter. Cell potential (voltage) measurements are made during the titration and a potentiometric titration curve is constructed by plotting cell potential (y-axis) versus ml AgNO 3 (x-axis). The measured cell potential climbs slowly before the equivalence point but then rises sharply at the equivalence point, producing an inflection. The potential again climbs slowly after the equivalence point. 4

The potential of the silver electrode is a function of the silver ion concentration and is given by the Nernst equation: E= E o 0.0592 1 log n [ Ag+ ] where E 0 is the standard electrode potential for the silver/silver ion half cell. The measured cell potential equals the silver electrode potential minus the reference electrode potential. Since the reference electrode potential is relatively constant, the changes in the cell potential are due almost entirely to changes in the silver electrode potential, which is determined by the silver ion concentration. Before the equivalence point, on this electrochemical titration, the added silver ion is precipitated as silver chloride and the equilibrium silver ion concentration is held low by the unreacted chloride ion: [Ag + ] = K sp /[Cl - ]. After the equivalence point, the added silver ion remains in solution, giving it a relatively high concentration. The cell potential thus climbs during the titration. The inflection is a characteristic result of graphing a log function. The steepest part of the inflection is taken as the equivalence point. To sharpen its location, a titration curve derivative plot is made. The peak in the derivative plot corresponds to the point of steepest inflection and, with further scaling, provides a precise location of the equivalence point. SAFETY PRECAUTIONS If skin contact occurs with any chemicals, wash the affected area thoroughly with soap and water. Clean up all spills immediately using damp paper towels. Discard all waste silver solids and solutions into the provided waste containers. Safety goggles must be worn at all times in the laboratory. EXPERIMENTAL PROCEDURE Solution preparation Obtain a sample of solid unknown chloride and dry it at 110 o C for one hour (this may already be prepared for you). Accurately weigh, using an analytical balance, approximately 0.35 grams of sample into a 100 ml volumetric flask. Dissolve the sample, bring the flask to volume, and mix well. Titration setup Pipet 25 ml of unknown into a 100 ml beaker. Add 5 ml of 6 M nitric acid and 25 ml distilled water (both measured with a graduated cylinder). Insert a stir bar. Rinse and fill a 50 ml buret with the standard silver nitrate solution. Place beaker containing the chloride solution on a magnetic stirrer and insert the silver electrode. In the another beaker add about 25 ml of 0.2 M CuSO 4 solution and insert the reference (copper) electrode. Add the salt bridge between the two beakers. Connect wire leads to the ph/mv port. The silver electrode should be connected to the red lead and the reference electrode (copper electrode) should be connected to the black lead (the ground). DATA ANALYSIS 1. Use Excel to graph titration curve data. 2. On y-axis graph mv versus ml AgNO 3 on the x-axis. Obtain a printout of your titration curve and insert into your report. 3. Using the equivalence point volume, the AgNO 3 molarity, and the unknown sample mass, calculates the percent chloride in the unknown. Carefully watch significant figures in this calculation. Report your result and show your calculations. 5