FINITE ELEMENT METHOD II Autumn 2015

Similar documents
8-node quadrilateral element. Numerical integration

From Structural Analysis to FEM. Dhiman Basu

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS

The Hyperelastic material is examined in this section.

Stress-Based Finite Element Methods for Dynamics Analysis of Euler-Bernoulli Beams with Various Boundary Conditions

An Overview of Markov Random Field and Application to Texture Segmentation

Review - Probabilistic Classification

A Note on Estimability in Linear Models

Outlier-tolerant parameter estimation

Three-Node Euler-Bernoulli Beam Element Based on Positional FEM

Static/Dynamic Deformation with Finite Element Method. Graphics & Media Lab Seoul National University

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous

Grand Canonical Ensemble

Jones vector & matrices

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

APPLICATION OF GALERKIN FINITE ELEMENT METHOD IN THE SOLUTION OF 3D DIFFUSION IN SOLIDS

PREDICTION OF STRESS CONCENTRATION FACTORS IN UNLAPPED SQUARE HOLLOW "K" JOINTS BY THE FINITE ELEMENT METHOD

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES

From Structural Analysis to Finite Element Method

Shape sensing of aerospace structures by coupling of isogeometric analysis and inverse finite element method

Discrete Shells Simulation

OPTIMAL TOPOLOGY SELECTION OF CONTINUUM STRUCTURES WITH STRESS AND DISPLACEMENT CONSTRAINTS

FEFF and Related Codes

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

Linear Algebra Provides a Basis for Elasticity without Stress or Strain

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

A Novel Finite Volume Scheme with Geometric Average Method for Radiative Heat Transfer Problems *

Variational Approach in FEM Part II

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

Performance assessment of the window-wall interface. PhD-meeting Nathan Van Den Bossche - 04/06/2010 Department of Architecture Ghent University

Finite element discretization of Laplace and Poisson equations

AS 5850 Finite Element Analysis

7 Finite element methods for the Euler Bernoulli beam problem

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces

6 Finite element methods for the Euler Bernoulli beam problem

1- Summary of Kinetic Theory of Gases

Study of Dynamic Aperture for PETRA III Ring K. Balewski, W. Brefeld, W. Decking, Y. Li DESY

Finite Element Based Implementation of Fiala s Thermal Manikin in THESEUS-FE

Direct Approach for Discrete Systems One-Dimensional Elements

The Fourier Transform

Chapter 6 Student Lecture Notes 6-1

EDGE PEDESTAL STRUCTURE AND TRANSPORT INTERPRETATION (In the absence of or in between ELMs)

ACOUSTIC WAVE EQUATION. Contents INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS

horizontal force output data block Hankel matrix transfer function complex frequency response function impedance matrix

Α complete processing methodology for 3D monitoring using GNSS receivers

Dynamic Modeling and Vibration Control for Spacecraft s Solar Array Jian-Ping JIANG 1,a, *, Rui XU 2,b

Analyzing Frequencies

EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Lecture 12

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP

Physics of Very High Frequency (VHF) Capacitively Coupled Plasma Discharges

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):.

1 Isoparametric Concept

APPLICABILITY OF LINEARIZED DUSTY GAS MODEL FOR MULTICOMPONENT DIFFUSION OF GAS MIXTURES IN POROUS SOLIDS. Jelena Markovi and Radovan Omorjan

Constitutive Modeling of Progressive Damage in Composite Laminates

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

14. MODELING OF THIN-WALLED SHELLS AND PLATES. INTRODUCTION TO THE THEORY OF SHELL FINITE ELEMENT MODELS

VSMN30 FINITA ELEMENTMETODEN - DUGGA

Journal of Chemical and Pharmaceutical Research, 2014, 6(7): Research Article

Stretching and bending deformations due to normal and shear tractions of doubly curved shells using third-order shear and normal deformable theory

Spectral stochastic finite element analysis of structures with random field parameters under bounded-but-uncertain forces

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION*

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS

Radial Cataphoresis in Hg-Ar Fluorescent Lamp Discharges at High Power Density

2. Grundlegende Verfahren zur Übertragung digitaler Signale (Zusammenfassung) Informationstechnik Universität Ulm

A C 1 Beam Element Based on Overhauser Interpolation

??? Dynamic Causal Modelling for M/EEG. Electroencephalography (EEG) Dynamic Causal Modelling. M/EEG analysis at sensor level. time.

Phys 774: Nonlinear Spectroscopy: SHG and Raman Scattering

Fakultät III Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach

Econ107 Applied Econometrics Topic 10: Dummy Dependent Variable (Studenmund, Chapter 13)

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved.

SCITECH Volume 5, Issue 1 RESEARCH ORGANISATION November 17, 2015

3 Finite Element Parametric Geometry

NUMERICAL MODELING OF HEAT TRANSFER IN BIOLOGICAL TISSUE DOMAIN USING THE FUZZY FINITE DIFFERENCE METHOD

INTERFACE CORNERS IN ANISOTROPIC/PIEZOELECTRIC/ VISCOELASTIC MATERIALS

VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 514.7(045) : : Eberhard Malkowsky 1, Vesna Veličković 2

THE HOMOGENIZED VISCOELASTIC AND RATE DEPENDENT PLASTIC MODEL FOR PLAIN WEAVE FABRIC REINFORCED POLYMER COMPOSITES

GPC From PeakSimple Data Acquisition

Physics 256: Lecture 2. Physics

Optimal Topology Design for Replaceable of Reticulated Shell Based on Sensitivity Analysis

A Study on Nonlinear Forced Vibration of an Axial Moving Viscoelasticity Beam using the Multi-Scale Approach

Finite Element Models for Steady Flows of Viscous Incompressible Fluids

3.4 Properties of the Stress Tensor

Chapter 5. Introduction. Introduction. Introduction. Finite Element Modelling. Finite Element Modelling

Decision-making with Distance-based Operators in Fuzzy Logic Control

Lesson 7. Chapter 8. Frequency estimation. Bengt Mandersson LTH. October Nonparametric methods: lesson 6. Parametric methods:

Introduction to logistic regression

Influence of Fiber Orientation on the Natural Frequencies of Laminated Composite Beams

Lecture 3: Phasor notation, Transfer Functions. Context

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

A FE Method for the Computational Fluid Dynamics of Turbomachinery

Higher-Order Discrete Calculus Methods

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added

High-Order FEM Formulation for 3-D Slope Instability

2008 AP Calculus BC Multiple Choice Exam

Linear Algebra. Definition The inverse of an n by n matrix A is an n by n matrix B where, Properties of Matrix Inverse. Minors and cofactors

Transcription:

FEM II - Lctur Pag of 4 FINITE ELEMENT METHOD II Autumn 05 Lcturs (5h):. Accuracy, rror stmaton and adaptv rmshng. Hat flow and thrmal strsss n FEM 3. Introducton to structural dynamcs, fr vbratons 4. Nonlnar problms n mchancs of structurs - basc numrcal tchnqus 5. Orthotropc matrals and compost structurs 6. Paramtrc modlng and dsgn optmzaton Computr lab (5h): Modlng smpl problms of: thrmal strsss, contact mchancs, plastcty and rsdual strsss, fr vbratons, buclng, paramtrc modlng Rfrncs: [] Lctur nots from th wb st: http://ml.pw.du.pl/zwm/zwmk/dla-studntow/fnt-elmnt-mthod-ii [] Moavn S.: Fnt lmnt analyss. Thory and applcatons wth ANSYS. Parson Educaton, 05. [3] Klbr M. (rd.): Komputrow mtody mchan cał stałych, sra Mchana Tchnczna XI, Warszawa PWN 995. [4] Xaoln Chn, Yjun Luv: Fnt Elmnt Modlng and Smulaton wth ANSYS. Worbnch, CRC Prss 04 [5] Hubnr K. H., Dwhrst D. L., Smth D.E., Byrom T. G.: Th fnt lmnt mthod for ngnrs, J. Wly & Sons, Inc., 00. [6] Znwcz O.C., Taylor R.: Th Fnt Elmnt Mthod - dffrnt publshrs and dtons [7] Krzsńs G., Zagraj T., Mar P., Borows P.: MES w mchanc matrałów onstrucj. Rozwązywan wybranych zagadnń za pomocą programu ANSYS, Of. Wyd.PW 05 [8] Bja-Żochows M., Jawors A., Krzsńs G., Zagraj T.: Mchana Matrałów Konstrucj, Tom, Warszawa, Of. Wyd. PW, 04 Assssmnt basd on th fnal tst and th rsults of computr lab wor

FEM II - Lctur Pag of 4. ACCURACY OF FE ANALYSIS. ERROR ESTIMATION AND ADAPTIVE REMESHING Ral objct gomtry, boundary (ntal) condtons matral proprts, laws of physcs Mthmatcal modl (contnuous) dscrtzaton approxmaton Ral rsult w r Exact soluton of th mathmatcal modl w s ε = w w modlng rror, s s r ε = w w dscrtzaton rror d d s ε = w w numrcal rror n n d Total rror: ε = ε + ε + ε = w w c s d n n r Th most ffctv FEM analyss: ε s ~ ε d ~ ε n Dscrt modl Exact soluton of th dscrt modl w d numrcal calculatons Numrcal rsult - w n Approxmat mthods flow chart (vald also for othr mthods.g. Boundary Elmnt Mthod - BEM and Fnt Dffrncs Mthod - FDM)

FEM II - Lctur Pag 3 of 4 Modlng rror ε s Dpnds on th accuracy of th avalabl nformaton about th problm and nowldg of th analyst (D D 3D modls, lnar, nonlnar, assumd smplfcatons, rlabl nformaton concrnng matral proprts, loads.) Dffrnt modls for th problm Th xampl woodn board on dmnsonal modl - bam a) modl bl b) two- modl dmnsonal płyty modl - plat q 0 N m N p 0 m Mathmatcal modl:,, 3 dmnsonal proprts of wood: sotropc-orthotropc, mostdry, homognous-nhomognous, rat dpndntrat-ndpndnt) contact ntracton modl (frcton) loadngs c) thr modl dmnsonal trójwymarowy modl sold bryły volum N 0 m 3

FEM II - Lctur Pag 4 of 4 Dscrtzaton rror ε d Dpnds on th msh dnsty, typs of th lmnts shap functons, th shaps of th fnt lmnts.86398 5 50 00 50 00 50 300 400 FE msh and von Mss strss dstrbuton Dscrt soluton vrsus xact soluton of th contnuous problm Thr ar som mathmatcal convrgnc rqurmnts n FEA concrnng th msh, shap functons, and ruls of FE modl buldng.

FEM II - Lctur Pag 5 of 4 Numrcal rror ε n [ K ]{ q} = { F}, [ K + δ K ]{ q + δ q} = { F + δ F}. [ K ] [ K ] { δ F} { } [ δ ] [ ] δ q K +, q F K condton numbr of th matrx K ([ ]) [ ] [ ] cond K = K K. Norm of a matrx (vctor) a masur of magntud L - Eucldan norms, = Vctor norm { q} ( q ) Matrx norm [ K ] ( j ) (matrx norm nducd by th vctor norm) j = Max norms (L ~ norms) { q} = max q, [ K ] max j =. j A problm wth a lsmall condton numbr s sad to b wll-condtond, whl a problm wth a hgh condton numbr s sad to b ll-condtond. cond(k) cond(k ) - problm wll-condtond cond(k )» - problm ll-condtond Rasons of ll-condtonng of th problms n FE strss analyss grat dffrncs btwn stffnss of FE lmnts, unstabl boundary condtons

FEM II - Lctur Pag 6 of 4 Th xampl (ll condtond problm): q A q B q 3 [ ] q = 0 = Lt s assum: A Th soluton: Th rsult: A A q F + q = F A A B B B B q 3 F 3 A + B B q F = q F B B 3 3 = = 000 B F = F3 F q A A F = q3 F3 + A A B q 0 = q3 0.00 F 3 Th xampl of th vry small prturbaton For changd forc vctor : { δ F} δ F 0.00 δ F3 0 = = F 0.999 = F3.0 q 0.00 = q3 0.00 δ F F { δ q} δ q 0.00 δ q3 0.00 = = δ q = = q 3 0.707 0.44 3 cond( K) 4 0

FEM II - Lctur Pag 7 of 4 Frst quaton Scond quaton q q + F = q A B 3 B = q + 3 F 3 B B q 3 Systm ll-condtond f A + B B A 0 Snstvty to th slop chang K A <<K B systm ll condtond B + A B tgα = B α α tgα = Round off rror As a gnral rul, f th condton numbr cond(k) = 0, thn you may los up to maxmum dgts of accuracy durng th soluton of th systm of lnar quatons. Howvr, th condton numbr dos not gv th xact valu of th maxmum naccuracy that may occur n th algorthm. ( ([ ])) r p log 0 cond K p numbr of sgnfcant dgts n th computr rprsntaton of numbrs r numbr of sgnfcant dgts of th rsult In FE modls cond(k) rachs 0 8 q

FEM II - Lctur Pag 8 of 4 A postror rror approxmaton tchnqus Elmnt and nodal soluton n FE program postprocssors (PLESOL, PLNSOL n ANSYS) FE soluton provds th contnuous dsplacmnt fld ( from lmnt to lmnt), and th dscontnuous strss fld. To obtan smooth strss dstrbuton, th avragng of th strsss n th nods s prformd ( nodal strsss). MN PowrGraphcs EFACET= D =.086853 SMN =-4.333 S =379. -4.333 9.383 73.099 6.85 60.53 04.47 47.963 9.679 335.395 379. MN EFACET= AVRES=Mat D =.086853 SMN =-0.37 S =370.5-0.37 3.99 74. 6.50 58.793 0.085 43.376 85.667 37.959 370.5 Y Y Z X Z X JUN 008 00:3:3 PLOT NO. 5 ELEMENT SOLUTION STEP= SUB = TIME= SY (NOAVG) RSYS=0 PowrGraphcs EFACET= D =.05 SMN =6.884 S =379. 6.884 46.0 75.57 04.93 33.49 6.566 9.70 30.838 349.975 379. JUN 008 00:3:37 PLOT NO. 6 NODAL SOLUTION STEP= SUB = TIME= SY (AVG) RSYS=0 PowrGraphcs EFACET= AVRES=Mat D =.05 SMN =6.884 S =370.5 6.884 45.036 73.88 0.339 9.49 57.643 85.795 33.946 34.098 370.5 Rctangular plat wth a hol undr tnson. Th modl of th quartr of th structur. Th strss componnt σ y Dscontnuous lmnt soluton (lft) and avragd contnuous nodal soluton (rght). Sx-nod trangular plan lmnts

FEM II - Lctur Pag 9 of 4 Basc rlatons btwn dsplacmnts, strans, strsss and stran nrgy wthn fnt lmnts (th rlatons dscussd durng FEM I lcturs) Dsplacmnt fld ovr th lmnt s ntrpolatd from th nodal dsplacmnts: { u} = [ N( x, y, z) ] { q}, whr { } q - nodal dsplacmnts vctor, [ ] For xampl for th smplst trangular lmnt wth 3 nods and 6 DOF th rlaton s N - shap functons matrx. u u υ u( x, y) N( x, y) 0 N( x, y) 0 N3( x, y) 0 u =, υ( x, y) 0 N( x, y) 0 N( x, y) 0 N3( x, y) υ u 3 υ3 whr N ar th lnar functons Shap functons N j ar usually polynomals dfnd n local (lmnt) coordnat systms. Dsplacmnts, strans and strsss wthn ach lmnt ar dfnd as th functons of th nodal dsplacmnts { u} = [ N ]{ q}, { ε} = [ R]{ u} = [ R][ N ]{ q} = [ B]{ q} { σ } = [ D]{ ε} = [ D][ B]{ q}. Th stran nrgy of th lmnt Ω s: U = Ω, [B] stran-dsplacmnt matrx, [ R ] -gradnt matrx T ε { σ} d, [ ] [ ] [ ] { } Ω T whr [ ] [ ] [ ] [ ] U = q B D B q d Ω, U = [ ] { } Ω q q. s th stffnss matrx of th lmnt (symmtrcal, sngular, sm-postv dfnd) Ω = B D B dω LWE=3 LWE=6 LWE=4 LWE=8 lmnty trójwymarow w u v

FEM II - Lctur Pag 0 of 4 {σ} {σ} Avragd strss vctor at nod n {σ} n av = Σ {σ} n / ( =6) Nod n {σ} dscontnuous contnous strss vctor at nod n of lmnt n σ x σ y σ 3 =... τ xy τ yz τ xz z { σ} { σ} { σ} { σ} n n n n n avragd strss vctor at nod n: { } av = σ = n { σ } n

FEM II - Lctur Pag of 4 Strss rror vctor at nod n of lmnt { σ } = { σ} { σ} av n n n Th strss rror vctor { σ} wthn th lmnt may b dtrmnd by standard approxmaton usng th strss rror vctors at nods of lmnt { σ }. Stran nrgy of th lmnt n U = σ { ε} dω Thn for ach lmnt so calld nrgy rror can b stmatd = σ [ D] { σ} dω (ETABLE-SERR) Ω [ Ω { ε} [ D] { σ } =, D] strss-stran matrx U = σ [ D] { σ } dω Ω JUN 008 0:49:0 PLOT NO. ELEMENT SOLUTION STEP= SUB = TIME= SERR (NOAVG) D =.086853 SMN =.30E-08 S =.96E-03.30E-08.07E-03.4E-03.3E-03.47E-03.534E-03.64E-03.748E-03.855E-03.96E-03 JUN 008 0:49:6 PLOT NO. ELEMENT SOLUTION STEP= SUB = TIME= SDSG (NOAVG) D =.086853 SMN =.00959 S =.3.00959.367.74 4.08 5.438 6.795 8.5 9.509 0.866.3 Y Y Z X Z X Intal msh. SERR and SDSG rror dstrbuton SDSG - σ = maxmum absolut valu of any componnt of { } { } { } av σ = σ σ for all nods connctd to lmnt n n n

FEM II - Lctur Pag of 4 Th nrgy rror ovr th modl l. l. = = Th nrgy rror can b normalzd aganst th stran nrgy SEPC = 00 U + U total stran nrgy ovr th ntr modl SEPC prcntag rror n nrgy norm Th valus can b usd for adaptv msh rfnmnt. It has bn shown that f s qual for all lmnts, thn th modl usng th gvn numbr of lmnts s th most ffcnt on. Ths concpt s also rfrrd to as rror qulbraton ( = const, SEPC< S 0 ).

FEM II - Lctur Pag 3 of 4 Adaptv Mshng Tchnqus - Automatc rfnmnt of FE mshs untl convrgd rsults ar obtand - Usr s rsponsblty rducd to gnraton a good ntal msh START Intal msh IF ( /N )/(/N )<ps SEPC<ps END YES NO Msh rfnmnt (dffrnt msh gnraton tchnqus) Y Z X Y Z MN X TIME= SY (AVG) RSYS=0 D =.08685 SMN =-.74 SMNB=-4.773 S =374.04 SB=375.98 -.74 3.68 74.49 7.3 60.033 0.834 45.636 88.437 33.39 374.04 Fnal FE msh and th rsults - Sy dstrbuton (prcntag rror n nrgy norm SEPC=0.8%, unform rror dstrbuton = const)

FEM II - Lctur Pag 4 of 4 Slctv adaptv mshng If msh dscrtzaton rror (masurd as a prcntag) s rlatvly unmportant n som rgons of th modl, th procdur may b spd up by xcludng such rgons from th adaptv mshng opratons. Also - nar sngularts causd by concntratd loads and at boundars btwn dffrnt matrals. Slctv adaptv mshng n ANSYS Typs of rfnmnt n adaptv mshng : h-rfnmnt: rducton of th sz of th lmnt ( h rfrs to th typcal sz of th lmnts) p-rfnmnt: ncras of th ordr of th polynomals on an lmnt (shap functons from lnar to quadratc, tc.) r-rfnmnt: r-arrangmnt of th nods n th msh hp-rfnmnt: combnaton of th h- and p-rfnmnts.