Course Outline. 1. MATLAB tutorial 2. Motion of systems that can be idealized as particles

Similar documents
s = rθ Chapter 10: Rotation 10.1: What is physics?

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

Field due to a collection of N discrete point charges: r is in the direction from

Chapter 3: Vectors and Two-Dimensional Motion

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

Homework 8: Rigid Body Dynamics Due Friday April 21, 2017

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3

Motion in Two Dimensions

Lecture 5. Plane Wave Reflection and Transmission

ESS 265 Spring Quarter 2005 Kinetic Simulations

2 shear strain / L for small angle

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration

Course Outline. 1. MATLAB tutorial 2. Motion of systems that can be idealized as particles

Response of MDOF systems

PHY121 Formula Sheet

Physics 1501 Lecture 19

Molecular dynamics modeling of thermal and mechanical properties

Chapters 2 Kinematics. Position, Distance, Displacement

Physics 201 Lecture 15

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Physics 207 Lecture 16

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr.

CHAPTER 10: LINEAR DISCRIMINATION

Mass-Spring Systems Surface Reconstruction

Mechanics Physics 151

Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate

Mechanics Physics 151

Rotation: All around us: wheels, skaters, ballet, gymnasts, helicopter, rotors, mobile engines, CD disks, Atomic world: electrons spin, orbit.

Today s topic: IMPULSE AND MOMENTUM CONSERVATION

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March

Prediction of modal properties of circular disc with pre-stressed fields

Sharif University of Technology - CEDRA By: Professor Ali Meghdari

Name of the Student:

N 1. Time points are determined by the

PHY2053 Summer C 2013 Exam 1 Solutions


RELATIVE MOTION OF SYSTEMS IN A PARAMETRIC FORMULATION OF MECHANICS UDC Đorđe Mušicki

Determination of the rheological properties of thin plate under transient vibration

Rotary motion

Lecture 9: Dynamic Properties

Dynamics of Rigid Bodies

( ) ( ) ( ) ( ) ( ) ( ) j ( ) A. b) Theorem

PHYS 1443 Section 001 Lecture #4

FI 3103 Quantum Physics

Reflection and Refraction

Radial Motion of Two Mutually Attracting Particles

Chapter Lagrangian Interpolation

b g b g b g Chapter 2 Wave Motion 2.1 One Dimensional Waves A wave : A self-sustaining disturbance of the medium Hecht;8/30/2010; 2-1

Basic molecular dynamics

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles

Chapter 13 - Universal Gravitation

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1

Displacement, Velocity, and Acceleration. (WHERE and WHEN?)

calculating electromagnetic

TRANSIENTS. Lecture 5 ELEC-E8409 High Voltage Engineering

Chapter 8. Linear Momentum, Impulse, and Collisions

May 29, 2018, 8:45~10:15 IB011 Advanced Lecture on Semiconductor Electronics #7

Solution in semi infinite diffusion couples (error function analysis)

Chapter Finite Difference Method for Ordinary Differential Equations

Scattering at an Interface: Oblique Incidence

1 Constant Real Rate C 1

ajanuary't I11 F or,'.

One-dimensional kinematics

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190

Exam 3: Equation Summary

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Normal Random Variable and its discriminant functions

10/15/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101

Physics 207 Lecture 13

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

CHAPTER 10 ROTATIONAL MOTION

2/20/2013. EE 101 Midterm 2 Review

Motion of Wavepackets in Non-Hermitian. Quantum Mechanics

Relative and Circular Motion

Mechanics Physics 151

CHAPTER 13 LAGRANGIAN MECHANICS

Water Hammer in Pipes

Chapter 6 Plane Motion of Rigid Bodies

Rotor profile design in a hypogerotor pump

( ) () we define the interaction representation by the unitary transformation () = ()

Dynamics of Rotational Motion

Math 209 Assignment 9 Solutions

Notes on the stability of dynamic systems and the use of Eigen Values.

8. HAMILTONIAN MECHANICS

Time-Dependent Density Functional Theory in Condensed Matter Physics

24-2: Electric Potential Energy. 24-1: What is physics

A VISCOPLASTIC MODEL OF ASYMMETRICAL COLD ROLLING

Chapter Fifiteen. Surfaces Revisited

KINEMATICS OF RIGID BODIES

THE PHYSICS BEHIND THE SODACONSTRUCTOR. by Jeckyll

Exam 3: Equation Summary

Chapter 6: AC Circuits

KEPLER S LAWS AND PLANETARY ORBITS

Rotations.

Comprehensive Integrated Simulation and Optimization of LPP for EUV Lithography Devices

Transcription:

Couse Oulne. MATLAB uoal. Moon of syses ha can be dealzed as pacles Descpon of oon, coodnae syses; Newon s laws; Calculang foces equed o nduce pescbed oon; Deng and solng equaons of oon 3. Conseaon laws fo syses of pacles Wo, powe and enegy; Lnea pulse and oenu Angula oenu 4. Vbaons Exa opcs Chaacescs of baons; baon of fee DO syses Vbaon of daped DO syses oced Vbaons 5. Moon of syses ha can be dealzed as gd bodes Descpon of oaonal oon neacs; geas, pulleys and he ollng wheel Ineal popees of gd bodes; oenu and enegy Dynacs of gd bodes

Pacle Dynacs concep checls Undesand he concep of an neal fae Be able o dealze an engneeng desgn as a se of pacles, and now when hs dealzaon wll ge accuae esuls Descbe he oon of a syse of pacles (eg coponens n a fxed coodnae syse; coponens n a pola coodnae syse, ec) Be able o dffeenae poson ecos (wh pope use of he chan ule!) o deene elocy and acceleaon; and be able o negae acceleaon o elocy o deene poson eco. Be able o descbe oon n noal-angenal and pola coodnaes (eg be able o we down eco coponens of elocy and acceleaon n es of speed, adus of cuaue of pah, o coodnaes n he cylndcal-pola syse). Be able o cone beween Caesan o noal-angenal o pola coodnae descpons of oon Be able o daw a coec fee body daga showng foces acng on syse dealzed as pacles Be able o we down Newon s laws of oon n ecangula, noal-angenal, and pola coodnae syses Be able o oban an addonal oen balance equaon fo a gd body ong whou oaon o oang abou a fxed axs a consan ae. Be able o use Newon s laws of oon o sole fo unnown acceleaons o foces n a syse of pacles Use Newon s laws of oon o dee dffeenal equaons goenng he oon of a syse of pacles Be able o e-we second ode dffeenal equaons as a pa of fs-ode dffeenal equaons n a fo ha MATLAB can sole

Ineal fae non acceleang, non oang efeence fae Pacle pon ass a soe poson n space Poson Veco Velocy Veco ( ) = x( ) + y( ) + z( ) () = () + () + () x y z d dx dy dz = ( x+ y+ z) = + + d d d d dx dy dz x() = y() = z() = d d d Decon of elocy eco s paallel o pah Magnude of elocy eco s dsance aeled / e Acceleaon Veco O () (+d) d d dy () () () () x d a = a z x + ay + az = ( x+ y+ z) = + + d d d d Also Pacle Kneacs d d () x y d () () z x y z d x d y d z a = = a = = a = = d d d d d d d dy () x d a () () z x = x ay = y az = z dx dy dz () d pah of pacle

Pacle Kneacs Sagh lne oon wh consan acceleaon = X + V + a = ( V + a) = a a Te/elocy/poson dependen acceleaon use calculus = X + () d = V + a() d d g() a = = f ( ) d = g() d d f () V x () dx g() = = f ( x) d = () d d f () X d = ax ( ) d d dx d = ax ( ) = ax ( ) dx d dx () x () V d = a( x) dx

Pacle Kneacs Ccula Moon a cons speed θ = ω s= Rθ V = ωr ( cosθ snθ ) R( sn cos ) = R + = ω θ+ θ = V V a= ω R(cosθ+ sn θ) = ω Rn= n R Geneal ccula oon ( cosθ snθ ) R( sn cos ) = R + = ω θ+ θ = V a= Rα( snθ+ cos θ) Rω (cosθ+ sn θ) dv V = αr + ω Rn= + n d R ω = dθ / d α = dω / d = d θ / d s = Rθ V = ds / d = Rω snθ cosθ R n θ=ω Rsn θ Rcosθ snθ cosθ R n θ Rsn θ Rcosθ

Pacle Kneacs Moon along an abay pah = V dv V a= + n d R R n s Radus of cuaue R = d x d y + ds ds = xs ( ) + y(s) Pola Coodnaes e θ e d dθ = e + e d d θ d dθ d θ d dθ a= e + + e d d d d d θ θ

Usng Newon s laws Calculang foces equed o cause pescbed oon Idealze syse ee body daga Kneacs (descbe oon usually goal s o fnd foula fo acceleaon) =a fo each pacle. M c = (fo seadly o non-oang gd bodes o faes only) Sole fo unnown foces o acceleaons (us le sacs)

Usng Newon s laws o dee equaons of oon. Idealze syse. Inoduce aables o descbe oon (ofen x,y coods, bu we wll see ohe exaples) 3. We down, dffeenae o ge a 4. Daw BD 5. = a 6. If necessay, elnae eacon foces 7. Resul wll be dffeenal equaons fo coods defned n (), e.g. d x dx + λ + x = Y snω d d 8. Idenfy nal condons, and sole ODE

Moon of a poecle n eahs gay X Y Z d d = + + = Vx Vy Vz = + + X V ( ) ( ) = X + Vx + Y + Vy + Z + Vz g ( V ) ( V ) ( V g) = + + a= g x y z

Reaangng dffeenal equaons fo MATLAB Exaple d y d dy + ζωn + ωny = d Inoduce = dy / d Then d y d = ζωn ωny Ths has fo dw d y = f(, w) w =

Conseaon Conseaon laws fo Laws pacles: concep Concep checls Checls Know he defnons of powe (o ae of wo) of a foce, and wo done by a foce Know he defnon of nec enegy of a pacle Undesand powe-wo-nec enegy elaons fo a pacle Be able o use wo/powe/nec enegy o sole pobles nolng pacle oon Be able o dsngush beween conseae and non-conseae foces Be able o calculae he poenal enegy of a conseae foce Be able o calculae he foce assocaed wh a poenal enegy funcon Know he wo-enegy elaon fo a syse of pacles; (enegy conseaon fo a closed syse) Use enegy conseaon o analyze oon of conseae syses of pacles Know he defnon of he lnea pulse of a foce Know he defnon of lnea oenu of a pacle Undesand he pulse-oenu (and foce-oenu) elaons fo a pacle Undesand pulse-oenu elaons fo a syse of pacles (oenu conseaon fo a closed syse) Be able o use pulse-oenu o analyze oon of pacles and syses of pacles Know he defnon of esuon coeffcen fo a collson Pedc changes n elocy of wo colldng pacles n D and 3D usng oenu and he esuon foula Know he defnon of angula pulse of a foce Know he defnon of angula oenu of a pacle Undesand he angula pulse-oenu elaon Be able o use angula oenu o sole cenal foce pobles/pac pobles

Wo-Enegy elaons fo a sngle pacle Rae of wo done by a foce (powe deeloped by foce) P = O P Toal wo done by a foce W d W = = d O () P Knec enegy T= = + + ( ) x y z Powe-nec enegy elaon Wo-nec enegy elaon dt P = d W = d = T T O P

Poenal Enegy Poenal enegy of a conseae foce (pa) U( ) = d+ consan = gad( U ) Type of foce Gay acng on a pacle nea eahs suface Gaaonal foce exeed on ass by ass M a he ogn Poenal enegy U = gy GM U = y O P oce exeed by a spng wh sffness and unseched lengh L oce acng beween wo chaged pacles U = ( L ) QQ +Q +Q U = 4πε oce exeed by one olecule of a noble gas (e.g. He, A, ec) on anohe (Lennad Jones poenal). a s he equlbu spacng beween olecules, and E s he enegy of he bond. 6 a a U = E

Enegy Relaon fo a Conseae Syse Inenal oces: (foces exeed by one pa of he syse on anohe) Exenal oces: (any ohe foces) R Syse s conseae f all nenal foces ae conseae foces (o consan foces) 4 R R 3 R 3 R R 3 R 3 3 3 Enegy elaon fo a conseae syse 4 3 3 = = Toal KE T Toal PE U Exenal Powe P () Exenal wo W P() d = Toal KE T Toal PE U 4 3 3 ( ) W = T + U T + U Specal case zeo enal wo: + = + T U T U KE+PE = consan

Ipulse-Moenu fo a sngle pacle Defnons Lnea Ipulse of a foce Lnea oenu of a pacle I= () d p= O () Ipulse-Moenu elaons d = p d I= p p = p=p O () = p=p

Ipulse-Moenu Ipulse-oenu fo fo a syse a syse of pacles of pacles R oce exeed on pacle by pacle Exenal foce on pacle Velocy of pacle 4 R R 3 R 3 R R 3 R 3 3 3 Toal Exenal oce Toal Exenal Ipulse 4 3 () I = () d 4 3 Ipulse-oenu fo he syse: d = p d I = p p = 3 Toal oenu p = 3 Toal oenu p Specal case zeo enal pulse: p = p (Lnea oenu conseed)

Collsons x A A x A A * x B x B B B Moenu Resuon foula + = + A B A B A x B x A x B x ( ) = e B A B A = ( + e) + ( ) B B A B A A = + ( + e) + B ( ) A A B B A A B A A A A B n B B B Moenu Resuon foula + = + B A B A B A B A B A B A B A ( ) ( ) ( e) ( ) = + n n + + ( ) ( ) B B A B A = + e n n B A ( ) ( ) A A B B A = + + e n n B A

Angula Ipulse-Moenu Equaons fo a Pacle pacle Angula Ipulse Angula Moenu Ipulse-Moenu elaons A= () () d h= p= d = h d x O y () () z A= h h Specal Case A= h = h Angula oenu conseed Useful fo cenal foce pobles (when foces on a pacle always ac hough a sngle pon, eg planeay gay)