ON APPROXIMATION TO FUNCTIONS IN THE

Similar documents
W. Lenski and B. Szal ON POINTWISE APPROXIMATION OF FUNCTIONS BY SOME MATRIX MEANS OF CONJUGATE FOURIER SERIES

Commentationes Mathematicae Universitatis Carolinae

Absolutely convergent Fourier series and classical function classes FERENC MÓRICZ

Uniform convergence of N-dimensional Walsh Fourier series

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES

} be a sequence of positive real numbers such that

Czechoslovak Mathematical Journal

On absolutely almost convergence

On Absolute Matrix Summability of Orthogonal Series

Journal of Inequalities in Pure and Applied Mathematics

Double Fourier series, generalized Lipschitz és Zygmund classes

SOME RESULTS FOR MAX-PRODUCT OPERATORS VIA POWER SERIES METHOD. 1. Introduction

INTEGRABILITY CONDITIONS PERTAINING TO ORLICZ SPACE

On the decay of elements of inverse triangular Toeplitz matrix

FOURIER SERIES WITH THE CONTINUOUS PRIMITIVE INTEGRAL

Convergence to Common Fixed Point for Two Asymptotically Quasi-nonexpansive Mappings in the Intermediate Sense in Banach Spaces

MATH 5640: Fourier Series

Banach Algebras of Matrix Transformations Between Spaces of Strongly Bounded and Summable Sequences

CONVERGENCE OF HYBRID FIXED POINT FOR A PAIR OF NONLINEAR MAPPINGS IN BANACH SPACES

M ath. Res. Lett. 16 (2009), no. 1, c International Press 2009

An extension of Knopp s core theorem for complex bounded sequences

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Weak and strong convergence theorems of modified SP-iterations for generalized asymptotically quasi-nonexpansive mappings

Bounded uniformly continuous functions

SPACES ENDOWED WITH A GRAPH AND APPLICATIONS. Mina Dinarvand. 1. Introduction

ON ABSOLUTE NORMAL DOUBLE MATRIX SUMMABILITY METHODS. B. E. Rhoades Indiana University, USA

BEST PROXIMITY POINT RESULTS VIA SIMULATION FUNCTIONS IN METRIC-LIKE SPACES

Two-Step Iteration Scheme for Nonexpansive Mappings in Banach Space

International Journal of Pure and Applied Mathematics Volume 60 No ,

Random Bernstein-Markov factors

ON THE SET OF ALL CONTINUOUS FUNCTIONS WITH UNIFORMLY CONVERGENT FOURIER SERIES

The Hilbert Transform and Fine Continuity

On Pointwise λ Statistical Convergence of Order α of Sequences of Fuzzy Mappings

Fourier Series. 1. Review of Linear Algebra

Strong convergence of multi-step iterates with errors for generalized asymptotically quasi-nonexpansive mappings

SOME FIXED POINT RESULTS FOR ADMISSIBLE GERAGHTY CONTRACTION TYPE MAPPINGS IN FUZZY METRIC SPACES

Jordan Journal of Mathematics and Statistics (JJMS) 8(3), 2015, pp THE NORM OF CERTAIN MATRIX OPERATORS ON NEW DIFFERENCE SEQUENCE SPACES

An Extension in the Domain of an n-norm Defined on the Space of p-summable Sequences

THE SEMI ORLICZ SPACE cs d 1

On the statistical and σ-cores

ASYMPTOTICALLY I 2 -LACUNARY STATISTICAL EQUIVALENCE OF DOUBLE SEQUENCES OF SETS

A fixed point theorem for (µ, ψ)-generalized f-weakly contractive mappings in partially ordered 2-metric spaces

be the set of complex valued 2π-periodic functions f on R such that

The equivalence of Picard, Mann and Ishikawa iterations dealing with quasi-contractive operators

Proof. We indicate by α, β (finite or not) the end-points of I and call

Some approximation theorems in Math 522. I. Approximations of continuous functions by smooth functions

Bernstein-Szegö Inequalities in Reproducing Kernel Hilbert Spaces ABSTRACT 1. INTRODUCTION

FOURIER TRANSFORMS. 1. Fourier series 1.1. The trigonometric system. The sequence of functions

On the statistical type convergence and fundamentality in metric spaces

Shih-sen Chang, Yeol Je Cho, and Haiyun Zhou

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim

G. NADIBAIDZE. a n. n=1. n = 1 k=1

Tools from Lebesgue integration

Bernoulli Numbers and their Applications

ON A WEIGHTED INTERPOLATION OF FUNCTIONS WITH CIRCULAR MAJORANT

Introduction and Preliminaries

Real Analysis Math 125A, Fall 2012 Sample Final Questions. x 1+x y. x y x. 2 (1+x 2 )(1+y 2 ) x y

MATHS 730 FC Lecture Notes March 5, Introduction

SZEGÖ ASYMPTOTICS OF EXTREMAL POLYNOMIALS ON THE SEGMENT [ 1, +1]: THE CASE OF A MEASURE WITH FINITE DISCRETE PART

A KOROVKIN-TYPE APPROXIMATION THEOREM FOR DOUBLE SEQUENCES OF POSITIVE LINEAR OPERATORS OF TWO VARIABLES IN STATISTICAL A-SUMMABILITY SENSE

A CLASS OF SCHUR MULTIPLIERS ON SOME QUASI-BANACH SPACES OF INFINITE MATRICES

ON THE HÖLDER CONTINUITY OF MATRIX FUNCTIONS FOR NORMAL MATRICES

COMMON FIXED POINT THEOREM IN PROBABILISTIC METRIC SPACE

On L 1 -Convergence of Certain Cosine Sums With Third Semi-Convex Coefficients

Markov s Inequality for Polynomials on Normed Linear Spaces Lawrence A. Harris

On Zweier I-Convergent Double Sequence Spaces

On Uniform Convergence of Double Sine Series. Variation Double Sequences

arxiv: v1 [math.ca] 14 Oct 2015

EXISTENCE OF THREE WEAK SOLUTIONS FOR A QUASILINEAR DIRICHLET PROBLEM. Saeid Shokooh and Ghasem A. Afrouzi. 1. Introduction

Metric Spaces and Topology

Clarkson Inequalities With Several Operators

Fixed points of Ćirić quasi-contractive operators in normed spaces

Chapter I. Fourier Series on T

Weak and strong convergence of a scheme with errors for three nonexpansive mappings

OSCILLATORY SINGULAR INTEGRALS ON L p AND HARDY SPACES

Şükran Konca * and Metin Başarır. 1 Introduction

Stability of a Class of Singular Difference Equations

Almost Asymptotically Statistical Equivalent of Double Difference Sequences of Fuzzy Numbers

I and I convergent function sequences

On Some Combinations of Non-Consecutive Terms of a Recurrence Sequence

A New Theorem on Absolute Matrix Summability of Fourier Series. Şebnem Yildiz

BOUNDARY PROPERTIES OF FIRST-ORDER PARTIAL DERIVATIVES OF THE POISSON INTEGRAL FOR THE HALF-SPACE R + k+1. (k > 1)

ON LINEAR COMBINATIONS OF CHEBYSHEV POLYNOMIALS arxiv: v1 [math.nt] 9 Nov 2013

On the Spaces of Nörlund Almost Null and Nörlund Almost Convergent Sequences

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1

Fixed Point Theorems for -Monotone Maps on Partially Ordered S-Metric Spaces

Some Approximation Properties of Szasz-Mirakyan-Bernstein Operators

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall.

Bulletin of the Iranian Mathematical Society Vol. 39 No.6 (2013), pp

Journal of Inequalities in Pure and Applied Mathematics

Biholomorphic functions on dual of Banach Space

On the Convergence of Ishikawa Iterates to a Common Fixed Point for a Pair of Nonexpansive Mappings in Banach Spaces

A Nonstandard Fourier Inequality

ON THE CONVERGENCE OF MODIFIED NOOR ITERATION METHOD FOR NEARLY LIPSCHITZIAN MAPPINGS IN ARBITRARY REAL BANACH SPACES

On the uniform convergence and $L$convergence of double Fourier series with respect to the Walsh-Kaczmarz system

Functions of several variables of finite variation and their differentiability

Common fixed points of two generalized asymptotically quasi-nonexpansive mappings

Sobolev Spaces. Chapter 10

arxiv: v1 [math.ca] 7 Aug 2015

Transcription:

Novi Sad J. Math. Vol. 46, No., 26, -4 ON APPROXIMATION TO FUNCTIONS IN THE W (L p, ξ(t)) CLASS BY A NEW MATRIX MEAN U gur De ger Abstract. In this paper we shall present results related to trigonometric approximation of functions belonging to the weighted generalized Lipschitz class by the (C T ) matrix means of their Fourier series. The results of Lal in [8] will be extended to a more general summability method. Moreover, we present the results on degree of approximation to conjugates of functions belonging to a weighted generalized Lipschitz class by the (C T ) matrix means of their conjugate Fourier series. AMS Mathematics Subject Classification (2): 4A25; 42A5; 42A; 42A24; 42A5 Key words and phrases: degree of approximation; trigonometric approximation; Fourier series; weighted generalized Lipschitz class; matrix means. Introduction and Notations Summability methods have been used in various fields of mathematics. For example, summability methods are applied in function theory in connection with the analytic continuation of holomorphic functions and the boundary behaviour of a power series, in applied analysis for generation of iteration methods for the solution of a system of linear equations, and for acceleration of convergence in approximation theory, in the theory of Fourier series both for creation and acceleration of convergence of a Fourier series, and in other fields of mathematics like probability theory (Markov chains) and number theory (prime number theorem) []. In this work we are interested in a summability method in the theory of Fourier series. For this aim, we shall give the following notations to be used in this paper. Let L := L(, 2π) denote the space of functions that are 2π periodic and Lebesque integrable on [, 2π] and let (.) S[f] = a o 2 + (a k cos kx + b k sin kx) A k (f; x) k= be the Fourier series of a function f L ; i.e., for any k =,, 2, a k = a k (f) = π π k= f(t) cos kt, b k = b k (f) = π π f(t) sin kt. Department of Mathematics, Faculty of Science and Literature, Mersin University, e-mail: udeger@mersin.edu.tr, degpar@hotmail.com

2 U gur De ger Let s n (f; x) = 2 a + (a k cos kx + b k sin kx) k= A k (f; x) denote the partial sum of the first (n + ) terms of the Fourier series of f L at a point x. The conjugate series of (.) is given by S[f] = (a k sin kx b k cos kx) Ã k (f; x). k= Note that there is no free term in S[f]. Therefore, the series conjugate to the series S[f] is the series S[f] without free term. The function f L for which S[ f] = S[f] is called trigonometrically conjugate, or simply conjugate, to f( ). It can be shown that the functions f( ) and f( ) are connected by the equality (.2) = 2π f(x) = 2π π k= f(x + t)cot t 2 η(t)cot t 2 = 2π lim ε ε k= η(t)cot t 2 where η(t) := η(x, t) = f(x + t) f(x t). If f L, then equality (.2) exists for almost all x [25]. Let τ n (f; x) = τ n (f, T ; x) := a n,k s k (f; x), n k= where T (a n,k ) is a lower triangular infinite matrix satisfying the Silverman- Toeplitz[24] condition of regularity such that: {, k n; a n,k = (k, n =,, 2,...), k > n and (.3) a n,k =, (n =,, 2,...). k= The Fourier series of a function f is said to be T -summable to s, if τ n (f; x) s(x) as n. The Fourier series of f is called Cesàro-T (C T ) summable to s(x) if t CT n := n + m= τ m (f; x) = n + m= k= a m,k s k (f; x) s(x), as n. The Cesàro-T (C T ) means give us the following means for some important cases:

On approximation to functions in the W (L p, ξ(t)) class 3 Cesàro- Nörlund (C N p ) means, with a m,k = { pm k P m, k m;, k > m (k, m =,, 2,...), P m = p k ; k= (C, )(E, ) Product means, with a m,k = 2 m ( m k ) ; (C, )(E, q) Product means, with a m,k = (+q) m ( m k ) q m k ; Generalized Nörlund means, with a m,k = p m kq k r m where r m = m p m k q k. The degree of approximation of a function f : R R by a trigonometric polynomial T n of degree n is defined by T n f = sup{ T n (x) f(x), x R} with respect to the supremum norm [25]. The degree of approximation of a function f L p (p ) is given by E n (f) = min T n f p n where. p denotes the L p -norm with respect to x and will be defined by f p := { 2π 2π } f(x) p p dx. This method of approximation is called the trigonometric Fourier approximation. We recall the following definitions:. A function f is said to belong to the Lipα class if f(x + t) f(x) = O( t α ), < α ; 2. A function f is said to belong to the Lip(α, p) class if ω p (δ, f) = O(δ α ), where ω p (δ, f) = sup { t δ 2π 2π k= f(x + t) f(x) p dx} p, < α ; p ; 3. A function f is said to belong to the Lip(ξ(t), p) class if ω p (δ, f) = O(ξ(t)) where ξ(t) is a positive increasing function and p ; 4. We write f W (L p, ξ(t)) if (f(x + t) f(x))sin β (x/2) p = O(ξ(t)), β and p.

4 U gur De ger If β =, then W (L p, ξ(t)) reduces to Lip(ξ(t), p); and, if ξ(t) = t α, the Lip(ξ(t), p) class reduces to the Lip(α, p) class. If p then the Lip(α, p) class coincides with the Lipα class. Accordingly, we have the following inclusions: Lipα Lip(α, p) Lip(ξ(t), p) W (L p, ξ(t)) for all < α and p. 2. Approximation by matrix means of a Fourier series The degree of approximation, using the various summability methods in the Lipα class, has been determined by many mathematicians such as Bernstein [25], de la Valle-Poussin [25], Jackson [25], Mcfadden [4]. Similar problems for the Lip(α, p) class have been studied by researchers like Quade [8], Khan [5], Qureshi [2], Chandra[2], Leindler []. Other research related to the Lip(α, p) class can also be found in [3], [2], [3], [4] and [5]. The weighted W (L p, ξ(t)) class is a generalization of the classes Lipα, Lip(α, p) and Lip(ξ(t), p). The degree of approximation of a function belonging to the weighted W (L p, ξ(t)) class has been studied by Qureshi in [2]. In [6] and [8] Lal has considered the degree of approximation of functions belonging to the weighted W (L p, ξ(t)) class by the (C, )(E, ) means and (C N p ) means, respectively. Nigam has studied the same problem for the (C, )(E, q) means, which are much more general than the (C, )(E, ) means in [6]. Sing, Mittal and Sonker have generalized the results of Lal[8] in [23]. Therefore, taking into account this generalization of the function classes, we shall give two theorems on degree of approximation to functions belonging to the classes W (L p, ξ(t)) and Lipα by the (C T ) matrix means, being more general than (C, )(E, ), (C N p ) and (C, )(E, q) means given in [6], [8, 23] and [6], respectively. Also, throughout this section, we shall use the following notations: and Ψ(x, t) := Ψ(t) = f(x + t) + f(x t) 2f(x) K T (n, t) := 2π(n + ) m= k= a m,k sin(k + 2 )t sin( t 2 ). Before stating the theorems, we develop the following auxiliary results needed in the proofs of both of them. Lemma 2.. For < t, we have K T (n, t) = O(n). Proof. For < t, from (sin(t/2)) π/t and sin(n + )t (n + )t, we have sin(k + 2 K T (n, t) a )t m,k 2π(n + ) sin( t 2 ) by considering (.3). 2n + 2π(n + ) m= k= m= k= a m,k = O(n)

On approximation to functions in the W (L p, ξ(t)) class 5 Lemma 2.2. For < t π and any n, we have Proof. K T (n, t) = = K T (n, t) = O( t 2 n + ) + O(t ). 2π(n + )sin( t 2 ) 2π(n + )sin( t 2 ) = : I + I 2, n m= k= { τ + m= a m,k sin(k + 2 )t m=τ+ } m a m,k sin(k + 2 )t where τ denotes the integer part of /t. Owing to (.3) and Jordan s inequality, (sin(t/2)) π/t, for < t π, we obtain ( ) τ (2.) I = O (n + )t m= k= k= a m,k = O( τt t 2 ) = O( n + n + ). We now estimate I 2. By using (.3) again and the Jordan inequality (sin( t 2 )) π/t, for < t π, we get ( ) n (2.2) I 2 = O (n + )t m=τ+ k= Combining (2.) and (2.2), we have ( ) (n τ)t a m,k = O = O(/t). n + K T (n, t) = O( t 2 n + ) + O(t ). Theorem 2.3. Let f L and let T (a n,k ) be a lower triangular regular matrix with nonnegative entries and row sums. If f Lipα ( < α ), then the degree of approximation by the (C T ) means of its Fourier series is given by Proof. We know that { O(n t CT α ), < α < ; n (f) f(x) = O( logn n ), α =. (2.3) s n (f, x) f(x) = 2π ( sin(n + 2 Ψ(t) )t ) sin( t 2 ).

6 U gur De ger Taking into account (2.3) and the definitions of t CT n (f) and the (C T ) means of s n (f), we write t CT n (f) f(x) = = a m,k (s k (f; x) f(x)) m= k= ( sin(k + 2 Ψ(t) a )t ) m,k sin( t m= k= 2 ) Ψ(t)K T (n, t) = + Ψ(t)K T (n, t) n + 2π(n + ) = : J + J 2. Since f Lipα, Ψ(t) belongs to the Lipα class. Therefore, from Lemma 2., we obtain (2.4) J = Ψ(t)K T (n, t) = O(n) t α = O(n α ) for < α. By using Lemma 2.2, then we have ( ) t J 2 = Ψ(t)K T (n, t) = O t α 2 n + + t t α 2 = O n + + O t α =: J 2 + J2 2. Accordingly, (2.5) J2 = O and (2.6) J2 2 = O t α 2 { O(n α n + = ), < α < ; O( logn n ), α =. t α = O { n α}. Taking into account (2.4), (2.5) and (2.6), we obtain t CT n (f) f(x) = sup t CT n (f) f(x) = x [,2π] { O(n α ), < α < ; O( logn n ), α =.

On approximation to functions in the W (L p, ξ(t)) class 7 by using /n logn/n, for large values of n. Therefore the proof of Theorem 2.3 is completed. Theorem 2.4. Let f L and ξ(t) be a positive increasing function. If f W (L p, ξ(t)) with β /p, the degree of approximation by (C T ) means of its Fourier series is given by t CT n (f) f(x) p = O(n β+/p ξ( n )), provided that the function ξ(t) satisfies the following conditions: is a decreasing function and { } ξ(t) t (2.7) ( Ψ(t) sin β ) p (t/2) ξ(t) /p = O() (2.8) ( ) Ψ(t) t δ p ξ(t) /p = O(n δ ), where δ is an arbitrary number such that q(β δ) >, p + q =, p, and (2.7) and (2.8) hold uniformly in x. Proof. Proceeding as above, we have (2.9) t CT n (f) f(x) = = a m,k (s k (f; x) f(x)) n + m= k= π ( sin(k + 2 2π(n + ) Ψ(t) a )t ) m,k sin( t m= k= 2 ) Ψ(t)K T (n, t) + Ψ(t)K T (n, t) = : J 3 + J 4. By considering Hölder s inequality, condition (2.7), Lemma 2., Jordan s in-

8 U gur De ger equality, and Ψ(t) W (L p, ξ(t)), we get Ψ(t)sin β (t/2) ξ(t)k T (n, t) J 3 = ξ(t) sin β (t/2) /p Ψ(t)sin β p (t/2) ξ(t) lim ε = O() lim ε ε ( ξ(t)n sin β (t/2) ) q /q ε ξ(t)k T (n, t) sin β (t/2) q = O(nξ()) lim ε (2.) = O (ξ( n ) )n+β /q = O (n β+/p ξ( n ) ), /q ε t βq in view of p + q = and ξ()/() ξ(/n)/(/n). Now let us estimate J 4. By using Lemma 2.2, we write ( ) t 2 (2.) J 4 = O Ψ(t) +O Ψ(t) ( t ) =: J4 +J4 2. n + We shall evaluate J4 and J4 2 in a manner similar to the evaluation of J 3, respectively. Using Hölder s inequality, the (2.8) and Jordan s inequality, we have /p ( Ψ(t) t δ sin β (t/2) π /q ( ξ(t)t δ 2 J4 = O(n ) = O(n δ ) = O(n δ ) n/π /π = O (ξ( π n )nδ) ξ(t) ( ) ξ(t)t δ 2 q sin β (t/2) ) p /q ( ξ(/x)x β δ+2 ) q x 2 dx n/π /π x βq δq+q 2 dx =O(n δ ) /q /q (2.2) = O (n β+/p ξ( n ) ), sin β (t/2) ) q ( ξ(t)t δ β 2 ) q ; xξ(/x) < n π ξ() = O (ξ( π n )nδ n δ+β (/q)) /q /q

On approximation to functions in the W (L p, ξ(t)) class 9 since p + q = and ξ()/() ξ(/n)/(/n). /p ( J4 2 Ψ(t) t δ sin β ) p (t/2) π ( ) ξ(t)t δ q = O() ξ(t) sin β (t/2) = O(n δ ) = O(n δ ) n/π /π = O (ξ( π n )nδ+) ( ξ(t)t δ β ) q /q ( ξ(/x)x β δ+ ) q x 2 dx n/π /π x βq δq 2 dx /q /q (2.3) = O (n β+/p ξ( n ) ), ; xξ(/x) < n π ξ() = O (ξ( π n )nδ+ n β δ (/q)) since p +q = and ξ()/() ξ(/n)/(/n). Combining (2.9)-(2.3), we get t CT n (f) f(x) p = O(n β+/p ξ( n )). /q 3. In case of conjugate Fourier series As mentioned above, the problems on determining the degree of approximation by summability methods have been studied by many mathematicians. Qureshi has determined the degree of approximation to functions which belong to the classes Lipα and Lip(α, p) by means of conjugate series in [9] and [22], respectively. In subsequent years, similar investigations have been made in researches such as in [7], [9], [6] and [7]. The following two theorems are related with the degree of approximation to conjugate of functions belonging to the classes W (L p, ξ(t)) and Lipα by (C T ) matrix means of conjugate of their Fourier series and are more general than (C, )(E, ) and (C, )(E, q). Not only for (C, )(E, ) and (C, )(E, q) means but also different results are obtained for other means. The following notations will be used throughout this section and auxiliary results: ρ(x, t) := ρ(t) = f(x + t) + f(x t) and K T (n, t) := 2π(n + ) m= k= a m,k cos(k + 2 )t sin( t 2 ).

U gur De ger Lemma 3.. For < t, we have K T (n, t) = O(/t). Proof. For < t, by (sin(t/2)) π/t and cos(2k + )t, we have K T (n, t) 2π(n + ) m= k= a m,k cos(k + 2 )t sin( t 2 ). by (.3). 2πt(n + ) = O(/t) m= Lemma 3.2. For < t π and any n, we have ( ) t 2 K T (n, t) = O + O(t ). n + Proof. This lemma can be proved by using an argument similar to that of Lemma 2.2. Theorem 3.3. Let f L and let T (a n,k ) be a lower triangular regular matrix with nonnegative entries and row sums. If f Lipα ( < α ), then the degree of approximation of the conjugate function f by the (C T ) means of its conjugate Fourier series is given by { (3.) t CT n (f) f(x) O(n α ), < α < ; = O( logn n ), α =. Proof. We have, by (.2), (3.2) s n (f, x) f(x) = 2π ( cos(n + 2 ρ(t) )t ) sin( t 2 ). Taking into consideration (3.2) and t CT n (f) that (C T ) means of s n (f), we write (3.3) t CT π ( n (f) f(x) = cos(k + 2 2π(n + ) ρ(t) a )t ) m,k sin( t 2 ). m= k= Using Lemma 3. and Lemma 3.2, and proceeding as in the proof of Theorem 2.3 in (3.3), we get (3.). Theorem 3.4. Let f L and ξ(t) be a positive increasing function. If f W (L p, ξ(t)) with β /p, then the degree of approximation of the conjugate function f by the (C T ) means of its conjugate Fourier series is given by

On approximation to functions in the W (L p, ξ(t)) class (3.4) t CT n (f) f(x) p = O(n β+/p ξ( n )), provided that the function ξ(t) satisfies the following conditions: { } ξ(t) is a decreasing function and ( ρ(t) sin β ) p (t/2) (3.5) ξ(t) t /p = O() (3.6) ( ) ρ(t) t δ p ξ(t) /p = O(n δ ), where δ is an arbitrary number such that q(β δ) >, p + q =, p, and (3.5) and (3.6) hold uniformly in x. Proof. Taking into account Lemma 3. and Lemma 3.2, and proceeding as in the proof of Theorem 2.4 in (3.3), we obtain (3.4). 4. Corollaries and remarks Using results given in Section 2 and Section 3, we observe the following corollaries and remarks. Corollary 4.. If β =, then the weighted class W (L p, ξ(t)) reduces to the class Lip(ξ(t), p). Therefore, for f Lip(ξ(t), p), we have ( ) t CT n (f) f(x) p = O(n /p ξ ) n and t CT n (f) f(x) p = O(n /p ξ ( ) ) n with respect to Theorem 2.4 and Theorem 3.4, respectively. Corollary 4.2. If β = and ξ(t) = t α, ( < α ), then the weighted class W (L p, ξ(t)) reduces to the Lip(α, p) class. Therefore, for f Lip(α, p), (/p < α), we have t CT n (f) f(x) p = O(n /p α ) and t CT n (f) f(x) p = O(n /p α ) with respect to Theorem 2.4 and Theorem 3.4, respectively.

2 U gur De ger Corollary 4.3. If p in Corollary 4.2, then for f Lipα, ( < α < ) we have t CT n (f) f(x) = O(n α ) and t CT n (f) f(x) = O(n α ) with respect to Theorem 2.4 and Theorem 3.4, respectively. Remark 4.4. If T (a m,k ) is a Nörlund matrix, then the (C T ) means give us the Cesàro- Nörlund (C N p ) means. Accordingly, our main theorems coincide with Theorem 2.3 and Theorem 2.4 in [23]. Moreover, our main results generalize the main results in [8] and [23]. Remark 4.5. If a m,k = 2 m ( m k ), then the (C T ) means give us the (C, )(E, ) product means. In this case our main results are reduced to the (C, )(E, ) product means and the results given in Section 2 and Section 3 coincide with the results in [6] and [6], respectively. Remark 4.6. If a m,k = (+q) m ( m k ) q m k, then the (C T ) means give us the (C, )(E, q) product means. Therefore, the results mentioned in Section 2 and Section 3 are reduced the main results in [], [6] and [7]. Acknowledgement This research was partially supported by the The Council of Higher Education of Turkey under a grant. References [] Boos, J. and Cass, P., Classical and Modern Methods in Summability. Oxford University Press 2, 586 pp. [2] Chandra, P., Trigonometric approximation of functions in L p -norm. Journal of Mathematical Analysis and Applications 275 (22), 3 26. [3] Deǧer, U., Daǧadur, İ. and Küc.ükaslan, M., Approximation by trigonometric polynomials to functions in L p -norm. Proc. Jangjeon Math. Soc. (5)2 (22), 23-23. [4] Fadden, L. Mc., Absolute Nörlund summability. Duke Math. J, Narosa 9 (942), 68 27. [5] Khan, H. H., On degree of approximation of functions belonging to the class Lip(α, p). Indian J. Pure Appl. Math. (5)2 (974), 32 36. [6] Lal, S., On degree of approximation of functions belonging to the weighted (L p, ξ(t)) class by (C, )(E, ) means. Tamkang Journal of Mathematics 3 (999), 47 52. [7] Lal, S., On the degree of approximation of conjugate of a function belonging to the weighted W (L p, ξ(t)) class by matrix summability means of conjugate series of a Fourier series. Tamkang Journal of Mathematics (3)4 (2), 47 52.

On approximation to functions in the W (L p, ξ(t)) class 3 [8] Lal, S., Approximation of functions belonging to the generalized Lipschitz class by (C N p ) summability method of Fourier series. Applied Mathematics and Computation (29)2 (29), 346 35. [9] Lal, S. and Kushwaha, J. K., Approximation of conjugate of functions belonging to the generalized Lipschitz class by lower triangular matrix means. Int. Journal of Math. Analysis (3)2 (29), 3 4. [] Lal, S. and Kushwaha, J. K., Degree of Approximation of Lipschitz function by product summability method. International Mathematical Forum (4)43 (29), 2 27. [] Leindler, L., Trigonometric approximation in L p-norm. Journal of Mathematical Analysis and Applications 32 (25), 29 36. [2] Mazhar, S. M. and Totik, V., Approximation of continuous functions by T - means of Fourier series. J. Approx. Theory (6)2 (99), 74 82. [3] Mohapatra, R. N. and Szal, B., On trigonometric approximation of functions in the L p -norm. arxiv:25.5869v [math.ca], 22. [4] Mittal, M. L., Rhoades, B. E., Mishra, V. N. and Singh, U., Using infinite matrices to approximate functions of class Lip(α, p) using trigonometric polynomials. Journal of Mathematical Analysis and Applications (326) (27), 667-676. [5] Mittal, M. L., Rhoades, B. E., Sonker, S. and Singh, U., Approximation of signals of class Lip(α, p) by linear operators. Applied Mathematics and Computation (27)9 (2), 4483-4489. [6] Nigam, H. K., A study on approximation of conjugate of functions belonging to Lipschitz class and generalized Lipschitz class by product summability means of conjugate series of Fourier series. Thai Journal of Mathematics (2) (22), 275 287. [7] Nigam, H. K. and Sharma, A., On approximation of conjugate of functions belonging to different classes by product means. International Journal of Pure and Applied Mathematics, 76(2) (22), 33 36. [8] Quade, E. S., Trigonometric approximation in the mean. Duke Math. J. 3 (937), 529 542. [9] Qureshi, K., On the degree of approximation of a function belonging to the Lipschitz class by means of conjugate series. Indian J. Pure Appl. Math. (2)9 (98), 2-23. [2] Qureshi, K., On the degree of approximation of a function belonging to the class Lipα. Indian J. Pure Appl. Math. (3)8 (982), 56 563. [2] Qureshi, K., On the degree of approximation of a function belonging to weighted W (L r, ξ(t)) class. Indian J. Pure Appl. Math. 3 (982), 47-475. [22] Qureshi, K., On the degree of approximation of a function belonging to the class Lip(α, p) by means of conjugate series. Indian J. Pure Appl. Math. (3)5 (982), 56-563. [23] Sing, U., Mittal, M. L. and Sonker, S., Trigonometric Approximation of Signals(Functions) Belonging to W (L r, ξ(t)) Class by Matrix (C N p ) Operator. International Journal of Mathematics and Mathematical Sciences, Vol. (22) Article ID 964 (22), p.

4 U gur De ger [24] Toeplitz, O., Uberallagemeine lineara Mittel bil dunger. P.M.F. 22 (93), 3 9. [25] Zygmund, A., Trigonometric Series. Vol. I, Cambridge: Cambridge University Press, 959. Received by the editors March 4, 23