Exercise 4 Oxidation-reduction (redox) reaction oxidimetry. Theoretical part

Similar documents
Oxidation & Reduction (Redox) Notes

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Chapter 20. Electrochemistry. Chapter 20 Problems. Electrochemistry 7/3/2012. Problems 15, 17, 19, 23, 27, 29, 33, 39, 59

Chapter 20 Electrochemistry

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS

ELECTROCHEMISTRY. Electrons are transferred from Al to Cu 2+. We can re write this equation as two separate half reactions:

Unit 8: Redox and Electrochemistry

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species.

Oxidation numbers are charges on each atom. Oxidation-Reduction. Oxidation Numbers. Electrochemical Reactions. Oxidation and Reduction

Electrochemical Reactions

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

Oxidation (oxidized): the loss of one or more electrons. Reduction (reduced): the gain of one or more electrons

Introduction to Electrochemical reactions. Schweitzer

Chapter 20. Electrochemistry

Chapter 19: Oxidation - Reduction Reactions

Redox and Electrochemistry

Chapter 20. Electrochemistry

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry

Honors Chemistry Mrs. Agostine. Chapter 19: Oxidation- Reduction Reactions

ELECTROCHEMISTRY. Oxidation/Reduction

Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook

Chapter 20. Electrochemistry

Practice Exam Topic 9: Oxidation & Reduction

9.1 Introduction to Oxidation and Reduction

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

17.1 Redox Chemistry Revisited

CHAPTER 5 REVIEW. C. CO 2 D. Fe 2 O 3. A. Fe B. CO

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem.

Unit 12 Redox and Electrochemistry

Chapter 20. Electrochemistry

Oxidation-reduction (redox) reactions

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12

ELECTROCHEMICAL CELLS

OXIDATION-REDUCTIONS REACTIONS. Chapter 19 (From next years new book)

Electrochemistry objectives

Chemistry: The Central Science. Chapter 20: Electrochemistry

Chapter 17. Oxidation-Reduction. Cu (s) + 2AgNO 3(aq) 2Ag (s) + Cu(NO 3 ) 2(aq) pale blue solution. colorless solution. silver crystals.

Chapter Objectives. Chapter 13 Electrochemistry. Corrosion. Chapter Objectives. Corrosion. Corrosion

Chapter 19: Redox & Electrochemistry

Chapter 18 Electrochemistry. Electrochemical Cells

Electrochemistry. 1. Determine the oxidation states of each element in the following compounds. (Reference: Ex. 4:16) a. N 2 N: b.

Chapter 20 Electrochemistry

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Name AP CHEM / / Collected Essays Chapter 17

Chapter Nineteen. Electrochemistry

Reactions in aqueous solutions Redox reactions

Oxidation-Reduction (Redox)

Oxidation-Reduction Reactions and Introduction to Electrochemistry

Chapter 19: Electrochemistry

Section A: Summary Notes

Find the oxidation numbers of each element in a reaction and see which ones have changed.

UNIT 10 Reduction/Oxidation Reactions & Electrochemistry NOTES

Unit 5 Part 2: Redox Reactions and Electrochemistry

REDOX AND ELECTROCHEMISTRY

Zn+2 (aq) + Cu (s) Oxidation: An atom, ion, or molecule releases electrons and is oxidized. The oxidation number of the atom oxidized increases.

mccord (pmccord) HW11 Electrochemistry I mccord (51520) 1

REDUCTION - OXIDATION TITRATION REDOX TITRATION

Redox reactions & electrochemistry

*KEY* * KEY * Mr. Dolgos Regents Chemistry NOTE PACKET. Unit 10: Electrochemistry (Redox) REDOX NOTEPACKET 1

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University

Zn + Cr 3+ Zn 2+ + Cr. 9. neutrons remain the same: C. remains the same. Redox/Electrochemistry Regents Unit Review. ANSWERS

Chemistry 30 Review Test 3 Redox and Electrochemistry /55

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Unit #8, Chapter 10 Outline Electrochemistry and Redox Reactions

An oxidation-reduction (redox) reaction involves the transfer of electrons (e - ). Sodium transfers its electrons to chlorine

S 8 + F 2 SF 6 4/9/2014. iclicker Participation Question: Balance the following equation by inspection: H + + Cr 2 O 7 + C 2 H 5 OH

Chapter 4; Reactions in Aqueous Solutions. Chapter 4; Reactions in Aqueous Solutions. V. Molarity VI. Acid-Base Titrations VII. Dilution of Solutions

Electrochemical Cells

AP Questions: Electrochemistry

Electrochemistry. (Hebden Unit 5 ) Electrochemistry Hebden Unit 5

What is the importance of redox reactions? Their importance lies in the fact that we can use the transfer of electrons between species to do useful

(c) In marble, we assign calcium ion an oxidation number of +2, and oxygen a value of 2. We can determine the value of carbon in CaCO 3 as follows:

Electrochemistry. The study of the interchange of chemical and electrical energy.

If a piece of magnesium is placed in an aqueous solution of copper (II) sulfate, the magnesium displaces the copper in a single displacement reaction.

Electrochemical Cells: Virtual Lab

Electrochemistry. Outline

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

Chapter 19 ElectroChemistry

Chapter 18 problems (with solutions)

CHEMISTRY - CLUTCH CH.18 - ELECTROCHEMISTRY.

Oxidation-Reduction (Redox) Reactions (4.4) 2) The ox. state of an element in a simple ion is the charge of the ion. Ex:

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Review. Chapter 17 Electrochemistry. Outline. Voltaic Cells. Electrochemistry. Mnemonic

Chapter Four. Chapter Four. Chemical Reactions in Aqueous Solutions. Electrostatic Forces. Conduction Illustrated


Oxidation number. The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

Page 1 Name: 2Al 3+ (aq) + 3Mg(s) 3Mg 2+ (aq) + 2Al(s) Fe 2 O 3 + 2Al Al 2 O 3 + 2Fe

REDOX REACTIONS. Chapters 4, 19.1 & 19.2 M. Shozi CHEM110 / 2014

Electrochem: It s Got Potential!

Electrochemistry. 1. For example, the reduction of cerium(iv) by iron(ii): Ce 4+ + Fe 2+ Ce 3+ + Fe 3+ a. The reduction half-reaction is given by...

Part One: Introduction. a. Chemical reactions produced by electric current. (electrolysis)

The Nature of Redox. Both oxidation and reduction processes occur together. Each half of the full redox reaction is a. Oxidizing and Reducing Agents

Electrochemistry Pulling the Plug on the Power Grid

CHAPTER 12. Practice exercises

CHAPTER 17: ELECTROCHEMISTRY. Big Idea 3

Name Period Date. Ch. 19: Oxidation-Reduction Reactions Homework

ALE 23. Balancing Redox Reactions. How does one balance a reaction for both matter and charge?

Lecture Presentation. Chapter 18. Electrochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc.

Oxidation Numbers, ox #

Chapter 18. Electrochemistry

Transcription:

Exercise 4 Oxidation-reduction (redox) reaction oxidimetry. Theoretical part In oxidation-reduction (or redox) reactions, the key chemical event is the net movement of electrons from one reactant to the other. Redox reactions constitute some of the most important of all chemical processes, including the formation of a compound from its elements, all combustion reactions, the reactions in batteries that generate electricity, and the production of biochemical energy. 1. Redox terminology Oxidation is the loss of electrons, reduction is the gain of electrons. During the formation of magnesium oxide (for example) Mg undergoes oxidation (electron loss) and O 2 undergoes reduction (electron gain). The loss and gain are simultaneous, but we can imagine them occurring in separate steps: Oxidation: Mg Mg 2+ + 2e - (electron lost by Mg) Reduction: ½ O 2 O 2- (electrons gained by O 2 ) Since O 2 gained the electrons that Mg lost when Mg was oxidized, we say that O 2 oxidized Mg, or that O 2 is the oxidizing agent, the species doing the oxidizing. Similarly, since Mg gave up the electrons that O 2 gained when O 2 was reduced, Mg reduced O 2. Mg is the reducing agent, the species doing the reducing. It is extremely important to realize that the oxidation and the reduction occur simultaneously. There is no such chemical change as an oxidation reaction or a reduction reaction; only an oxidation-reduction reaction can occur. e - X Transfer or shift of electrons Y X loses electron (s) X is oxidized X is the reducing agent X increases in oxidation number Y gains electron (s) Y is reduced Y is the oxidizing agent Y decreases in oxidation number 1

Each atoms is assigned an oxidation number (O.N., or oxidation state), which is determined by the set of rules. General rules 1. For an atom in its elemental form (Na, O 2, Cl 2, and so forth): O.N. = 0 2. For a monatomic ion: O.N. = ion charge 3. The sum of O.N. values for the atoms in a compound equals zero. The sum of O.N. values for the atoms in a polyatomic ion equals the ion charge. Rules for specific atoms or periodic table groups 1. For Group 1A: O.N. = +1 in all compounds 2. For Group 2A: O.N. = +2 in all compounds 3. For hydrogen: O.N. = +1 in combination with nonmetals O.N. = -1 in combination with metals and boron 4. For fluorine: O.N. = -1 in all compounds 5. For oxygen: O.N. = -1 in peroxides O.N. = -2 in all other compounds 9exept with F) 6. For Group 7A: O.N. = -1 in combination with metals, nonmetals (except O), and other halogens lower in the group Balancing redox reactions Since oxidation and reduction occur simultaneously, the transferred electrons are never free and must be accounted for in the overall process. Therefore, the total number of electrons lost by the oxidized reactant must equal the total number of electrons gained by the reduced reactant. By keeping track of the changes in oxidation numbers and the number of electrons transferred, we can balance redox reactions. Two methods used to balance redox reactions are the oxidation number method and the half-reaction method. The oxidation number method. The oxidation number method consists of five steps that use the changes in oxidation numbers to generate balancing coefficients. Step 1. Assign oxidation numbers to all elements in the equation. 0 +1 +5-2 +2 +5-2 +4-2 +1-2 Cu + HNO 3 Cu(NO 3 ) 2 + NO 2 + H 2 O Step 2. From the changes in oxidation numbers, identify the oxidized and reduced species. 2

Step 3. Compute the number of electrons lost in the oxidation and gained in the reduction from the oxidation number changes. Draw tie-lines between these atoms to show electron changes. -2e - Cu + HNO 3 Cu(NO 3 ) 2 + NO 2 + H 2 O +1e - Step 4. Multiply one or both of these numbers by appropriate factors to make the electrons lost equal the electrons gained, and use the factors as balancing coefficients. Cu + 2HNO 3 Cu(NO 3 ) 2 + 2NO 2 + H 2 O Step 5. Complete the balancing by inspection, adding states of matter. Cu + 4HNO 3 Cu(NO 3 ) 2 + 2NO 2 + 2H 2 O The half-reaction method. The other method for balancing redox reactions is called the halfreaction method because the overall oxidation-reduction process is viewed as the sum of oxidation half-reaction and a reduction half-reaction, each of which involves either the loss or the gain of electrons. Consider the reaction between zinc metal and hydrochloric acid: 0 +1-1 +2-1 0 Zn + HCl ZnCl 2 + H 2 We can break up this equation into two half-reactions. Zn Zn 2+ + 2e - [oxidation half-reaction] e - + H + ½ H 2 [reduction half-reaction] In each half-reaction, moles of atoms and amount of charge are balanced. To obtain integer coefficients and to make the number of electrons lost equal the number gained, we double the reduction half-reaction: Zn Zn 2+ + 2e - [oxidation half-reaction] 3

2e - + 2H + H 2 [reduction half-reaction doubled] Next, we add the half-reactions together, and the electrons cancel: Zn + 2H + Zn 2+ + H 2 Adding the appropriate number of spectator gives the balanced total equation: Zn + 2HCl ZnCl 2 + H 2 Voltaic Cells. Electrochemistry is the study of chemical reactions by use of electrical circuits. This is a natural way to investigate oxidation/reduction reactions since there is an electron transfer occurring. By forcing the transferred electrons to move through a wire, we can measure reaction progress (kinetics), composition (equilibrium constants), energy changes (thermodynamics), and add or subtract energy from the system. A typical electrochemical cell: The oxidation and reduction half reactions are physically separated and connected by an electrical circuit. The electrical circuit is completed by using two different types of connections. The wire: this is the path that electrons flow from the oxidation to the reduction. The salt bridge: this completes the electrical circuit but does not allow electron flow. Rather, the charge is carried by ions (cations or anions). The salt bridge also prevents the two reacting solutions from mixing. The electrode where oxidation occurs is called the anode. 4

The electrode where reduction occurs is called the cathode. If the net oxidation/reduction reaction is spontaneous, the cell is called a voltaic cell. Useful work can be done by voltaic cells (these are batteries). If the net oxidation/reduction reaction is nonspontaneous, the cell is called an electrolytic cell. Energy must be supplied to an electrolytic cell in order to drive the oxidation/reduction reaction. Shorthand notation used to describe electrochemical cells: anode reaction cathode reaction The double bars ( ) represent the salt bridge The essential components of each half reaction are described and each piece of information is separated by a single bar ( ). This may include the nature of the electrode, phase information, concentrations or partial pressures, or temperature if the cell is not at standard conditions. Examples Write the half reactions and net reaction for the cell Mg(s) Mg 2+ (aq) Fe 3+ (aq) Fe(s) Anode (oxidation) reaction: Mg(s) Mg 2+ (aq) + 2e The solid magnesium serves as a physical electrode. Cathode (reduction) reaction: Fe 3+ (aq) + 3e Fe(s) The solid iron serves as a physical electrode. Net reaction: 3Mg(s) + 2Fe 3+ (aq) 3Mg 2+ (aq) + 2Fe(s) 5

Write the half reactions and net reaction for the cell Al(s) Al 3+ (aq) Hg 2+ (aq) Hg(l) Pt(s) Anode (oxidation) reaction: Al(s) Al 3+ (aq) + 3e The solid aluminum serves as the physical electrode. Cathode (reduction) reaction: Hg 2+ (aq) + 2e Hg(l) The solid platinum serves as the physical electrode. Net reaction: 2Al(s) + 3Hg 2+ (aq) 2Al 3+ (aq) + 3Hg(l) Voltaic cells are used to convert chemical energy to electrical energy that can be used to produce useful work Calculation of the Cell Potential of Standard Voltaic Cells: Whenever two standard half-cells are joined to create a voltaic cell as in figure 1, the one with the more negative E o will function as the anode since it is the metal that is most easily oxidized. The value for the standard potential of the cell, E o cell, is the difference between the standard potential of the cathode and anode: E o cell = E o cathode - E o anode The use of standard reduction potentials to predict the potential of the voltaic cell is illustrated below. 6

Reduction Reactions E o Zn 2+ (aq) + 2 e Zn (s) Cu 2+ (aq) + 2 e Cu (s) -0.76 (more negative potential, therefore the anode) +0.34 (more positive potential, therefore the cathode) Cathode: Cu 2+ (aq) + 2 e Cu (s) Anode: Zn (s) Zn 2+ (aq) + 2 e E o cathode = +0.34 V Cell Reaction: Cu 2+ (aq) + Zn (s) Zn 2+ (aq) + Cu (s) - E o anode = -(-0.76 V) E o cell = 1.10 V Calculation of the Cell Potential of a Voltaic Cell NOT at Standard Conditions: If the potential that is measured is not a standard cell, then the Nernst equation can be used to calculate the standard cell potential. 7

Nernst Equation Where n = number of electrons transferred in the cell reaction E cell = E o cell - 0.0591 n log Q Q c = Reaction quotient E o = standard cell potential (1 M solutions at 298K and 1 atm) E = Cell potential at nonstandard conditions (both potentials are measured in volts) Sample calculation of the standard cell potential for a voltaic cell made of a Sn electrode in 0.10 M Sn 2+ in one half-cell and Al in Al 3+ 0.10 M in the other. 8

Reduction Reactions E o Sn 2+ (aq) + 2 e Sn (s) Al 3+ (aq) + 3 e Al (s) -0.14 V (more positive potential, therefore the cathode) -1.66 V(more negative potential, therefore the anode) Cathode: (Sn 2+ (aq) + 2 e Sn (s) ) x 3 Anode: (Al (s) Al 3+ (aq) + 3 e ) x 2 E o cathode = -0.14 V Cell Reaction: 3Sn 2+ (aq) + 2Al (s) 2Al 3+ (aq) + 3Sn (s) - E o anode = -(-1.66 V) E o cell = 1.52 V E cell = E o cell - 0.0591 n log Q = 1 0.0591 6 [Al [Sn ] ] 3+ 2. 52V - log 2+ 3 0.0591 [0.10] = 1 52V - log 6 [0.10]. 3 2 = 1.52V 0.0099V E cell = 1.51 V (nearly the same as the standard cell potential!) Redox Titrations Just as a base is used to determine the concentration of an acid (or vice versa) in an acid-base titration, as known concentration of oxidizing agent can be used to determine the unknown concentration of a reducing agent (or vice versa) in redox titration. This indispensable 9

analytical tool is used in a wide range of situations, including measuring the iron content in drinking water, the calcium in blood and the vitamin C content in fruits and vegetable. A common oxidizing agent in redox titrations is the permanganate ion, MnO 4-. Because it is strongly colored, the ion also serves as an indicator for monitoring the reaction. - 2- In the following example, MnO 4 is used to determine the concentration of oxalate ion, C 2 O 4. 2- - As long as C 2 O 4 is present, the deep purple MnO 4 is reduced to the very faint pink (nearly colorless) Mn 2+ 2- ion. As soon as all the available C 2 O 4 ions have been oxidized to CO 2, the - next drop of MnO 4 turns the solution light purple. This color change indicates the point at 2- which the total number of electrons lost by the oxidized species (C 2 O 4 ) equals the total number of electrons gained by the reduced species (MnO 4- ). We calculate the concentration of 2- - the C 2 O 4 solution from its known volume, the known concentration and volume of the MnO 4 solution. +7 +3 +2 +4 2MnO 4 - (aq) + 5C 2 O 4 2- (aq) + 16H + (aq) 2Mn 2+ (aq) + 10CO 2(g) + 8H 2 O (l) Experimental 1. Determination of Fe 2+ Reaction: 2+ MnO 4 + 5Fe 2+ + 8H + Mn 2+ + 5Fe 3+ + 4H 2 O Procedure: Complete the tested solution with distilled water up to 100mL in given flask. Mix well and transfer 10mL of the tested solution to the beaker (100mL) using a pipette, next add 10mL 15% H 2 SO. Stir all precisely and titrate with 0.02 M KmnO 4 solution until the mixture turns into faint pink. Record the amount of ml of KmnO 4. Calculate the mass of Fe 2+ (in terms of mg) m = V (KMnO 4 ) C (KMnO 4 ) 55.8 5 2. Determination of K 2 Cr 2 O 7 using iodometric method Reactions: 10

K 2 Cr 2 O 7 + 6KJ + 7H 2 SO 4 4 K 2 SO 4 + Cr 2 (SO 4 ) 3 + 3J 2 + 7H 2 O Received iodine is titrated according to the reaction: J 2 + 2 Na 2 S 2 O 3 2NaJ + Na 2 S 4 O 6 Summation: 2-2- Cr 2 O 7 3J 2 6S 2 O 3 Procedure: Complete the tested solution using distilled water to 100mL in measured flask. Mix well and transfer 10mL of the tested solution to the beaker (100mL) using a pipette and add small amount of KI and 10mL 15% H 2 SO. Stir all precisely. Cover the mixture with glass and leave for 5 minutes. After this time, titrate with 0.1 M Na 2 S 2 O 3 to observe brown-yellow color, add the starch solution and titrate until the blue color disappears (at the end-point solution should be colourless or faint blue). Record the amount of ml of Na 2 S 2 O 3. Calculate the mass of K 2 Cr 2 O 7 (in terms of mg) m = V (Na 2 S 2 O 3 ) C (Na 2 S 2 O 3 ) 294 6 11