Not Logical Statements!

Similar documents
T T F F T T F F T F F T T F T F F T T T

Math 31 Lesson Plan. Day 2: Sets; Binary Operations. Elizabeth Gillaspy. September 23, 2011

27. THESE SENTENCES CERTAINLY LOOK DIFFERENT

27. THESE SENTENCES CERTAINLY LOOK DIFFERENT

Lesson 21 Not So Dramatic Quadratics

Algebra. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Math 38: Graph Theory Spring 2004 Dartmouth College. On Writing Proofs. 1 Introduction. 2 Finding A Solution

Quadratic Equations Part I

Descriptive Statistics (And a little bit on rounding and significant digits)

both spooky witches wizards fair rather odd

LECTURE 15: SIMPLE LINEAR REGRESSION I

Mathematical Logic Part One

Regression, part II. I. What does it all mean? A) Notice that so far all we ve done is math.

Vivian Ina Lu. Class of Untethered. Genre: Fiction

Math 308 Midterm November 6, 2009

PHYSICS 15a, Fall 2006 SPEED OF SOUND LAB Due: Tuesday, November 14

G E O M E T R Y CHAPTER 2 REASONING AND PROOF. Notes & Study Guide CHAPTER 2 NOTES

Introduction to Proofs

LOGIC CONNECTIVES. Students who have an ACT score of at least 30 OR a GPA of at least 3.5 can receive a college scholarship.

Henry and Mudge under the Yellow Moon. In the fall, Henry and his big dog Mudge took long. walks in the woods. Henry loved looking at the tops of

MA103 STATEMENTS, PROOF, LOGIC

Introduction This is a puzzle station lesson with three puzzles: Skydivers Problem, Cheryl s Birthday Problem and Fun Problems & Paradoxes

Math Fundamentals for Statistics I (Math 52) Unit 7: Connections (Graphs, Equations and Inequalities)

4. What does it mean once the letter "d" is formed when you draw a line on the moon?

Give students a few minutes to reflect on Exercise 1. Then ask students to share their initial reactions and thoughts in answering the questions.

Indicative conditionals

Bell s spaceship paradox

Squaring and Unsquaring

One sided tests. An example of a two sided alternative is what we ve been using for our two sample tests:

1 Propositional Logic

Math 31 Lesson Plan. Day 5: Intro to Groups. Elizabeth Gillaspy. September 28, 2011

P (E) = P (A 1 )P (A 2 )... P (A n ).

Preptests 55 Answers and Explanations (By Ivy Global) Section 4 Logic Games

Beyonce s Lunar Adventure

Episode 1: Phis wants to be a physicist

Introducing Proof 1. hsn.uk.net. Contents

Solution to Proof Questions from September 1st

Presuppositions (introductory comments)

CHAPTER 1. Introduction

Lesson 10: True and False Equations

One day an ant was drinking at a small stream and fell in. She made desperate

Numerical and Algebraic Expressions and Equations

Section 0.6: Factoring from Precalculus Prerequisites a.k.a. Chapter 0 by Carl Stitz, PhD, and Jeff Zeager, PhD, is available under a Creative

HAMPSHIRE COLLEGE: YOU CAN T GET THERE FROM HERE : WHY YOU CAN T TRISECT AN ANGLE, DOUBLE THE CUBE, OR SQUARE THE CIRCLE. Contents. 1.

Part I Absorbtion and Reflection

The Witch Who Was Frightened of Halloween.

CS 453 Operating Systems. Lecture 7 : Deadlock

DIFFERENTIAL EQUATIONS

Polynomials; Add/Subtract

The PROMYS Math Circle Problem of the Week #3 February 3, 2017

PHIL12A Section answers, 14 February 2011

Instructor (Brad Osgood)

= $ m. Telephone Company B charges $11.50 per month plus five cents per minute. Writing that mathematically, we have c B. = $

Degree (k)

Hi, my name is Dr. Ann Weaver of Argosy University. This WebEx is about something in statistics called z-

Complex Numbers: A Brief Introduction. By: Neal Dempsey. History of Mathematics. Prof. Jennifer McCarthy. July 16, 2010

Primary Objectives. Content Standards (CCSS) Mathematical Practices (CCMP) Materials. Before Beginning

Symbolic Logic Outline

CH 59 SQUARE ROOTS. Every positive number has two square roots. Ch 59 Square Roots. Introduction

Outside the house, Alice saw a table under a tree. The

People. The Shadow Shadow People. The Shadow People A Reading A Z Level O Leveled Book Word Count: 874 LEVELED BOOK O.

Probability, Statistics, and Bayes Theorem Session 3

Assignment 3 Logic and Reasoning KEY

> = + - < > = + - < > = + - < > + - < > = + - < > = + - < > = + - < > = By Marjorie Sheridan

Fundamentals of Mathematics I

Chapter 26: Comparing Counts (Chi Square)

Guardian Angel and the Nightlight

Solving Quadratic & Higher Degree Equations

Explorers 4 Teacher s notes for the Comprehension Test: The Snow Queen

Matching Theory and the Allocation of Kidney Transplantations

Section 2.1: Introduction to the Logic of Quantified Statements

Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras. Lecture - 15 Propositional Calculus (PC)

Systems of Equations. Red Company. Blue Company. cost. 30 minutes. Copyright 2003 Hanlonmath 1

PART I. Performed by: Alexandra Jiménez

of 8 28/11/ :25

Formal Logic. Critical Thinking

PART ONE. Once upon a time there was a very special baby. who grew up to be very wise. and to tell us how to be kind. His name was Jesus.

Scales Jacques Swartz

The paradox of knowability, the knower, and the believer

Project Management Prof. Raghunandan Sengupta Department of Industrial and Management Engineering Indian Institute of Technology Kanpur

Hypothesis testing I. - In particular, we are talking about statistical hypotheses. [get everyone s finger length!] n =

Trick or Treat UNIT 19 FICTION. #3893 Nonfiction & Fiction Paired Texts 100 Teacher Created Resources

Lesson 6-1: Relations and Functions

Predicates, Quantifiers and Nested Quantifiers

Family Honor (2012) ValpoScholar. Valparaiso University. Taylor Ward Valparaiso University. The Valpo Core Reader

Read the text and then answer the questions.

1.5 MATHEMATICAL LANGUAGE

Logic and Proofs 1. 1 Overview. 2 Sentential Connectives. John Nachbar Washington University December 26, 2014

Newton s Wagon. Materials. friends rocks wagon balloon fishing line tape stopwatch measuring tape. Lab Time Part 1

Proposition logic and argument. CISC2100, Spring 2017 X.Zhang

Where are my glasses?

By the time the children are four they can identify and debate many of the issues hidden in these age-old plots.

ASTRO 114 Lecture Okay. What we re going to discuss today are what we call radiation laws. We ve

Chapter 6. Net or Unbalanced Forces. Copyright 2011 NSTA. All rights reserved. For more information, go to

Introduction to Basic Proof Techniques Mathew A. Johnson

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Digital Logic

For all For every For each For any There exists at least one There exists There is Some

HOW TO WRITE PROOFS. Dr. Min Ru, University of Houston

Snow Dance by Kelly Hashway

Notes 3.2: Properties of Limits

Transcription:

Project: An Intro to Logic A few years ago, I was observing a colleague s writing class at COCC. Near the end of the class, she told the students a story from her youth: How, as a senior year in high school, her dad had told her that he would buy her a car for graduation if she got straight A s her senior year. She began to weave a beautiful tale: of late nights studying for finals, practicing speeches, notecards the works. I was riveted, as was every student in the room. hen, at the end, she said, And, in the end, I got all A s and a B+. And all the students in the room groaned. No! After the grinding and gnashing of teeth had subsided, I called from the back, Did he buy you the car? A student turned around and said, Didn t you hear? She just said her dad would buy her the car if she got straight A s. o which I replied, Yes, but he didn t say what he would do if she didn t get straight A s. At this point, the students in the room all looked at me like I was this ignorant, unfeeling jerk. But my colleague smiled at me, because she knew I had a point (that she wished she had thought of during her senior year). But my point was just applying one of the laws of logic. Let s dive in! Part 1: Logical Statements! My colleague s dad had made a logical statement when he said, If you get straight A s, then I ll buy you a car. A logical statement is simply any sentence that s either true or false, but not both. Here are some examples: Logical Statements! Not Logical Statements! rue Ones! Putting gas into a diesel engine will ruin it. Metolius Hall is a building at COCC. If you play piano, then you play a percussion instrument. If x = 1, then x + 1 = 2 alse Ones! Cats are members of the fish family. If my car s engine isn t running, then the car is out of gas. If x = 1, then x + 1 = 3 x > 0 and x < 0 (when x is a real number) Cats are better than fish. here are too many humans. hat engine in your car is pretty loud. x 2 > x I brought my drivers license and $20. At the foundations of logic lie, quite simply, logical statements 1. here s no room for opinion in logic only truth or falsehood. 1. (3 points for correct identification) Identify which of the following are logical statements. a. 49 = 7 b. he capital of Oregon is Portland. e. 49 = 8 f. he best color of the rainbow is blue. c. March 20, 2017 was a Monday. g. Every square is also a rectangle. d. Mondays suck! h. Every rectangle is also a square. 1 Please realize that what we sometimes conversationally call logical isn t necessarily universally, nor mathematically logical. or example, when I climb mountains, my partners and I agree on logical anchor systems while many people think we re completely and utterly illogical for traveling tens of thousands of feet up exfoliating slag heaps.

Part 2: ruth or alsehood of Statements! Part 2a: alsehood! Any logical statement, by definition, is either true or false. As we will see, showing that a statement is true can be slightly involved (just like in life!). However, showing a statement is false is straightforward: you simply must provide one example that shows it doesn t hold and that example is called a counterexample. Let s illustrate by finding counterexamples for some of the false logical statements from page 1! Example: Cats are members of the fish family. I have a cat. His name is Ike. He lacks gills, fins, and lives on land. herefore, by the definition of what makes fish fish, he can t be a fish. herefore, we call this statement false, since I found an exception. Example: If my car s engine isn t running, then the car is out of gas. Well, that s certainly one explanation. But here s another: suppose the car is turned off. hen, the engine wouldn t be running. So, therefore, we found a counterexample to show that this is a false statement! Example: If x = 1, then x + 1 = 3 So, if x = 1, then x + 1 = 1 + 1, which is 2. So there s a counterexample! Example: x > 0 and x < 0 (when x is any number you can think of) Let s stick with x = 1. If x = 1, then x > 0 (since it s positive, it s greater than zero). If it s greater than zero, it can t be less than zero, also so there s a counterexample! he thing to keep in mind here is that you only need one counterexample to prove a statement false. hink of it like this: when you hear someone say something like, Well, I had an uncle who smoked every day until he was 103 smoking can t be bad for you! All I need to say is, Welp, I had a friend who died at 22 from smoking related emphysema. So yeah your theory isn t always true. rue for some isn t good enough to prove logical statements you must achieve true for all. More on that next! Part 2b: ruth of Logical Statements! ormal logic is often assembled symbolically; this makes it easier to see patterns when you re working within the rules of logic, which ll make it WAY easier to get at this idea of proving logical statements true. or example, let s deconstruct some of the examples from page 1! Example: If x = 1, then x + 1 = 2. If we let x = 1 be represented by a variable ( p is often used), and x + 1 = 2 be represented by q, this can be rewritten as if p then q. Example: If x = 1, then x + 1 = 3. If we again let x = 1 be represented by p, and x + 1 = 3 be represented by q, this can be rewritten as if p then q.

Wait what? hey re the same? Yep! And that s cool! Each of those types of statements ( if p, then q ) is called a conditional statement. hat means that there s a condition placed at the beginning, and then a conclusion placed at the end ( if this happens, then that will happen ). 2. (3 points) ind a conditional statement in the examples section on the previous page that s in if/then form. Identify what p and q are, as well! 3. (4 points) ind a conditional statement from answer choices a though h in #1 and then rewrite it so it s in if/then form! Make sure to identify what p and q are! So every single conditional can be written as if p, then q. And, in logic, p and q are statements which means that they re themselves either true or false. Let s go back to my friend s dad s conditional statement (the one that started this whole mess): If you get straight A s, then I ll buy you a car. 4. (2 points) Identify p and q in this conditional! Now, each of p and q could be either true or false. So, in other words, we have 4 total potential outcomes for this statement! If p is rue rue alse alse and q is rue alse rue alse Now let s look at all 4 possible outcome sin the context of my friend s dad s statement! Possibility 1 (p and q both true): She got straight A s, and then he bought her a car. his is good, right? I mean, he told her, straight up, If you get straight A s, then I ll buy you a car. If this scenario had happened, she satisfied the condition, he satisfied the conclusion, end of story. Since this is a fair outcome of the conditional, we call it, logically, true. Possibility 2 (p true but q false): She got straight A s, and then he didn t buy her a car. his is bad! He told her that, if she did get straight A s, he d buy her a car. And then he didn t! If this scenario had happened, she satisfied her end of the deal, he failed to satisfy his, and, most likely, she d be upset. You would, too! Since this one doesn t seem fair, we call this outcome logically false. Possibility 3 (p false but q true): She didn t get straight A s, and then he did buy her a car. his outcome, although potentially confusing, can t be deemed unfair. He told her what he would do if she got straight A s not what he would do if she didn t. Since this one isn t unfair, we have no logical choice to but to call it true! Possibility 4 (p and q both false): She didn t get straight A s, and then he didn t buy her a car. his outcome is, essentially, what the students had automatically assigned in their minds when they heard my colleague hadn t gotten straight A s. his one feels fair, only because it (most likely) makes sense. So, we ll call it true.

he best part is that any conditional statement can be analyzed in this way, and any conditional statement, logically, has to have the same set of outcomes! Once you hear an if, then statement, identify the hypothesis and conclusion, and then you can synopsize all possible outcomes of the statement in what s called a truth table: If the condition is and the conclusion is then the overall statement is RUE RUE RUE RUE ALSE ALSE ALSE RUE RUE ALSE ALSE RUE Here s one you might hear around your house! Example: ake the statement If you do the dishes, then I ll take out the trash. Possibility 1: You did the dishes, and I took out the trash. Yep that seems fair. And, logic tells us that it s a true application of the conditional, so yay! he conclusion follows from the hypothesis. Possibility 2: You did the dishes, but I didn t take out the trash. otally lame! And, as we saw above, a false application of the conditional, as the true condition leads to a false conclusion. Possibility 3: You didn t do the dishes, but I did take out the trash. No one can complain, right? I only specified what I would do if you did the dishes not what I would (or wouldn t) do if you didn t. Gotta call it true. Possibility 4: You didn t do the dishes, and I didn t take out the trash. Again, this one s an all bets are off type, since the hypothesis wasn t met. So, again, we have to call it true. Since all conditionals follow the same line of logic, their truth tables all look the same. And, since they get used so much, the condition (also sometimes called a hypothesis ) is generally called p, the conclusion q, and the table ends up looking like this: p q If p, then q? So in examining the truth of a conditional statement, we must always conclude that it is true unless the hypothesis is true and the conclusion is false! Let s analyze one from Oregon s constitution - Oregon s constitution has a tax rebate built into it (commonly known as a kicker ). 5. (2 points) In a sentence, tell me what the kicker does. Google it up! 6. (2 points) Rewrite the above sentence as a conditional statement (since the kicker needs to satisfy a condition to be met, it seems the perfect candidate!). 7. (2 points) What is the only time the above condition would be a false statement (and, most likely, really aggravate those in Oregon)?

Part 3: Above and (a little) Beyond! Now, in reality, almost all of the logic that you ll encounter in your lives is of the if/then conditional variety. or example, when you start working for someone, they ll often draw up a contract with you; this document is an agreement that you will perform certain services for that person. In turn, you keep working for them. However, that s a little overly simplistic use this example to check out why: If I teach my classes at the best of my ability, then I ll keep my job. Seems reasonable! However, what does teach my classes to the best of my ability mean? Well, I can think of two variables within that variable! How about treat my students with respect and communicate with them in a timely manner? hen, the statement If I teach my classes at the best of my ability, then I ll keep my job becomes If I treat my student with respect and communicate with my students in a timely manner, then I ll keep my job. Cool! Let s give treat my students with respect a name p. hen we ll call communicate with them in a timely manner q and I ll keep my job r! hen, symbolically, it becomes If p and q, then r. Sweet! Now, here s where it gets interesting and how logic can help you out in times when it s needed 2. Suppose I lose my job. Logically, what s the only time that I m allowed to be upset about losing my job (that is, when s the only time that I was treated unfairly in losing my job)? Let s answer, using logic! Since the original statement was If I teach my classes well, then I ll keep my job is a conditional, then the only time I could claim mistreatment (if I lost my job) is if I did, indeed, do my job well, but still lost it anyway (that is, the hypothesis was true and the conclusion was false). he trick here is that the hypothesis is comprised of two variables and each of those variables can be either true or false. So, before we even begin, we need to make another truth table one that just describes the hypothesis statement! p q p AND q Let s make sure this makes sense! If p and q are both true, then it makes sense that we have made the statement both p and q true. herefore, if I do both components of my job (both treating my students with respect and communicating with them in a timely manner ), then I have done a good job teaching. If either one of p or q is false, then the whole thing should be false! I mean, if the condition is that I need to do those two things then I need to do them both! So, the hypothesis of the original statement ( If I do a good job teaching ) is true only when I satisfy both parts of said hypothesis ( treating my students with respect and communicating with them in a timely manner ). herefore, the statement If I treat my student with respect and communicate with my students in a timely manner, then I ll keep my job is only false when I satisfy p and q but fail to satisfy r (that is, I m fired after successfully communicating with my students and showing them respect). 2 which, I would argue, is always.

Part 4: A Little arther Beyond! In part 3, we saw how you could nest other kinds of logical statements within logical statements. We also saw that, once you start adding variables, it can get pretty messy. Here s, actually. What the full truth table for the last part would have looked like: p q p AND q r If p AND q, then r Our truth tables with 2 variables (p and q) had 4 rows. his one with 3 variables (p, q, and r) has 8. One with 4 would have 16. And it just keeps getting exponentially greater! But let s be honest most of the time, you won t have to use more than 2 variables. And if you do, you can do like we did above and deal with it one piece at a time. So, to finish, we ll explore three other logical operators like If/hen and AND. 8. (7 points for correctly completing the truth tables) or each of the following operators, I ll define what they do. Knowing that, you complete the truth tables! (i.e., fill in the far right sides) I ll give you an example to get you started! Example: NO (indicated by a little ~ sign next to the variable). his operator reverses whatever the variable is currently. So, to complete the truth table, I d just reverse the values that P has: Now you try! I ll describe each operator, and you complete the tables! p ~ p a. OR Or is an operator between two variables p and q. It s true if at least one of the variables has a true truth value! p q p OR q b. Exclusive OR (abbreviated XOR ). his one s like OR, but it s only true if exactly one of the variables is true! p q p XOR q c. I his is known as if and only if. his one s like our friend if/then but it s ONLY true when p and q match values! p q p I q 9. (3 extra points) What if the AND tuned to an OR in the large truth table above (the one about me doing my job correctly, at the top of this page)? How would that change the truth table s far right side?