Michael Mehring Physikalisches Institut, Univ. Stuttgart, Germany. Coworkers. A. Heidebrecht, J. Mende, W. Scherer

Similar documents
The Deutsch-Josza Algorithm in NMR

Principles of Magnetic Resonance

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

*WILEY- Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co.

Measuring Spin-Lattice Relaxation Time

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. KGaA

Optically-controlled controlled quantum dot spins for quantum computers

Short Course in Quantum Information Lecture 8 Physical Implementations

Quantum Computing. 6. Quantum Computer Architecture 7. Quantum Computers and Complexity

Introduction to Quantum Computing. Lecture 1

1. THEORETICAL BACKGROUND AND EXPERIMENTAL TECHNIQUES. 1.1 History of Quantum Computation

IBM quantum experience: Experimental implementations, scope, and limitations

Suppression of the low-frequency decoherence by motion of the Bell-type states Andrey Vasenko

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Superconducting quantum bits. Péter Makk

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Experimental Realization of Shor s Quantum Factoring Algorithm

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Experimental Quantum Computing: A technology overview

More NMR Relaxation. Longitudinal Relaxation. Transverse Relaxation

Introduction to Quantum Computing for Folks

Long-lived spin echoes in magnetically diluted system: an NMR study of the Ge single crystals Alexander M. Panich,

Introduction to Quantum Computing

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations.

Quantum Information Processing with Liquid-State NMR

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Physics is becoming too difficult for physicists. David Hilbert (mathematician)

b) (5 points) Give a simple quantum circuit that transforms the state

Errata list, Nielsen & Chuang. rrata/errata.html

Towards quantum simulator based on nuclear spins at room temperature

QUANTUM COMPUTING. Part II. Jean V. Bellissard. Georgia Institute of Technology & Institut Universitaire de France

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1

INTRODUCTION TO NMR and NMR QIP

Quantum Computing. Vraj Parikh B.E.-G.H.Patel College of Engineering & Technology, Anand (Affiliated with GTU) Abstract HISTORY OF QUANTUM COMPUTING-

example: e.g. electron spin in a field: on the Bloch sphere: this is a rotation around the equator with Larmor precession frequency ω

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation

Factoring 15 with NMR spectroscopy. Josefine Enkner, Felix Helmrich

Quantum Computation with Neutral Atoms

Quantum Information Processing

Direct dipolar interaction - utilization

Nuclear Magnetic Resonance Quantum Computing Using Liquid Crystal Solvents

DNP in Quantum Computing Eisuke Abe Spintronics Research Center, Keio University

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia

Error Classification and Reduction in Solid State Qubits

Measuring errors in single-qubit rotations by pulsed electron paramagnetic resonance

Some Introductory Notes on Quantum Computing

NMR: Formalism & Techniques

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

Magnetic Resonance in Quantum Information

Driving Qubit Transitions in J-C Hamiltonian

Quantum information and quantum computing

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay

arxiv: v1 [cond-mat.mes-hall] 18 May 2012

92 CHAPTER III. QUANTUM COMPUTATION. Figure III.11: Diagram for swap (from NC).

Seminar 1. Introduction to Quantum Computing

Supplementary Information for

Factoring on a Quantum Computer

Einführung in die Quanteninformation

Asian Journal of Chemistry; Vol. 25, No. 4 (2013),

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012

Quantum Information Processing and Diagrams of States

Magnetic Resonance in Quantum

Introduction to Quantum Computing

Principles of Quantum Mechanics Pt. 2

Classical behavior of magnetic dipole vector. P. J. Grandinetti

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Quantum gate. Contents. Commonly used gates

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

Introduction into Quantum Computations Alexei Ashikhmin Bell Labs

Exemple of Hilbert spaces with dimension equal to two. *Spin1/2particle

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto

Electron spin coherence exceeding seconds in high-purity silicon

Introduction to Quantum Error Correction

S.A.Moiseev 1,2 *, and V.A.Skrebnev 2 **

arxiv:quant-ph/ v3 19 May 1997

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Quantum Computing. Thorsten Altenkirch

Principles of Nuclear Magnetic Resonance in One and Two Dimensions

Principles of Nuclear Magnetic Resonance Microscopy

Tutorial on Quantum Computing. Vwani P. Roychowdhury. Lecture 1: Introduction

Short Course in Quantum Information Lecture 5

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit

Electron Spin Qubits Steve Lyon Electrical Engineering Department Princeton University

1 Measurements, Tensor Products, and Entanglement

Quantum Computation with Neutral Atoms Lectures 14-15

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters)

Intern. J. Fuzzy Mathematical Archive Neutrosophic Quantum Computer Florentin Smarandache Abstract. Keywords:

Gates for Adiabatic Quantum Computing

NANOSCALE SCIENCE & TECHNOLOGY

Quantum Computing with Para-hydrogen

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Quantum Computation and Communication

Quantum Optics and Quantum Informatics FKA173

Electrical quantum engineering with superconducting circuits

Quantum Information Science (QIS)

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón

M. Grassl, Grundlagen der Quantenfehlerkorrektur, Universität Innsbruck, WS 2007/ , Folie 127

Introduction to Quantum Algorithms Part I: Quantum Gates and Simon s Algorithm

0.5 atoms improve the clock signal of 10,000 atoms

Transcription:

Decoherence and Entanglement Tomography in Solids Michael Mehring Physikalisches Institut, Univ. Stuttgart, Germany Coworkers A. Heidebrecht, J. Mende, W. Scherer 5 N@C 60 and 3 P@C 60 Cooperation Boris Naydenov and Wolfgang Harneit FU Berlin

Richard Feynman was one of the first physicists, who contemplated about quantum computing already in 98 R. P. Feynman, F. L. Vernon, Jr., and R. W. Hellwart, J. Appl. Phys. 8, 49 (957).

The Quantum Bit (Qubit) Stern Gerlach Experiment (9)

NMR-Quantum-Computing a là Kane A silicon-based nuclear spin quantum computer B.E.Kane Nature 393, 33 (May 998)

Array of Quantum Dots with Spins Single spin in Q-dot F. H. L. Koppens et. al. Nature, 44, 766 (006) Daniel Loss proposal

Quantumstates of a Qubit (Spin ½) The Spin Density Matrix Population 0 Superposition 0 Phase X Phase Y 0

Basic density matrix algebra Time dependence Magnus expansion with Zeroth order term Average Hamiltonian U.Haeberlen amd J. S. Waugh, Phys. Rev. 85, 40 (969) M.M. and V.A. Weberuss, Object Oriented Magnetic Resonance, Academic Press, 00

The Single Qubit Basis:, or, or 0, z 0 0 ;, com plex e i i co s 0 e sin y Bloch sphere x Bloch s equations with R = /T and R = /(T )+/T 8:35

Single Qubit Gates 0 0 i e 0 0 e i universal gates Hadamard H 0 H H H 0 0 H 0

T Relaxation polarisation saturation recovery recovery

T Relaxation Decay of the superposition state Recovery of the equilibrium state (takes longer) Only transitions between eigenstates: T = T General case (phase flucutations): T << T

Distribution of local fields Spin echo E. L. Hahn, Phys. Rev. 80, 580 (950) spin echo 0

Random phasefluctuations of a qubit with N avg = N avg = 4 N avg = 5 N avg = 60 N avg = 50 N avg = 000

Decoherence caused by fluctuations T relaxation assuming and else results in

Spin lattice relaxation T

Two Qubit Gates Bell states (entangled states): 0 0 00

Decoherence of a two qubit entangled state

The Greek LAOCOON and Quantum Entanglement The EPR Pair Einstein, Podolsky and Rosen, Phys. Rev. 47, 777 (935) EPR H 0 Hadamard U CNOT

Quantencomputing in Hilbertspace 8 qubits span a 56 dimensional Hilbertspace Quantum evolution in Hilbertspace Uˆ 0 U t t 0 Quantumcomputing is: Preparation+Superposition+Entanglement+Projection

Proposals for Quantumcomputing with N@C 60 Wolfgang Harneit, Phys. Rev. A 65, 03 (00) D. Suter and K. Lim, Phys. Rev. A. 65, 05309 (00) 9:0

The pseudo pure initial state M.M. and W. Scherer. Phys. Rev. Lett. 93, 06603- (004) W. Scherer and M. Mehring, J. Chem. Phys. 8, 05305 (008) 7 7 S 3 5 N@C 60 I I S 4 4 z ( 8 ) 09.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P P ( ) / ˆ I I I I I 4 0 4 z z z z 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 two qubit subspace

Pulses and unitary evolutions Hahn echo sequence free evolution window

Preparation and tomography of entangled states in 5 N@C 60 M.M. and W. Scherer. Phys. Rev. Lett. 93, 06603- (004) W. Scherer and M. Mehring, J. Chem. Phys. 8, 05305 (008) 7 7 7 7

Phase Encoding of Entangled States Application of phase rotations about the z-direction phase frequencies = MHz; = MHz 3 3 3 3 = MHz e i 3 e i 3 = 6 MHz i 3 i 3 e e

Decoherence of the entangled state (+) phase frequencies =0 MHz; = 4 MHz 3 = 6 MHz with

Two Qubit Subsystems in 3 P@C 60 Cooperation with W. Harneit, FU Berlin Preliminary results (J. Mende, B. Naydenov) Reduced symmetry Lifting of degeneracies Planned experiments: Swap and qubit cloning, decoherence free subspaces IWEPNM 007, Kirchberg 9:0

Find the Prime Factors (Shor Algorithm) It is a simple task to build the product of two large prime numbers p und q. Calculating n = p x q is easy. But: 3770349 =? 799 x 7389 is extremely demanding and requires log(n) steps with arbitrary large superpolynomial Factoring a 400 digit number would take 0 0 years with today's fastest computers P. Shor(994): Quantum computer requires only O[(ln n) 3 ] steps A quantum computer based on the current fastest clock rates would factor a 400 digit number in only about 3 years. 9:05

Implementing the Shor Algorithm on a Nuclear Spin Quantumcomputer L. M. K. Vandersypen et al., Nature 44, 883 (00) We need two quantum registers R(3 qubit) und R(4 qubit), which contain x and f(x): R> R>= x,f(x)> = n3,n,n> m4,m3,m,m> Superposition: 8 x 7 0 x x,7 m o d 5 8 0,, 7, 4 3,3 4, 5, 7 6, 4 7,3

Dynamic Decoupling CPMG sequence Carr, Purcell, Meiboom, Gill, Phys. Rev. A 94, 530 (954) Rev. Sc. Instr. 9, 688 (958) Phase encoded CPMG sequence. see number factoring

NMR experiment factors numbers with Gauss sums M M A l exp im N M m 0 N l M M C l cos m N M m 0 N l from number theory 57573 = M. M., K. Müller, W. Merkel, I. S. Averbukh, W. P. Schleich, Phys. Rev. Lett. 98, 050 (007)

H implementation of the Gauss sum algorithm with phase controlled pulse sequence M. M., K. Müller, W. Merkel, I. S. Averbukh, W. P. Schleich, Phys. Rev. Lett. 98, 050 (007) 30 th Anniversary Kernresonanzspektroskopie University Ulm 006

The S-Bus Concept M. M. and J. Mende Phys. Rev. A 73, 050303 (006)

Energy Ce:CaF single crystal: The qubyte+ m S Mims ENDOR m S 9:5

Implementation of the Collins version of the Deutsch-algorithm H U 00 H 00 0 00 00 0 M. M. and J. Mende Phys. Rev. A 73, 050303 (006)

Two Qubit ( 9 F) Entanglement in the S-Bus Ce:CaF J. Mende, doctoral thesis, Univ. Stuttgart (005)

Tomografie of large qubit registers by selective phase encoding Q Q Q Q 3Q Q Q 3Q 4Q 0Q Q Q 0Q Q Q 3Q 0Q Q Q 3Q 4Q For more details see: M. M. and J. Mende Phys. Rev. A 73, 050303 (006)

Detection of multi-qubit correlations pulse prep ˆ ˆ ˆ ˆ ˆ I ˆ ˆ z zi I I I S z z 3 z 4 z z I I I x x 3 x 4 x Sˆ S ˆ Iˆ ˆ S ˆ 4 z Iˆ Iˆ Iˆ Iˆ 3 4 ;, 3;4 S ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ z I I I I I I I I 4 3 4 S ˆ 4 z 3 4 Iˆ Iˆ Iˆ Iˆ Iˆ Iˆ Iˆ Iˆ 3 4 3 4,,3; 4 0 Quantum Quantum 4 Quantum

Fighting decoherence in a hostile environment S-bus system with 9 F qubits (spins I = /) surrounding the master qubit Ce 3+ (spin S = /) 9 F FID (one site) 9 F rotary echos T * decoherence time decouple a particular 9 F from the rest time increments

Decoupling and selective recoupling A. Heidebrecht, J. Mende and M.M. Solid State Nucl. Magn. Reson. 9, 90 (006) Spin echo double resonance (SEDOR) M. Emschwiller, E. L. Hahn and D. Kaplan, Phys. Rev. 8, 44 (960) coupling constant 4.6 khz

Decoherence free subspaces? A. Heidebrecht, J. Mende and M.M. Solid State Nucl. Magn. Reson., 9:90--94, 006 SEDOR CPMG Spin-Locking

Fight Decoherence The 8 block evolution A. Heidebrecht, J. Mende and M.M. Solid State Nucl. Magn. Reson., 9, 90--94, 006

Global decoupling and selective recoupling Average Hamiltonian: Average cycle Hamiltonian:

Entanglement without direct spin-spin interaction? S I I Initial density matrix 4 I a I a I a I I z z z z CNOT evolution Entanglement + Indirect spin-spin interactions allow long distance entanglement Preliminary result A. Heidebrecht, doctoral thesis Univ. Stuttgart (007) Enrico fermi School, Varenna 008

J. Mende A. Heidebrecht W. Scherer