Rigid SUSY in Curved Superspace

Similar documents
Recent Advances in SUSY

Supersymmetric Gauge Theories in 3d

Anomalies, Conformal Manifolds, and Spheres

Some Tools for Exploring Supersymmetric RG Flows

Supersymmetry on Curved Spaces and Holography

A Localization Computation in Confining Phase

Techniques for exact calculations in 4D SUSY gauge theories

A Landscape of Field Theories

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Seiberg-Witten Theories on Ellipsoids Kazuo Hosomichi (YITP)

Symmetries of curved superspace

Supercurrents. Nathan Seiberg IAS

Symmetries Then and Now

2d N = (2, 2) supersymmetry with U(1) RV in curved space

New and old N = 8 superconformal field theories in three dimensions

M-theory S-Matrix from 3d SCFT

Chern-Simons Theories and AdS/CFT

arxiv: v1 [hep-th] 29 Oct 2015

N = 2 CHERN-SIMONS MATTER THEORIES: RG FLOWS AND IR BEHAVIOR. Silvia Penati. Perugia, 25/6/2010

Current Algebra Constraints on Supersymmetric Quantum Field Theories

How to resum perturbative series in supersymmetric gauge theories. Masazumi Honda ( 本多正純 )

Weyl Anomalies and D-brane Charges

One Loop Tests of Higher Spin AdS/CFT

Aspects of (0,2) theories

Exact results in AdS/CFT from localization. Part I

Pietro Fre' SISSA-Trieste. Paolo Soriani University degli Studi di Milano. From Calabi-Yau manifolds to topological field theories

S-CONFINING DUALITIES

Sphere Partition Functions, Topology, the Zamolodchikov Metric

Topological reduction of supersymmetric gauge theories and S-duality

Exact Results in D=2 Supersymmetric Gauge Theories And Applications

Sphere partition functions and the 3d superconformal R-charge

Semper FI? Supercurrents, R symmetries, and the Status of Fayet Iliopoulos Terms in Supergravity. Keith R. Dienes

S 2 partition functions: Coulomb vs Higgs localization and vortices

SUPERCONFORMAL FIELD THEORIES. John H. Schwarz. Abdus Salam ICTP 10 November 2010

Field Theory: The Past 25 Years

Rigid Holography and 6d N=(2,0) Theories on AdS 5 xs 1

N=1 Global Supersymmetry in D=4

Generalized N = 1 orientifold compactifications

The Holography of F -maximization

String theory effects on 5D black strings

Prarit Agarwal (Seoul National University) International winter school : "Partition Functions and Automorphic Forms", 2018

BPS non-local operators in AdS/CFT correspondence. Satoshi Yamaguchi (Seoul National University) E. Koh, SY, arxiv: to appear in JHEP

Quantum gravity at one-loop and AdS/CFT

Solution Set 8 Worldsheet perspective on CY compactification

Weyl Anomalies and D-brane Charges. Constantin Bachas. ChrisFest. Supergravity, Strings and Dualities Imperial College London, April

Generalized Global Symmetries

Aspects of SUSY Breaking

Half BPS solutions in type IIB and M-theory

Higher Spin AdS/CFT at One Loop

Boundaries, Interfaces and Dualities

Ω-deformation and quantization

Quantum Fields in Curved Spacetime

Holography for N = 1 on S 4

A Brief Introduction to AdS/CFT Correspondence

4d N=2 as 6d N=(2,0) compactified on C

8.821 F2008 Lecture 5: SUSY Self-Defense

Two Examples of Seiberg Duality in Gauge Theories With Less Than Four Supercharges. Adi Armoni Swansea University

Symmetries, Groups Theory and Lie Algebras in Physics

Lie n-algebras and supersymmetry

Non-relativistic holography

On RG Flow of τ RR for Supersymmetric Field Theories in Three-Dimensions

String theory and the 4D/3D reduction of Seiberg duality. A Review

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford

Maximally Supersymmetric Solutions in Supergravity

NILPOTENT SUPERGRAVITY, INFLATION AND MODULI STABILIZATION

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions

Instanton effective action in - background and D3/D(-1)-brane system in R-R background

Localization in supersymmetric field theories

Off-shell conformal supergravity in 3D

Emergent Spacetime. XXIII rd Solvay Conference in Physics December, Nathan Seiberg

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/

Think Globally, Act Locally

Lecture 7: N = 2 supersymmetric gauge theory

Holographic Anyons in the ABJM theory

Is SUSY still alive? Dmitri Kazakov JINR

Seminar in Wigner Research Centre for Physics. Minkyoo Kim (Sogang & Ewha University) 10th, May, 2013

arxiv: v1 [hep-th] 17 Dec 2010

A supermatrix model for ABJM theory

5. a d*, Entanglement entropy and Beyond

arxiv:hep-th/ v1 21 May 1996

Supergravity from 2 and 3-Algebra Gauge Theory

Three-Charge Black Holes and ¼ BPS States in Little String Theory

Exact Solutions of 2d Supersymmetric gauge theories

Insight into strong coupling

Supersymmetric field theories

Some applications of light-cone superspace

Contents. Preface to the second edition. Preface to the first edition. Part I Introduction to gravity and supergravity 1

A Crack in the Conformal Window

AdS/CFT Correspondence and Entanglement Entropy

F-maximization and the 3d F-F theorem

F-theory effective physics via M-theory. Thomas W. Grimm!! Max Planck Institute for Physics (Werner-Heisenberg-Institut)! Munich

Roni Harnik LBL and UC Berkeley

A Supergravity Dual for 4d SCFT s Universal Sector

The Partition Function of ABJ Theory

On M5 Branes. Kimyeong Lee KIAS. YKIS 2012 From Gravity to Strong Coupling Physics Yukawa Institute for Theoretical Physics Oct 2012

Lifshitz Geometries in String and M-Theory

Katrin Becker, Texas A&M University. Strings 2016, YMSC,Tsinghua University

Heterotic Torsional Backgrounds, from Supergravity to CFT

Functional determinants, Index theorems, and Exact quantum black hole entropy

Transcription:

Rigid SUSY in Curved Superspace Nathan Seiberg IAS Festuccia and NS 1105.0689 Thank: Jafferis, Komargodski, Rocek, Shih

Theme of recent developments: Rigid supersymmetric field theories in nontrivial spacetimes Relations between theories in different dimensions New computable observables in known theories New insights about the dynamics 2

Landscape of special cases [Zumino (77) ] [D. Sen (87) ] [Pestun ] [Romelsberger ] [Kapustin, Willett, Yaakov ] [Kim; Imamura, Yokoyama ] 3

Questions/Outline How do we place a supersymmetric theory on a nontrivial spacetime? When is it possible? What is the Lagrangian? How come we have supersymmetry on a sphere (or equivalently in ds)? How do we compute? What does it teach us? 4

SUSY in curved spacetime Naïve condition: need a covariantly constant spinor A more sophisticated condition: need a Killing spinor with constant. A more general possibility (also referred to as Killing spinor) Can include a background R gauge field in in any of these (twisting) [Witten ]. 5

SUSY in curved spacetime Motivated by supergravity: a more general condition with an appropriate (with spinor indices). In the context of string or supergravity configurations is determined by the background values of the various dynamical fields (forms, matter fields ). All the dynamical fields have to satisfy their equations of motion. 6

Rigid SUSY in curved spacetime We are interested in a rigid theory (no dynamical gravity) in curved spacetime: What is? Which constraints should it satisfy? Determine the curved spacetime supersymmetric Lagrangian. 7

Rigid SUSY in curved spacetime We start with a flat space supersymmetric theory and want to determine the curved space theory. The Lagrangian can be deformed. The SUSY variation of the fields can be deformed. The SUSY algebra can be deformed. Standard approach: Expand in large radius r and determine the correction terms iteratively in a power series in 1/r. It is surprising when it works. In all examples the iterative procedure ends at order 1/r 2. The procedure is tedious. 8

Landscape of special cases [Zumino (77) ] [D. Sen (87) ] [Pestun ] [Romelsberger ] [Kapustin, Willett, Yaakov ] [Kim; Imamura, Yokoyama ] All these backgrounds are conformally flat. So it is straightforward to put an SCFT on them. Example: the partition function on is the superconformal index [Kinney, Maldacena, Minwalla, Raju]. But for non-conformal theories it is tedious and not conceptual. What is the most general setup? 9

Main point Nontrivial background metric should be viewed as part of a background superfield. Study SUGRA in superspace and view the fields in the gravity multiplet as arbitrary, classical, background fields. Do not impose any equation of motion; i.e. Metric and auxiliary fields are on equal footing. Most of the terms in the supergravity Lagrangian including the graviton kinetic term are irrelevant. Then, supersymmetry is preserved provided the metric and the auxiliary fields satisfy certain conditions (below). 10

Linearized supergravity Simplest limit is linearized supergravity are operators in the SUSY multiplet of the energy momentum tensor. They are constructed out of the matter fields. gravitino. are the deviation of the metric and the are a vector and a complex scalar auxiliary fields. 11

The Rigid Limit We are interested in spaces with arbitrary metric, so we need a more subtle limit the rigid limit. Take with fixed metric and appropriate scaling (weight one) of the various auxiliary fields in the gravity multiplet: is obtained from the flat space theory by inserting the curved space metric the naïve term. is linear in the auxiliary fields as in linearized SUGRA. arises from the curvature and terms quadratic in the auxiliary fields seagull terms for SUSY. 12

The Rigid Limit Lagrangian For example, the bosonic terms in a Wess-Zumino model with and are 13

Supersymmetric backgrounds For supersymmetry, ensure that the variation of the gravitino vanishes These conditions depend only on the metric and the auxiliary fields in the gravity multiplet. They are independent of the dynamical matter fields. In Euclidean space bar does not mean c.c. 14

Curved superspace For supersymmetry Integrability condition: differential equations for the metric and the various auxiliary fields through. The supergravity Lagrangian with nonzero background fields gives us a rigid field theory in curved superspace. Comments: Enormous simplification This makes it clear that the iterative procedure in powers of 1/r terminates at order 1/r 2. Different off-shell formulations of supergravity (which are equivalent on-shell) can lead to different backgrounds. 15

An alternative formalism If the rigid theory has a continuous global R-symmetry, there is an alternative supergravity formalism known as new minimal supergravity (the previous discussion used old minimal supergravity ). Here the auxiliary fields are a U(1) R gauge field and a two form. On-shell this supergravity is identical to the standard one. But since we do not impose the equations of motion, we should treat it separately. The familiar topological twisting of supersymmetric field theories amounts to a background in this formalism. The expressions for the rigid limit and the conditions for unbroken supersymmetry are similar to the expressions above. 16

Examples: and : : turn on a constant value of a scalar auxiliary field : set the auxiliary fields Note: not the standard reality! Equivalently, in Euclidean. When non-conformal, not reflection positive (nonunitary). Hence, consistent with no SUSY in ds. In terms of the characteristic mass scale m and the radius r the problematic terms are of order m/r. 17

Examples: and In these two examples the superalgebra is Good real form for Lorentzian As always in Euclidean space,. For need a compact real form of the isometry Then, the anti-commutator of two supercharges is not a real rotation. Hence, hard to compute using localization. The superpotential is not protected (can be absorbed in the Kahler potential) and holomorphy is not useful. For N=2 the superalgebra is computable 18

Example: N=1 on Turn on a vector auxiliary field along For Q to be well defined around the, need a global continuous R-symmetry and a background gauge field. Supersymmetry algebra:, where the factor is the combination of time translation and R-symmetry that commutes with Q. Alternatively, can use new-minimal supergravity and turn on a gauge field and a constant H=dB on, where B is a two-form auxiliary field. No quantization conditions on the periods of the auxiliary fields. 19

Deforming the theory On (or ) we can add background gauge fields for the non-r flavor symmetries, ; turn on constant complex along : leads to a real mass in the 3d theory on. shifts the choice of R-symmetry by. The partition function is manifestly holomorphic in. We can also squash the. We will not pursue it here. 20

The partition function on It is a trace over a Hilbert space with (complex) chemical potentials. Only short representations of contribute to the trace [Romelsberger]. Note, this is an index, but in general it is not the superconformal index. It is independent of small changes in the parameters of the 4d Lagrangian it has the same value in the UV and IR theories. It is holomorphic in. 21

on If the theory is conformal, the partition function is the superconformal index. For non-conformal theories the partition function does not depend on the scale [Romelsberger]. Can use a free field computation in the UV to learn about the IR answer. (Equivalently, use localization.) This probes the operators in short representations and their quantum numbers (more than just the chiral ones). Highly nontrivial information about the IR theory; e.g. can test dual descriptions of it [Romelsberger, Dolan, Osborn, Spiridonov, Vartanov ]. 22

Answers A typical expression [Dolan, Osborn] Γ Elliptic gamma function General lessons: Very explicit Nontrivial Special functions relation to the elliptic hypergeometric series of [Frenkel, Turaev] To prove duality, need miraculous identities [Rains, Spiridonov...] 23

Example: N=2 with on Can consider as a limit of the previous case Can also view as a 3d theory, where we can add new terms, e.g. Chern-Simons terms. Nonzero H=dB ensures supersymmetry. Supersymmetry algebra: As in the theory on, if the theory is not conformal, it is not unitary. (No SUSY in ds space.) In terms of the characteristic mass scale m and the radius r the problematic terms are of order m/r. 24

Example: [Kapustin, Willett, Yaakov ] a The terms are not reflection positive (nonunitary). Since the answer is independent of, we can take it to zero and find that the theory localizes on The one loop determinant is computable. 25

Generalizations Non-Abelian theories Add matter fields Add Chern-Simons terms Add Wilson lines In all these cases the functional integral becomes a matrix model for. The partition function and some correlation functions of Wilson loops are computable. 26

Duality in 3d N=2, In 3d there are very few diagnostics of duality/mirror symmetry. The partition functions on nontrivial tests. Examples (similar to duality in 4d): provide new 3d mirror symmetry [Intriligator, NS ] was tested [Kapustin, Willett, Yaakov] The duality of [Aharony; Giveon and Kutasov] was tested [Kapustin, Willett, Yaakov; Bashkirov ]. Generalizations [Kapustin]: 27

Z-minimization Consider an N=2 3d theory with an R-symmetry and some non-r-symmetries with charges. If there are no accidental symmetries in the IR theory, the R-symmetry in the superconformal algebra at the IR fixed point is a linear combination of the charges In 4d the coefficients are determined by a- maximization [Intriligator, Wecht]. What happens in 3d? 28

Z-minimization The partition function can be studied as a function of [Jafferis; Hama, Hosomichi, Lee]. (Recall, can be introduced as a complex background gauge field.) Jafferis conjectured that is minimized at the IR values of. Many tests Extension of 4d a-maximization. Is there a version of a c-theorem in 3d? 29

Conclusions The rigid limit of supergravity leads to field theories in curved superspace. When certain conditions are satisfied the background is supersymmetric. Then, a simple, unified and systematic procedure leads to The supersymmetric Lagrangian The superalgebra The variations of the fields A rich landscape of rigid supersymmetric field theories in curved spacetime was uncovered. Many observables were computed leading to new insights about the dynamics. 30