Partial Fractions and the Coverup Method Haynes Miller and Jeremy Orloff

Similar documents
Partial Fractions Jeremy Orloff

Contents Partial Fraction Theory Real Quadratic Partial Fractions Simple Roots Multiple Roots The Sampling Method The Method of Atoms Heaviside s

Section 7.4: Inverse Laplace Transform

Name: Solutions Final Exam

Lecture 5 Rational functions and partial fraction expansion

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

3.4. ZEROS OF POLYNOMIAL FUNCTIONS

3.5 Undetermined Coefficients

Math Lecture 3 Notes

Integration of Rational Functions by Partial Fractions

( ) and D( x) have been written out in

37. f(t) sin 2t cos 2t 38. f(t) cos 2 t. 39. f(t) sin(4t 5) 40.

Rational Expressions & Equations

COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS

Section 6.2 Long Division of Polynomials

Partial Fractions. (Do you see how to work it out? Substitute u = ax + b, so du = a dx.) For example, 1 dx = ln x 7 + C, x x (x 3)(x + 1) = a

Sec. 1 Simplifying Rational Expressions: +

MATHEMATICS Lecture. 4 Chapter.8 TECHNIQUES OF INTEGRATION By Dr. Mohammed Ramidh

Transform Solutions to LTI Systems Part 3

SECTION 7.4: PARTIAL FRACTIONS. These Examples deal with rational expressions in x, but the methods here extend to rational expressions in y, t, etc.

SECTION 2.3: LONG AND SYNTHETIC POLYNOMIAL DIVISION

Expressing a Rational Fraction as the sum of its Partial Fractions

Section 8.3 Partial Fraction Decomposition

Math 216 Second Midterm 16 November, 2017

The Laplace Transform and the IVP (Sect. 6.2).

CHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2

How might we evaluate this? Suppose that, by some good luck, we knew that. x 2 5. x 2 dx 5

Section 6.6 Evaluating Polynomial Functions

Higher-order differential equations

Today. The geometry of homogeneous and nonhomogeneous matrix equations. Solving nonhomogeneous equations. Method of undetermined coefficients

«Develop a better understanding on Partial fractions»

Ordinary Differential Equations. Session 7

Second-Order Homogeneous Linear Equations with Constant Coefficients

Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i

Unit 8 - Polynomial and Rational Functions Classwork

Introduction to Series and Sequences Math 121 Calculus II Spring 2015

ENGIN 211, Engineering Math. Laplace Transforms

18.03 Class 23, Apr 2. Laplace Transform: Second order equations; completing the square; t-shift; step and delta signals. Rules:

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers

6.3 Partial Fractions

(x + 1)(x 2) = 4. x

10.7 Polynomial and Rational Inequalities

Examples 2: Composite Functions, Piecewise Functions, Partial Fractions

Lesson 21 Not So Dramatic Quadratics

QUADRATIC EQUATIONS. + 6 = 0 This is a quadratic equation written in standard form. x x = 0 (standard form with c=0). 2 = 9

Quadratic Equations Part I

CHAPTER 7: TECHNIQUES OF INTEGRATION

Partial Fractions. (Do you see how to work it out? Substitute u = ax+b, so du = adx.) For example, 1 dx = ln x 7 +C, x 7

Solving Quadratic & Higher Degree Equations

Numerical Methods. Equations and Partial Fractions. Jaesung Lee

4.8 Partial Fraction Decomposition

1. Why don t we have to worry about absolute values in the general form for first order differential equations with constant coefficients?

27. The pole diagram and the Laplace transform

JUST THE MATHS UNIT NUMBER 1.9. ALGEBRA 9 (The theory of partial fractions) A.J.Hobson

8.3 Partial Fraction Decomposition

Selected Solutions: 3.5 (Undetermined Coefficients)

MAT 129 Precalculus Chapter 5 Notes

B.3 Solving Equations Algebraically and Graphically

Midterm 1 Solutions. Monday, 10/24/2011

Linear algebra and differential equations (Math 54): Lecture 20

Methods of Mathematics

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace

Partial Fractions. Prerequisites: Solving simple equations; comparing coefficients; factorising simple quadratics and cubics; polynomial division.

Section 3.6 Complex Zeros

= lim. (1 + h) 1 = lim. = lim. = lim = 1 2. lim

Solving Quadratic & Higher Degree Equations

When a function is defined by a fraction, the denominator of that fraction cannot be equal to zero

2.161 Signal Processing: Continuous and Discrete Fall 2008

Basic methods to solve equations

A polynomial expression is the addition or subtraction of many algebraic terms with positive integer powers.

Math 353 Lecture Notes Week 6 Laplace Transform: Fundamentals

2. If the values for f(x) can be made as close as we like to L by choosing arbitrarily large. lim

Base Number Systems. Honors Precalculus Mr. Velazquez

Chapter 9: Roots and Irrational Numbers

CHAPTER 1: Functions

MA1131 Lecture 15 (2 & 3/12/2010) 77. dx dx v + udv dx. (uv) = v du dx dx + dx dx dx

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: 2 x 3 + 3

20. The pole diagram and the Laplace transform

Unit 2-1: Factoring and Solving Quadratics. 0. I can add, subtract and multiply polynomial expressions

Solving Algebraic Equations in one variable

Algebra II Midterm Exam Review Packet

INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS

Performing well in calculus is impossible without a solid algebra foundation. Many calculus

Section 1.4 Solving Other Types of Equations

Function Operations and Composition of Functions. Unit 1 Lesson 6

CHAPTER 1 LINEAR EQUATIONS

STEP 1: Ask Do I know the SLOPE of the line? (Notice how it s needed for both!) YES! NO! But, I have two NO! But, my line is

Sail into Summer with Math!

APPM 2360: Midterm exam 3 April 19, 2017

Summer Mathematics Packet Say Hello to Algebra 2. For Students Entering Algebra 2

Lecture 23 Using Laplace Transform to Solve Differential Equations

Control Systems. System response. L. Lanari

MTH 1310, SUMMER 2012 DR. GRAHAM-SQUIRE. A rational expression is just a fraction involving polynomials, for example 3x2 2

Math 2C03 - Differential Equations. Slides shown in class - Winter Laplace Transforms. March 4, 5, 9, 11, 12, 16,

No Solution Equations Let s look at the following equation: 2 +3=2 +7

Solving Equations Quick Reference

Partial Fraction Decomposition Honors Precalculus Mr. Velazquez Rm. 254

Solving Quadratic & Higher Degree Equations

SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS

Name: Solutions Exam 3

Transcription:

Partial Fractions and the Coverup Method 8.03 Haynes Miller and Jeremy Orloff *Much of this note is freely borrowed from an MIT 8.0 note written by Arthur Mattuck. Heaviside Cover-up Method. Introduction The cover-up method was introduced by Oliver Heaviside as a fast way to do a decomposition into partial fractions. This is an essential step in using the Laplace transform to solve differential equations, and this was more or less Heaviside s original motivation. The cover-up method can be used to make a partial fractions decomposition of a proper rational function ps whenever the denominator can be factored into distinct linear factors. qs Note: We put this section first, because the coverup method is so useful and many people have not seen it. Some of the later examples rely on the full algebraic method of undetermined coefficients presented in the next section. If you have never seen partial fractions you should read that section first..2 Linear Factors We first show how the method works on a simple example, and then show why it works. Example. Decompose into partial fractions. s s + 2 answer: We know the answer will have the form s s + 2 = A s + B s + 2. To determine A by the cover-up method, on the left-hand side we mentally remove or cover up with a finger the factor s associated with A, and substitute s = into what s left; this gives A: s + 2 = 7 = 2 = A. 2 s= + 2 Similarly, B is found by covering up the factor s + 2 on the left, and substituting s = 2 into what s left. This gives s = 2 7 s= 2 2 = 3 = B. Thus, our answer is s s + 2 = 2 s + 3 s + 2. 3

8.03 Partial Fractions and the Coverup Method 2.3 Why does the method work? The reason is simple. The right way to determine A from Equation would be to multiply both sides by s ; this would give s + 2 = A + B s. 4 s + 2 Now if we substitute s =, what we get is exactly Equation 2, since the term on the right with B disappears. The cover-up method therefore is just an easy and efficient way of doing the calculations. In general, if the denominator of the proper rational function factors into the product of distinct linear factors: ps s a s a 2 s a r = A s a +... + A r s a r, a i a j, then A i is found by covering up the factor s a i on the left, and setting s = a i in the rest of the expression. Example 2. Decompose s 3 into partial fractions. s answer: Factoring, s 3 s = ss 2 = ss s +. By the cover-up method, ss s + = s + /2 s + /2 s +. To be honest, the real difficulty in all of the partial fractions methods the cover-up method being no exception is in factoring the denominator. Even the programs which do symbolic integration, like Macsyma, or Maple, can only factor polynomials whose factors have integer coefficients, or easy coefficients like 2. and therefore they can only integrate rational functions with easily-factored denominators..4 Quadratic Factors Heaviside s cover-up method can be used even when the denominator doesn t factor into distinct linear factors. This only gives partial results, but these can often be a big help, as the following example illustrates. If you have never seen partial fractions before you might want to read the next section on the algebraic method of undetermined coefficients. 5s + 6 Example 3. Decompose s 2 + 4s 2. answer: We write 5s + 6 s 2 + 4s 2 = As + B s 2 + 4 + C s 2. 5 We first determine C by the cover-up method, getting C = 2. Then A and B can be found by the method of undetermined coefficients; the work is greatly reduced since we need to solve only two simultaneous equations to find A and B, not three.

8.03 Partial Fractions and the Coverup Method 3 Following this plan, using C = 2, we combine terms on the right of 5 so that both sides have the same denominator. The numerators must then also be equal, which gives us 5s + 6 = As + Bs 2 + 2s 2 + 4. 6 Comparing the coefficients of s 2 and of the constant terms on both sides of 6 gives the two equations 0 = A + 2 and 6 = 2B + 8, from which A = 2 and B =. In using Equation 6, one could have instead compared the coefficients of s, getting 5 = 2A + B, leading to the same result, but providing a valuable check on the correctness of the computed values for A and B. In Example 3, an alternative to undetermined coefficients would be to substitute two numerical values for s into the original Equation 5, say s = 0 and s = any values other than s = 2 are usable. Again one gets two simultaneous equations for A and B. This method requires addition of fractions, and is usually better when only one coefficient remains to be determined as in the example just below. Still another method would be to factor the denominator completely into linear factors, using complex coefficients, and then use the cover-up method, but with complex numbers. At the end, conjugate complex terms have to be combined in pairs to produce real summands, and the calculations can sometimes be longer..5 Repeated Linear Factors The cover-up method can also be used if a linear factor is repeated, but there too it gives just partial results. It applies only to the highest power of the linear factor. Example 4. Decompose s 2 s + 2. answer: We write s 2 s + 2 = A s 2 + B s + C s + 2. 7 To find A cover up s 2 and set s = ; you get A = /3. To find C, cover up s + 2, and set s = 2; you get C = /9. This leaves B which cannot be found by the cover-up method. But since A and C are already known in Equation 7, B can be found by substituting any numerical value other than or 2 for s in 7. For instance, if we put s = 0 and remember that A = /3 and C = /9, we get 2 = /3 + B + /9 2, giving B = /9. B could also be found by applying the method of undetermined coefficients to the Equation 7; note that since A and C are known, it is enough to get a single linear equation in order to determine B simultaneous equations are no longer needed.

8.03 Partial Fractions and the Coverup Method 4 The fact that the cover-up method works for just the highest power of the repeated linear factor can be seen just as before. In the above example for instance, the cover-up method for finding A is just a short way of multiplying Equation 5 through by s 2 and then substituting s = into the resulting equation. 2 Partial Fractions: Undetermined Coefficients 2. Introduction Logically this section should precede the previous one on coverup since it explains what we are doing with partial fraction and shows an algebraic method that never fails. However, since most students in this course will have seen partial fractions before it seemed reasonable to start with the coverup method. 2.2 Rational Functions A rational function is one that is the ratio of two polynomials. For example are both rational functions. s + s 2 + 7s + 9 and s 2 + 7s + 9 s + A rational function is called proper if the degree of the numerator is strictly smaller than the degree of the denominator; in the examples above, the first is proper while the second is not. Long-division: Using long-division we can always write an improper rational function as a polynomial plus a proper rational function. The partial fraction decomposition only applies to proper functions. Example 5. Use long-division to write s3 + 2s + s 2 + s 2 proper rational function. answer: s s 2 + s 2 s 3 + 2s + s 3 +s 2 2s s 2 +4s + s 2 s +2 5s Therefore, s 3 + 2s + s 2 + s 2 = s + 5s s 2 + s 2. 2.3 Linear Factors as a the sum of a polynomial and a Here we assume the denominator factors in distinct linear factors. We start with a simple example. We will explain the general principle immediately afterwords.

8.03 Partial Fractions and the Coverup Method 5 Example 6. Decompose Rs = L Rs. answer: s 3 s 2s s 3 s 2s = A s 2 + B s. Multiplying both sides by the denominator on the left gives using partial fractions. Use this to find s 3 = As + Bs 2 8 The sure algebraic way is to expand out the right hand side and equate the coefficients with those of the polynomial on the left. s 3 = A + Bs + A 2B { coeff. of s: = A + B coeff. of : 3 = A 2B We solve this system of equations to find the undetermined coefficients A and B: A =, B = 2. Answer: Rs = /s 2 + 2/s. Table lookup then gives L Rs = e 2t + 2e t. Note: In this example it would have been easier to plug the roots of each factor into Equation 8. When you do this every term except one becomes 0. Plug in s = 2 = B B = 2 Plug in s = 2 = A A =. In general, if P s/qs is a proper rational function and Qs factors into distinct linear factors Qs = s a s a 2 s a n then P s Qs = A + A 2 + + A n. s a s a 2 s a n The proof of this is not hard, but we will not give it. Remember you must have a proper rational function and each of the factors must be distinct. Repeated factors are discussed below. Example 7. Use partial fractions to find L 3 s 3 3s 2. s + 3 answer: The hardest part of this problem is to factor the denominator. For higher order polynomials this might be impossible. In this case you can check The partial fractions decomposition is s 3 3s 2 s + 3 = s s + s 3. 3 s s + s 3 = A s + Multiplying through by the denominator gives B s + + C s 3. 3 = As + s 3 + Bs s 3 + Cs s +.

8.03 Partial Fractions and the Coverup Method 6 Plugging in s = gives A = 3/4, likewise s = gives B = 3/2 and s = 3 gives C = 3/4. Our answer is L 3 s 3 3s 2 = Ae t + Be t + Ce 3t = 2 s + 3 4 et + 3 2 e t 3 4 e3t. 2.4 Quadratic Factors If the denominator has quadratic factors then, the numerator in the partial fraction decomposition will be a linear term instead of a constant. Example 8. Find L s s + s 2. + 4 answer: This is a proper rational function so s s + s 2 + 4 = A s + + Bs + C s 2 + 4. 9 Notice the quadratic factor gets a linear term in the numerator. Notice also that the number of unknown coefficients is the same as the degree of the denominator in the original fraction. From Equation 9 we can write L s s + s 2 = Ae t + B cos2t + C + 4 2 sin2t. All that s left is to do some algebra to find the coefficients Muliplying Equation 9 through by the denominator gives s = As 2 + 4 + Bs + Cs + = A + Bs 2 + B + Cs + 4A + C. Equate the coefficients on both sides: s 2 : s : s 2 : 0 = A + B = B + C = 4A + C Solving, we get A = 2/5, B = 2/5, C = 3/5. Example 9. Don t be fooled by quadratic terms that factor into linear ones. s + s 2 4 = s + s + 2s 2 = A s + + B s + 2 + C s 2. Example 0. Don t forget that the rational function must be proper. For example, decompose s3 + 2s + s 2 using partial fractions. + s 2 answer: First, we must use long-division to make this proper. From Example 5 we have s 3 + 2s + s 2 + s 2 = s + 5s s 2 + s 2 = s + 5s s + 2s = s + A s + 2 + B s. Solving for the undetermined coefficients gives A = /3, B = 4/3.

8.03 Partial Fractions and the Coverup Method 7 2.5 Repeated Linear Factors For repeated linear factors we need one partial fraction term for each power of the factor as illustrated by the following example. Example. Find L 2s s 3 s + 2 using partial fractions. s + 2 answer: 2s s 3 s + 2 s + 2 = A s + B s 2 + C s 3 + D s + + E s + 2 + F s + 2 Here the denominator has a linear factor s repeated three times term s 3, and a linear factor s + repeated twice term s + 2 ; hence three partial fractions are associated with the first, while two are associated with the latter. The term s+2 which is not repeated leads to one partial fraction as previously seen. You can check that the coefficients are A = 5/2, B =, C = 0, D = 2, E = 2, F = /2. Using the s-shift rule we have L /s + 2 = te t. Thus, L 2s s 3 s + 2 = A + Bt + C s + 2 2 t2 + De t + Ete t + F e 2t = 5 2 + t + 2e t + 2te t + 2 e 2t. 2.6 Repeated Quadratic Factors Just like repeated linear factors, quadratic factors have one term for each power of the factor as illustrated in the following example. Example 2. Find L 2s ss 2 + 2 s 2 using partial fractions. + 4s + 2 answer: The partial fractions decomposition is 2s ss 2 + 2 s 2 + 4s + 6 = A s + Bs + C s 2 + + Ds + E s 2 + 2 + F s + G s 2 + 4s + 6 Note the repeated factor s 2 + 2 lead to two partial fraction terms. We won t compute the coefficients you can do this by going through the algebra. Instead, we ll focus on finding the Laplace inverse. Our table contains the terms with repeated quadratic factors. Ds L s 2 + 2 = D t 2 sint L E s 2 + 2 = E sint t cost. 2 For the terms with denominator s 2 + s + 2 we need to complete the square. Notice that we make sure to also shift the s-term in the numerator. F s + G F s + 2 + G 2F L s 2 = L + 4s + 6 s + 2 2 + 2 = F e 2t cos 2 t + G 2F e 2t sin 2 t. 2

8.03 Partial Fractions and the Coverup Method 8 Putting this together, the answer is L 2s ss 2 + 2 s 2 + 4s + 6 = A + B cost + C sint +D t 2 sint + E sint t cost 2 +F e 2t cos 2 t + G 2F e 2t sin 2 t. 2 2.7 Complex Factors We can allow complex roots. In this case all quadratic terms factor into linear terms. Example 3. Decompose s/s 2 + ω 2 using complex partial fractions and use it to show L s/s 2 + ω 2 = cosωt. answer: s s 2 + ω 2 = Multiplying through by the denominator gives Plug in s = iω A = /2. Plug in s = iω B = /2. From the table: L s s 2 + ω 2 A = L s iω + B s + iω s s iωs + iω = A s iω + B s + iω. s = As + iω + Bs iω. = Ae iω + Be iω = 2 eiω + e iω = cosωt.